The present invention relates generally to transmission line structures used in aerospace applications.
Aerospace devices, such as satellites and high altitude airplanes are exposed to extreme temperature fluctuations. For example, it is common for a satellite in geo-stationary orbit to travel in and out of the earth's shadow once a day causing it to be exposed to temperature fluctuations ranging from below negative 54 degrees Fahrenheit while in the earth's shadow to between 200-to-300 degrees Fahrenheit when exposed to the sun.
Low loss transmission line structures are often used in aerospace applications to provide signal conductivity for various components used in such applications. These transmission line structures are stressed by the extreme temperature fluctuations described above. For example, a transmission line structure typically includes a dielectric that tends to expand and contract when exposed to heat and cold, respectively. Beside compressing and expanding, it is common for the dielectric to shift in a longitudinal direction along the axis of the transmission line. This motion of the dielectric eventually creates voids within the coaxial cable, which can lead to a short circuit or poor signal conductivity. Eventual catastrophic failure of the transmission line will occur from this undesired movement of the dielectric. Consequently, there is an increased possibility that an aerospace device or application may also experience some type of failure.
Stabilization of dielectrics used in transmission lines is described. In one implementation, the transmission line includes an outer conductor, a center conductor, and a dielectric material. The dielectric material separates the outer conductor from the center conductor. The center conductor has a conductive surface with a pattern distributed thereon. The pattern is configured to prevent the dielectric material from moving when the transmission line is exposed to an extreme temperature fluctuation.
The following exemplary implementations, therefore, introduce the broad concept of using the center conductor to stabilize dielectric material used in transmission lines by placing at least one pattern on the conductive surface of the center conductor. The pattern increases a coefficient of friction between the center conductor and dielectric material sufficient enough to prevent undesired motion of the dielectric material. In one implementation, the pattern includes indentations that are between approximately 0.001 and 0.004 of an inch deep, although other dimensions, greater or smaller, may be possible.
The detailed description is described with reference to the accompanying figures. In the figures, the left-most digit(s) of a reference number identifies the figure in which the reference number first appears. It should be noted that the figures are not drawn to scale and are for illustration purposes only.
According to an exemplary implementation, transmission line 100 may include a jacket 102, an outer conductor 104, a dielectric material 106, and a center conductor 107 having a conductive surface 110 and possibly a conductive core 108. Jacket 102 may be any flexible standard insulating material able to withstand extreme temperatures. Jacket 102 is commonly used to encase all elements of transmission line 100 and is usually some type of dielectric material such as Fluroninfied Ethylene Propylene (FEP), Perfluroroalkoxy (PFA), or Ethylene Tetra Fluroreethlylene (ETFE). Outer conductor 104 may be a conductive material such as copper or conductive materials typically used in low loss transmission line structures. In certain implementations, outer conductor 104 may include round wire braiding 109 in addition to outer conductor 104, which provides flexibility for the outer conductor 104.
Center conductor 107 typically includes a conductive core 108, which may be any type of flexible material, typically made of a conductive material such as copper. Other materials may also be selected for core 108, such as copper-clad steel. Typically, center conductor 107 includes a conductive surface 110 that is made of a highly conductive and very low loss material. For example, in the exemplary implementation, center conductor 107 is silver-plated copper, or in other words, conductive surface 110 is silver plating over a copper core 108. Other materials may be selected for conductive surface 110 such as gold.
In one implementation, center conductor 107 is approximately 0.087 inches in diameter with conductive surface 110 being 200 microinches thick. Depending on the application, other diameters and thicknesses, greater or smaller, may be selected for center conductor 108 and conductive surface 110, respectively.
It should be noted that there is generally a ratio of less than 1.06 when center conductor 107 is measured in an optical comparator with its conductive surface 110 represented in shadow. To obtain this ratio, one can measure the largest apparent diameter and the smallest apparent diameter of the center conductor 107, and then take the ratio of the largest measurement over the smallest measurement to arrive at the ratio.
Separating the center conductor 107 from outer conductor 104 is a dielectric material 106, which electrically insulates and encases the center conductor 107. The material selected for providing dielectric qualities should be flexible and able to withstand repetitive temperature fluctuations in the order of 350 degrees Fahrenheit or greater (i.e., −54° F. and below to +300° F. and above). In one implementation, dielectric material 106 includes one or more layers of polytetrafluoroethylene.
It is to be appreciated that additional components can be included in transmission line structure 100. For example, additional conductors, connectors, or dielectric materials may be included as part of transmission line structure 100.
As described above, it has been observed that dielectric material 106 shows undesirable movement from its original location when exposed to extreme temperature fluctuations. That is, dielectric material 106 will move in a particular direction: the long axis of transmission line structure 100. For example,
According to
To avoid breaching the thin conductive layer 110, each indentation is made by a hard, smooth tool, which causes the material to flow, but does not penetrate through the plating. In one implementation, the pattern 301 includes indentations that are generally between 0.001 and 0.004 of an inch deep. Of course, the indentation depths may vary, greater or smaller, depending on the size of the center conductor.
Pattern 301 is configured to prevent dielectric material (shown as 106 in
Pattern 301 is not limited to helical indentations. In fact, just about any pattern may be selected for distribution on conductive surface 110. For instance,
Although some implementations of the various methods and arrangements of the present invention have been illustrated in the accompanying Drawings and described in the foregoing Detailed Description, it will be understood that the invention is not limited to the exemplary aspects disclosed, but is capable of numerous rearrangements, modifications and substitutions without departing from the spirit of the invention as set forth and defined by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
290769 | Gray | Dec 1883 | A |
543960 | Gray | Aug 1895 | A |
4280016 | Ege | Jul 1981 | A |
4626810 | Nixon | Dec 1986 | A |
4687884 | DeHart | Aug 1987 | A |
5430255 | Downie et al. | Jul 1995 | A |
5938474 | Nelson | Aug 1999 | A |
6541708 | Suehiro | Apr 2003 | B2 |
20030178224 | Goto | Sep 2003 | A1 |
20040168888 | Brixius et al. | Sep 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20040182598 A1 | Sep 2004 | US |