1. Field of the Invention
Suspended ceilings are used extensively in commercial and industrial buildings. In such ceilings, a metal grid framework of interconnected main beams and cross beams is hung from a structural ceiling by wires. The grid supports acoustical panels in rectangular openings formed in the grid.
This invention relates to the connectors used in the grid to join a pair of opposing cross beams and a main beam at grid intersections.
2. Prior Art
Suspended ceilings having metal beams interconnected into a grid that supports panels are well known. U.S. Pat. Nos. 5,839,246 and 6,178,712, for instance, incorporated herein by reference, show such ceilings.
The grid in such ceilings has, at each grid intersection, a pair of opposing cross beams and a main beam that form a connection.
The present invention relates to such a connection.
Each cross beam in such a connection has a connector at its end that is thrust, or stabbed-in, from opposing sides of the main beam, through a slot in the main beam. The connectors are all identical.
The connector that is first inserted into the slot is prevented from being withdrawn back out of the slot by the cantilevered latch in the connector, in the form of a pivoted flexible leaf spring. Such latch, which is integral with the connector base and formed therefrom by punching, is biased toward an open position. The latch, which is cantilevered at an angle from the base of the connector, flexes toward a closed position under the restraint of the side of the slot when the connector is stabbed through the slot to make the connection, but which then reflexes back to its biased rest position to prevent withdrawal of the connector back out of the slot.
Another connector on an opposing cross beam, identical to the first connector thrust through the slot, is then stabbed through the slot in the reduced space in the slot alongside the first. The latch on the connector contacts the side of the slot close to the latch pivot, and is flexed toward a closed position.
In inserting particularly the second connector into the slot, with a linear stab-in motion, substantial work and force are necessary to make the connection.
This resistance arises virtually immediately as the second connector into the slot enters the slot, and continues throughout the travel of the connector until it is seated in a locked position, as described below, with the first connector into the slot.
Both connectors interconnect when the second connector into the slot is fully inserted. Detents formed from the connector base, in the form of bulbs, that have a cam side and a locking side, and the ends of the connectors, flex and reflex to engage in what is sometimes referred to as a connector-to-connector lock, or “handshake” lock. Such a “handshake” connection between the connectors prevents the connectors from being pulled apart lineally out of the slot. The connectors are kept laterally and vertically together by the slot in the main beam.
In the seated locked position, the second connector is horizontally aligned with the first connector within the confines of the slot, so that the locking detents on the connectors are engaged and retained at the same level to form the connector-to-connector lock. Generally, the second connector must be either elevated or depressed as it passes into the slot to achieve such horizontal alignment. Hence, the profile of the leading edge of the connector is tapered to guide the connector during its travel though the main beam slot.
Such connectors are well known in the prior art and are disclosed, for instance, in the above referred to patents.
Numerous such connections must be made to create a ceiling grid.
The prior art stab-in connector described above is improved so that it takes much less force, and less work, to make the connection.
There is less work and less force necessary, because, in inserting the second connector into the reduced area of the slot of the main beam, (1) there is a delay in the contact between the locking latch and the side of the slot, so that during the delay, (2) elements in the ensuing connection are positioned while offering the least resistance from frictional forces to such positioning, and (3) when contact between elements does occur, the elements are positioned to offer the least resistance to making a connection.
To achieve the above, the locking latch, which in its unflexed position, must extend laterally far enough out from the base of the connector to prevent withdrawal of the first connector through the slot before the second connector is inserted, is pivoted from the connector base in an arc, rather than in an acute bend as in the prior art.
This, as set forth in (1) above, delays contact between the latch and the side of the slot, when the second connector is inserted into the slot and, as set forth in (2) above, such contact is made further out along the latch from the pivot point, closer to the end of the latch, creating a longer lever arm, so that less force is needed to close the latch.
The outward end of the locking latch in an unflexed position, extends to the same position as the prior art straight latch pivoted at a sharp, acute angle. This position is necessary, so that the connector cannot be withdrawn after the latch passes through the slot.
Also, during the delay in (1) above, the second connector into the slot is being positioned vertically by the taper on the leading end of the connector, which engages either the top or bottom of the slot, to the same horizontal level as the first connector, without frictional resistance created in the connection of the prior art, where the locking latch, virtually immediately, forces the first and second connection laterally together.
By adjusting the second connector into the slot more quickly vertically as it travels through the slot, the locking detents and connector ends that engage together by flexing, are in a position, as set forth in (3) above, to offer the least resistance to such engagement.
a is a top sectional view of the connector of the invention, taken on the line A-A of
a are views of a prior art corresponding to the views of
a is a top sectional view of a prior art connector taken on the line A-A of
a is a graph of the force necessary to overcome resistance in making the connection of the prior art.
b is a graph of the force necessary to overcome resistance in making the connection of the invention.
c is a graph of the forces represented in 4a and 4b, overlapped.
The Prior Art
U.S. Pat. No. 5,839,246, incorporated herein by reference, is representative of the prior art connection which is improved by this invention. The connection itself, and the method of making such connection, is set forth in detail in the '246 patent.
In the present drawings, a connection of the invention is shown in
In the connection, the following occurs:
In making the connection shown in
Locking latch 40 contacts side of slot 23 and is flexed enough to allow the latch 40 to pass through slot 23 and reflex back to a rest position, in a one way movement. In this position, the first connector 21 through the slot is retained within the slot 23.
The second connector 22 is then thrust through the slot 23 along side the first connector 21 through the slot 23. Again, locking latch 40 contacts side of slot 23, but now there is less room in the slot because a connector has already been inserted. The second connector 22 into the slot, as it is thrust through the slot 23, flexes the latch 40 toward a closed position, until the latch passes through the slot after which it flexes open to a rest position. The connectors 21 and 22 also form a connector-to-connector lock at this point, as seen in
In these stab-in connections, as the second connector into the slot, for instance connector 22, travels through the slot 23 to a seated position, after the first connector 21 into the slot has been inserted, the following occurs:
In the prior art, (1) through (4) above overlapped or occurred virtually simultaneously, so that the force and work required to complete a connection 10 was not only the sum of the forces necessary to overcome the sum of the individual resistances created by (1), (2), (3) and (4) referred to immediately above, but also the force and work to overcome the friction created when forces (1), (2), (3) and (4) overlapped, or occurred simultaneously. These frictional resistances included:
In the prior art, in an attempt to reduce the total force and work required, the taper 37 or slope on the leading edge of a prior art connector 15, as seen in
The Present Improvement
The present improvement reduces substantially the force necessary to overcome the resistance from the frictions (a), (b), (c) and (d) above and the forces necessary in (3) above to flex the locking latch 40 of the invention toward a closed position, and in (4) above to flex the detents 31 and 33 and ends 30 and 32 relative to one another to create the connector-to-connector interlock.
As in the prior art, in the present improvement the cantilevered leaf spring latch 40 continues to be formed, as by punching, from the connector base 39, as seen, for instance, in
In the improvement of the invention, the latch of the invention 40, as seen in
Representative dimensions for the locking latch 40 of the invention are shown in
Further, the first contact of the latch of the invention 40 with the side of the slot 23 is further out from the point 51 of the latch of the invention 40 where it is joined to on the base 41, since part of the curved part of the latch of the invention 40 extends in the plane of the base 41 and is not exposed to contact by the side of the slot 23. Point 51 is the cutting start and the bending start of the latch of the invention 40 as seen in
Thus, the force exerted by the side of the slot 23 as the latch of the invention 40 passes through the slot is applied further from the pivot point 51 than in the prior art, thus requiring less force to pivot the latch of the invention 40, than in the prior art straight lever latch 10, since the force has a greater lever arm in the latch of the invention 40 when it meets the side of slot 23 as it is thrust into the connection.
Thus, less force over a shorter distance is required to collapse the latch of the invention 40 than was required to collapse latch 10 in the prior art. This results in substantially less work that has to be done to make a connection. This beneficial effect in one connection, is multiplied by the many connections required in forming a ceiling grid for a suspended ceiling.
In the connection improved by the present invention, during the time the connector is being inserted, it is necessary to adjust the connector vertically, so that when fully inserted, the connector fits vertically into the slot 23.
Since the force necessary to collapse the latch 10 of the prior art was substantial, and arose near the leading edge of the connector, the taper that guided the connector vertically to its fully seated position so that the connector was in place vertically when fully inserted, was gradual, to limit the added resistance at any one point in the insertion.
Thus, even when the connector-to-connector interlock was being created, wherein the detents were flexing, the connector was still being adjusted vertically, in view of such necessity to make the taper gradual rather than abrupt, thereby creating still more resistance.
In the present invention, the taper 38 at the leading edge of the connector 21, 22 is made relatively abrupt, at a steeper angle, so that a relative immediate adjustment is made vertically to the connector as it is being inserted into the slot 23. Even though a more steep, immediate adjustment would normally require a greater insertion force than that of a gradual insertion, there is less, rather than more force required. This reduction in force is obtained by the delayed contact of the locking latch of the invention 40 with the side of slot 23, since there is virtually no drag or resistance from the locking latch of the invention 40.
There is a further benefit that is achieved by early vertical positioning of the connector within the slot 23 during insertion. As the detents 31 and 33, and the ends 30 and 32 of the first and second connectors of the invention 20 and 21 come into contact, the detents and ends are at a position relative to one another, vertically, where there is least resistance to flexing of these elements laterally into the locking position. Whereas in the prior art, contact was made between detents and ends, and force was exerted between these elements, off-center from their most flexible position, the force required to flex the detents and ends, was again substantial.
a show a prior art connector, while
As seen in
In
The benefits of the present improvement over the prior art are shown graphically in
In the prior art, the line from 80 to 81 represents the resistance encountered during the initial insertion of the second connector into the slot, while the latch 10 is being flexed from its initial contact with the side of the slot 23, until the resistance reaches its highest at about 27 pounds at point 81.
The contact of the straight lever 11 of prior art latch 10 is relatively close to the pivot 12 during this travel. At 81, there is a drop off in resistance during travel to point 82 to about 10 pounds. The straight lever latch 10 of the prior art during this drop off, contacts the side of the slot 23 further out along its straight lever 11, as it travels through the slot 23, so less force is necessary, since the lever arm is longer than at the initial contact.
At 82 there is a rise again in resistance due to the flexing of the detents 31 and 33 and connector ends 30 and 32 while they are forming a connector-to-connector lock. The resistance rises to point 83 at which point the connector-to-connector lock is completed, and all elements have reflexed to a rest position with no further resistance or movement occurring.
The forces required to overcome the resistance encountered in making a connection with the improvement of the invention is shown graphically in
The force necessary, and the distance over which the force must be applied, is obviously remarkably less, in making the connection, with the present improvement in the connector.
c overlaps the charts of
Number | Name | Date | Kind |
---|---|---|---|
3193063 | Brown et al. | Jul 1965 | A |
3312488 | Lickliter | Apr 1967 | A |
3321879 | Purdy | May 1967 | A |
3354598 | Nicholson | Nov 1967 | A |
3367695 | Haertel et al. | Feb 1968 | A |
3396997 | Adams | Aug 1968 | A |
3501185 | Brown et al. | Mar 1970 | A |
3675957 | Lickliter et al. | Jul 1972 | A |
3746379 | Sauer | Jul 1973 | A |
3921363 | Beynon | Nov 1975 | A |
3922829 | Sauer | Dec 1975 | A |
3979874 | Cubbler et al. | Sep 1976 | A |
4106878 | Jones | Aug 1978 | A |
4108563 | Brown et al. | Aug 1978 | A |
4161856 | Brown et al. | Jul 1979 | A |
4314432 | Rosenbaum | Feb 1982 | A |
4317641 | Sauer | Mar 1982 | A |
4364686 | Sharp et al. | Dec 1982 | A |
RE31201 | Sauer | Apr 1983 | E |
4389828 | Cary | Jun 1983 | A |
4494350 | Sharp | Jan 1985 | A |
4499697 | La Londe | Feb 1985 | A |
4525973 | Vukmanic et al. | Jul 1985 | A |
4535580 | Shirey | Aug 1985 | A |
4549383 | Vukmanic et al. | Oct 1985 | A |
4601153 | Dunn et al. | Jul 1986 | A |
4611453 | Worley | Sep 1986 | A |
4621474 | Worley | Nov 1986 | A |
4648230 | Mieyal et al. | Mar 1987 | A |
4712350 | Vukmanic | Dec 1987 | A |
4779394 | Shirey et al. | Oct 1988 | A |
4785603 | Platt | Nov 1988 | A |
4827681 | Platt | May 1989 | A |
4864791 | Platt | Sep 1989 | A |
4912894 | Platt | Apr 1990 | A |
4989387 | Vukmanic et al. | Feb 1991 | A |
5044138 | Zaccardelli et al. | Sep 1991 | A |
5216865 | Lalonde et al. | Jun 1993 | A |
5271202 | Vukmanic et al. | Dec 1993 | A |
5517796 | Koski et al. | May 1996 | A |
5687525 | Koski et al. | Nov 1997 | A |
5839246 | Ziegler et al. | Nov 1998 | A |
5966887 | Mieyal | Oct 1999 | A |
6178712 | Sauer | Jan 2001 | B1 |
6199343 | Sauer et al. | Mar 2001 | B1 |
6305139 | Sauer | Oct 2001 | B1 |
6523313 | Platt et al. | Feb 2003 | B2 |
6729100 | Koski et al. | May 2004 | B2 |
Number | Date | Country | |
---|---|---|---|
20050166509 A1 | Aug 2005 | US |