The present disclosure relates to surgical devices, and more particularly, stabilization systems, for example, for trauma applications.
Bone fractures are often repaired by internal fixation of the bone, such as diaphyseal or methaphyseal bone, using one or more plates. The plate is held against the fractured bone with screws, for example, which engage the bone and heads which provide a compressive force against the plate. The plate and bone are thus forced against each other in a manner that transfers load primarily between a bone contacting surface of the plate and the bone surface to reinforce the fractured bone during healing. This manner of plating generally creates relatively low stress concentration in the bone, as there may be a large contact area between the plate and the bone surface permitting transfer of load to be dispersed. There may be a desire to use locking screws, non-locking screws, or a combination of both that are able to dynamically compress the bone. Of course, the designs of the plates, types of screws, and locking and/or non-locking capabilities may vary based on the location and type of fracture. Thus, there is a need for plating systems that provide stabilization to the appropriate anatomical area while providing appropriate locking and/or unlocking capability for dynamic compression of the bone.
To meet this and other needs, devices, systems, and methods of bone stabilization are provided. The stabilization systems may include one or more plates and one or more fasteners. The fasteners may include locking and/or non-locking bone screws that a surgeon may select based on preference for a specific anatomical case. The locking fasteners may connect to the plate and the bone to thereby lock the plate to the bone. The non-locking fasteners may be able to dynamically compress the bone and create interfragmental compression.
According to one embodiment, a stabilization system includes a bone plate and a fastener. The bone plate has an upper surface and a lower surface configured to be in contact with bone, the bone plate having an opening extending from the upper surface to the lower surface. The opening includes a textured portion and non-textured portion, wherein the textured portion comprises a texture that is a non-threaded surface. The fastener is configured to be received by the opening and configured to be inserted into the bone. The opening is configured to receive either a locking fastener or a compression fastener. The locking fastener may have a threaded head portion configured to engage the textured portion and lock to the bone plate, and the compression fastener may have a substantially smooth head portion configured to dynamically compress the bone. The opening may include a combination compression and locking through hole formed by a first bore having a first bore axis and a second bore having a second bore axis different from the first bore axis. In some instances, one of the first and second bores may have an elongated opening, for example, to allow for translation of the non-locking, compression fastener.
According to another embodiment, a stabilization system includes a bone plate, a locking fastener, and a compression fastener. The bone plate has an upper surface and a lower surface configured to be in contact with bone, the bone plate having an opening extending from the upper surface to the lower surface, the opening including a textured portion and non-textured portion, wherein the textured portion comprises a texture that is a non-threaded surface. The locking fastener is configured to be received by one of the openings and configured to be inserted into the bone, wherein the locking fastener has a threaded head portion configured to lock to the bone plate. The compression fastener is configured to be received by one of the openings and configured to be inserted into the bone, wherein the compression fastener has a substantially smooth head portion configured to dynamically compress the bone. Each opening is configured to receive either the locking fastener or the compression fastener.
According to yet another embodiment, a stabilization system includes a bone plate and a fastener. The bone plate has an upper surface and a lower surface configured to be in contact with bone, the bone plate having an opening extending from the upper surface to the lower surface, wherein the opening is formed by at least three different partially overlapping bores including a first bore having at least a partial first internal thread, a second bore having at least a partial second internal thread, and a third bore having at least a partial third internal thread. The fastener is configured to be received by the opening and configured to be inserted into the bone, wherein the opening is configured to receive either a locking fastener or a compression fastener, the locking fastener having a threaded head portion configured to lock to the bone plate, and the compression fastener having a substantially smooth head portion configured to dynamically compress the bone.
According to yet another embodiment, a bone stabilization plate includes an elongate body extending from a first end to a second end and defining at least one screw hole therethrough. A mesh head is connected to the second end of the elongate body. The mesh head includes a plurality of rings, with each of the rings defining a screw hole. Bridge portions extend between and interconnect the rings. The bridge portions have a reduced thickness compared to the rings.
According to another embodiment, a bone stabilization plate includes a mesh body. The mesh body includes a plurality of rings, with each of the rings defining a screw hole. Bridge portions extend between and interconnect the rings. The bridge portions have a reduced thickness compared to the rings.
According to another embodiment, a bone stabilization plate includes an elongated body extending between first and second ends and having an upper surface and an opposed bone contacting surface. The bone contacting surface has a scalloped configuration and at least one of the ends has a beveled configuration. The body defines a plurality of screw holes and each of the screw holes has the same diameter.
Also provided are additional stabilization systems, methods for installing the stabilization systems, and kits including bone plates, fasteners, and components for installing the same.
A more complete understanding of the present invention, and the attendant advantages and features thereof, will be more readily understood by reference to the following detailed description when considered in conjunction with the accompanying drawings wherein:
Embodiments of the disclosure are generally directed to devices, systems, and methods for bone stabilization. Specifically, embodiments are directed to bone plating with locking and/or non-locking fasteners for dynamic compression of the bone. The hole designs may allow for fixed angle and/or polyaxial locking and/or non-locking of the fasteners. Some embodiments include blocking fasteners to prevent the bone fastener from backing out. Some embodiments further include locking fasteners with self-forming threads configured to displace the plate material, thereby locking the fastener to the plate.
The plates may be adapted to contact one or more of a femur, a distal tibia, a proximal tibia, a proximal humerus, a distal humerus, a clavicle, a fibula, an ulna, a radius, bones of the foot, bones of the hand, or other suitable bone or bones. The bone plate may be curved, contoured, straight, or flat. The plate may have a head portion that is contoured to match a particular bone surface, such as a metaphysis or diaphysis, flares out from the shaft portion, forms an L-shape, T-shape, Y-shape, etc., with the shaft portion, or that forms any other appropriate shape to fit the anatomy of the bone to be treated. The plates may be adapted to secure small or large bone fragments, single or multiple bone fragments, or otherwise secure one or more fractures. In particular, the systems may include a series of trauma plates and screws designed for the fixation of fractures and fragments in diaphyseal and metaphyseal bone. Different bone plates may be used to treat various types and locations of fractures.
The bone plate may be comprised of titanium, stainless steel, cobalt chrome, carbon composite, plastic or polymer—such as polyetheretherketone (PEEK), polyethylene, ultra high molecular weight polyethylene (UHMWPE), resorbable polylactic acid (PLA), polyglycolic acid (PGA), combinations or alloys of such materials or any other appropriate material that has sufficient strength to be secured to and hold bone, while also having sufficient biocompatibility to be implanted into a body. Similarly, the fasteners may be comprised of titanium, cobalt chrome, cobalt-chrome-molybdenum, stainless steel, tungsten carbide, combinations or alloys of such materials or other appropriate biocompatible materials. Although the above list of materials includes many typical materials out of which bone plates and fasteners are made, it should be understood that bone plates and fasteners comprised of any appropriate material are contemplated.
The embodiments of the disclosure and the various features and advantageous details thereof are explained more fully with reference to the non-limiting embodiments and examples that are described and/or illustrated in the accompanying drawings and detailed in the following description. The features of one embodiment may be employed with other embodiments as the skilled artisan would recognize, even if not explicitly stated herein. Descriptions of well-known components and processing techniques may be omitted so as to not unnecessarily obscure the embodiments of the disclosure. The examples used herein are intended merely to facilitate an understanding of ways in which the disclosure may be practiced and to further enable those of skill in the art to practice the embodiments of the disclosure. Accordingly, the examples and embodiments herein should not be construed as limiting the scope of the disclosure, which is defined solely by the appended claims and applicable law. Moreover, it is noted that like reference numerals represent similar features and structures throughout the several views of the drawings.
Referring now to the drawing,
As shown in
The plate 10 includes one or more through openings 20 configured to receive one or more bone fasteners 30, 40. The openings 20 extend through the body of the plate 10 from the top surface 16 to the bottom surface 18. Each of the openings 20 may be in the form of a combination opening that has at least two overlapping holes. As shown in
The plate 10 may comprise any suitable number of openings 20 in any suitable configuration. As shown, the plate 10 is a generally an elongate plate 10 including six combination openings 20 positioned along the central longitudinal axis A of the plate 10. The combination openings 20 may also be oriented in any suitable orientation such that the locking holes 22 and dynamic compression holes 24 are optimized based on the type and location of the fracture. As shown, starting from the second end 14 of the plate 10, three of the combination openings 20 are aligned such that the dynamic compression holes 24 are positioned toward the second end 14, and the three combination openings 20 past the midline of the plate 10, are reversed and aligned such that the dynamic compression holes 24 are now positioned toward the first end 12 of the plate.
These openings 20 allow surgeons more flexibility for fastener placement, based on preference, anatomy, and fracture location. Surgeons may have differing opinions as to whether non-locking or locking screws 30, 40 (or some combination of the two) should be used in diaphyseal bone. Further, complexity of fracture location and shape makes having as many locations for fasteners 30, 40 as possible necessary. This design offers surgeons a versatile method to achieve higher accuracy in placement of locking and/or non-locking screws 30, 40.
As best seen in
The locking fastener 30 may include a head portion 32 and a shaft portion 34 configured to engage bone. The shaft portion 34 may be threaded such that the fastener 30 may be threaded into the bone. The head portion 32 of the locking fastener 30 includes a textured area 36 around its outer surface sized and configured to engage with the locking hole 22 of the combination opening 20. The textured area 36 may include threads, ridges, bumps, dimples, serrations, or other types of textured areas. As shown, the texture area 36 preferably includes a threaded portion extending substantially from the top of the head portion 32 to the bottom of the head portion 32 proximate to the shaft portion 34. Thus, when the textured area 36 engages the locking hole 22, the locking fastener 30 is thereby locked to the plate 10.
The non-locking fastener 40 includes a head portion 42 and a shaft portion 44 configured to engage bone. The shaft portion 44 may be threaded such that the fastener 40 may be threaded into the bone. The head portion 42 of the non-locking fastener 40 is substantially smooth around its outer surface such that is able to slide along the elongated compression hole 24. Thus, the non-locking fastener 30 may be coupled to the plate 10, but not locked thereto to enable dynamic compression of the bone. It will be recognized that the head portions 32, 42 of the fasteners 30, 40 may include a recess configured to receive a driver or the like.
As best seen in
An upper portion of the hole 22 may be tapered 28, without texturing, for example, to facilitate alignment of the fastener 30 with the opening 20. As shown in
The second hole portion 24 of the combination opening 20 may be an elongated dynamic compression hole. The dynamic compression hole 24 may be elongated such that it has a length greater than its width. The hole 24 may be elongated along the longitudinal axis A of the plate 10. In the alternative, the hole 24 may be generally cylindrical such that the hole 24 only permits polyaxial movement of the fastener 40. The inner surface of the hole 24 may be substantially smooth such that the non-locking fastener 40 is able to freely pivot and/or slide along the elongated hole 24. This provides for at least two directions of compressive force (e.g., along the longitudinal axis A and perpendicular to the longitudinal axis A). The head portion 42 of the non-locking fastener 40 may be substantially smooth around its outer surface. The head portion 42 is sized and configured to engage with and be retained within the hole portion 24 of the combination opening 20. The hole 24 may be configured to receive a fixed or variable angle fastener 40. In one embodiment, the hole 24 may be generally conical in shape and/or tapered such that it is wider near the top surface 16 of the plate 10 and narrower toward the bottom surface 18 of the plate 10. In this embodiment, the hole 24 is a smooth variable angle conical hole configured to receive the non-locking fastener 40. The hole 24 may receive the fastener head 42 allowing movement of the fastener 40, for example, in a polyaxial fashion and/or along the length of the hole 22, thereby providing dynamic compression of the bone.
The plate 10 may have one or more additional features. For example, the plate 10 may include one or more through holes 50 extending through the plate 10. For example, holes 50 may extend from the top surface 16 to the bottom surface 18 of the plate 10. These holes 50 may be configured to receive k-wires (not shown). In the embodiment shown, six holes 50 are provided along the central longitudinal axis A of the plate 10 to receive one or more k-wires. Although it will be appreciate that any number and location of holes 50 may be provided for receiving k-wires. The plate 10 may also include one or more reliefs to minimize contact of the plate 10 with the bone and preserve the anatomy. For example, the relief may be in the form of one or more conical cuts 52 along the bottom surface 18 of the plate 10. The conical cuts 52 may be positioned on either side of the k-wire holes 50 and extend outward towards the side surfaces of the plate 10. Each conical cut 52 may include a narrowed portion proximate to the k-wire hole 50 (e.g., along the central longitudinal axis A of the plate 10) and a widened portion proximate to the outer side surfaces. Although twelve conical cuts 52 are provided around the six k-wire holes 50, it is envisioned that the conical cuts 52 may be provided at any suitable location and number as would be recognized by one of skill in the art. The plate 10 may further include one or more perimeter reliefs 54 extending around the bottom surface 18 of the plate 10 to reduce unnecessary contact with bone as an anatomy preserving measure. As shown, the perimeter relief 54 is a cutout in the bottom surface 18 of the plate 10 which extends around the outer perimeter of the plate 10. The perimeter relief 54 is interrupted by each of the conical cuts 52. The perimeter relief 54 generally leaves an outer edge surface (e.g., around the sides and first and second ends 12, 14 of the plate 10) except where interrupted by the conical cuts 52 and a central portion of the bottom surface raised relative to the relief 54. The width and depth of the relief 54 may be of any suitable dimension to provide adequate contact between the plate 10 and the bone while minimizing unnecessary contact to preserve the anatomy.
Turning now to
With reference to
Turning now to
With reference to
Turning now to
With reference to
Turning now to
The non-locking compression fasteners 40 may have a major bone thread diameter such that the fastener 40 can translate between overlapping holes 22F, 24F, 23F without interference. As best seen in
Turning now to
With reference to
Turning now to
In
Turning now to
At the intersection between the upper tapered portion 28 and the lower tapered portion 29 a narrowed central portion may have a textured portion 26. As described herein, the textured portion 26 may include threads, ridges, bumps, dimples, serrations, or other types of textured areas. In the embodiment shown in
In
In
The embodiment of the opening 20 in
Turning now to
As best seen in
The plate 10 may comprise any suitable number and type of openings 20I, 20J in any suitable configuration. These openings 20I, 20J allow surgeons more flexibility for fastener placement, based on preference, anatomy, and fracture location. Surgeons may have differing opinions as to whether non-locking or locking screws 30, 40 (or some combination of the two) should be used. Further, complexity of fracture location and shape makes having as many locations for fasteners 30, 40 as possible necessary. This design offers surgeons a versatile method to achieve higher accuracy in placement of locking and/or non-locking screws 30, 40.
The plate 10 may have one or more additional features. For example, the plate 10 may include one or more through holes 50 extending through the plate 10. For example, holes 50 may extend from the top surface 16 to the bottom surface 18 of the plate 10. These holes 50 may be configured to receive k-wires, for example, k-wire 51 shown in
The plate 10 may also include one or more tapers or reliefs to minimize contact of the plate 10 with the bone and preserve the anatomy. The plate 10 may include one or more tapered ends 12, 14. The tapered ends 12, 14 of the plate 10 may be configured to provide sub-muscular insertion during minimally invasive procedures. The reliefs may also be in the form of one or more conical cuts 52 along the bottom surface 18 of the plate 10. The conical cuts 52 may be positioned on either side of the k-wire holes 50 and extend outward towards the side surfaces of the plate 10. Each conical cut 52 may include a narrowed portion proximate to the k-wire hole 50 (e.g., along the central longitudinal axis A of the plate 10) and a widened portion proximate to the outer side surfaces. The limited contact undercuts 52 may minimize the plate contact with the bony anatomy in an effort to preserve the blood supply to the bone and the surrounding soft tissues.
Referring to
The straight plates 10 illustrated in
Turning now to
The plate 10 illustrated in
The plate 10 illustrated in
The plate 10 illustrated in
The plate 10 illustrated in
The plate 10 illustrated in
The mesh head 90 is defined by a plurality of holes 20, in the illustrated embodiment stacked holes 20J, each with a rim 92 thereabout. The rims 92 of adjacent holes 20 are interconnected to one another via bridge portions 94 with through spaces 96 also provided between groups of holes 20. The bridge portions 94 are preferably thinner than the rims 96. The rims 96 preferably have a thickness equal to or less than the thickness of the elongate body. The thinner configuration of the bridge portions 94 along with the through spaces 96 allow the mesh head 90 to be easily contoured. Additionally, the mesh head 90 may be cut along the bridge portions 94 to shape the mesh head 90 to achieve a desired shape or size. The illustrated mesh head 90 has a 3×5 hole arrangement defining a rectangular configuration, however, the disclosure is not limited to such. The mesh head 90 may have various numbers of holes 20 which may be arranged in various configurations including, for example, square, rectangular or round (similar to mesh plate 100 illustrated in
In at least one embodiment, the cluster plate 10 includes either all stacked holes 20J, all locking holes 22, a combination of stacked holes 20J and DCP slots 20I, or a combination of stacked holes 20J and combination holes 20. Additionally, in at least one embodiment, all of the holes of the cluster plate 10 have the same diameter such that they may all be utilized with screws, whether locking screws 30, non-locking screws 40 or self-drilling screws 70, all having the same diameter. While cluster plates 10 having specific hole combinations and diameters are described, the disclosure is not limited to such, and the cluster plates 10 may have any desired combination of the various holes described herein in any combination of diameters.
In at least one embodiment, the mesh plate 100 includes either all stacked holes 20J, all locking holes 22, or all non-locking holes 24. Additionally, in at least one embodiment, all of the holes of the mesh plate 100 have the same diameter such that they may all be utilized with screws, whether locking screws 30, non-locking screws 40 or self-drilling screws 70, all having the same diameter. While mesh plates 100 having specific hole combinations and diameters are described, the disclosure is not limited to such, and the mesh plates 100 may have any desired combination of the various holes described herein in any combination of diameters.
In at least one embodiment, the system includes a variety of self-tapping and self-drilling screws offered in stainless steel, titanium alloy, and cobalt chrome. An illustrative system may include, for example, 1.5 mm non-locking screws, locking screws, and self-drilling screws (6 mm-24 mm), 2.0 mm non-locking screws, locking screws, and self-drilling screws (6-40 mm), and 2.5 mm non-locking screws, locking screws, and self-drilling screws (6-80 mm).
The illustrated plates 10, 100 provide a comprehensive offering to treat a vast array of fracture patterns in various anatomical areas of varying sizes. The plates 10, 100 are capable of being used for both definitive, permanent fixation, as well as temporary or supplemental fixation in accordance with other systems. The specific plate styles afford the ability to accommodate multiple fracture patterns. The cluster plates accommodate optimal contouring in the head portion, while still maintaining strength and stability in the shaft portion of the plate by incorporating variable thickness between the two. The mesh plates are capable of being cut and contoured to accommodate an extremely expanded range of sizes, shapes, and contours. The large range of screw and plate sizes can accommodate multiple anatomies and anatomical regions.
Although the invention has been described in detail and with reference to specific embodiments, it will be apparent to one skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. Thus, it is intended that the invention covers the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents. It is expressly intended, for example, that all ranges broadly recited in this document include within their scope all narrower ranges which fall within the broader ranges. It is also intended that the components of the various devices disclosed above may be combined or modified in any suitable configuration.
The present application is a continuation-in-part of U.S. patent application Ser. No. 15/405,368 filed Jan. 13, 2017, which is a continuation-in-part of U.S. patent application Ser. No. 15/238,772, filed Aug. 17, 2016, each of which is hereby incorporated by reference in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
1105105 | Sherman | Jul 1914 | A |
2486303 | Longfellow | Oct 1949 | A |
3463148 | Treace | Aug 1969 | A |
3695259 | Yost | Oct 1972 | A |
3716050 | Johnston | Feb 1973 | A |
4219015 | Steinemann | Aug 1980 | A |
4493317 | Klaue | Jan 1985 | A |
4524765 | de Zbikowski | Jun 1985 | A |
4651724 | Berentey et al. | Mar 1987 | A |
4683878 | Carter | Aug 1987 | A |
4781183 | Casey et al. | Nov 1988 | A |
4867144 | Karas et al. | Sep 1989 | A |
4923471 | Morgan | May 1990 | A |
4966599 | Pollock | Oct 1990 | A |
5002544 | Klaue et al. | Mar 1991 | A |
5041114 | Chapman et al. | Aug 1991 | A |
5151103 | Tepic et al. | Sep 1992 | A |
5259398 | Vrespa | Nov 1993 | A |
5364399 | Lowery et al. | Nov 1994 | A |
5372598 | Luhr et al. | Dec 1994 | A |
5423826 | Coates et al. | Jun 1995 | A |
5468242 | Reisberg | Nov 1995 | A |
D365634 | Morgan | Dec 1995 | S |
5489305 | Morgan | Feb 1996 | A |
5527311 | Procter et al. | Jun 1996 | A |
5578036 | Stone et al. | Nov 1996 | A |
5601553 | Trebing et al. | Feb 1997 | A |
5676667 | Hausman | Oct 1997 | A |
5690631 | Duncan et al. | Nov 1997 | A |
5709686 | Talos et al. | Jan 1998 | A |
5709687 | Pennig | Jan 1998 | A |
5718704 | Medoff | Feb 1998 | A |
5718705 | Sammarco | Feb 1998 | A |
5746742 | Runciman et al. | May 1998 | A |
5766175 | Martinotti | Jun 1998 | A |
5766176 | Duncan | Jun 1998 | A |
5779706 | Tschakaloff | Jul 1998 | A |
5785712 | Runciman et al. | Jul 1998 | A |
5797914 | Leibinger | Aug 1998 | A |
5814048 | Morgan | Sep 1998 | A |
5868749 | Reed | Feb 1999 | A |
5925048 | Ahmad et al. | Jul 1999 | A |
5938664 | Winquist et al. | Aug 1999 | A |
5961519 | Bruce et al. | Oct 1999 | A |
5980540 | Bruce | Nov 1999 | A |
6001099 | Huebner | Dec 1999 | A |
6071291 | Forst et al. | Jun 2000 | A |
6093201 | Cooper et al. | Jul 2000 | A |
6096040 | Esser | Aug 2000 | A |
6107718 | Schustek et al. | Aug 2000 | A |
6123709 | Jones | Sep 2000 | A |
6152927 | Farris et al. | Nov 2000 | A |
6206881 | Frigg et al. | Mar 2001 | B1 |
6283969 | Grusin et al. | Sep 2001 | B1 |
6309393 | Tepic et al. | Oct 2001 | B1 |
6322562 | Wolter | Nov 2001 | B1 |
6364882 | Orbay | Apr 2002 | B1 |
D458683 | Bryant et al. | Jun 2002 | S |
D458684 | Bryant et al. | Jun 2002 | S |
6533786 | Needham et al. | Mar 2003 | B1 |
D479331 | Pike et al. | Sep 2003 | S |
6623486 | Weaver et al. | Sep 2003 | B1 |
6669700 | Farris et al. | Dec 2003 | B1 |
6669701 | Steiner et al. | Dec 2003 | B2 |
6712820 | Orbay | Mar 2004 | B2 |
6719759 | Wagner et al. | Apr 2004 | B2 |
6730091 | Pfefferle et al. | May 2004 | B1 |
6866665 | Orbay | Mar 2005 | B2 |
6955677 | Dahners | Oct 2005 | B2 |
6974461 | Wolter | Dec 2005 | B1 |
7001387 | Farris et al. | Feb 2006 | B2 |
7063701 | Michelson | Jun 2006 | B2 |
7090676 | Huebner et al. | Aug 2006 | B2 |
7128744 | Weaver et al. | Oct 2006 | B2 |
7137987 | Patterson et al. | Nov 2006 | B2 |
7153309 | Huebner et al. | Dec 2006 | B2 |
7156847 | Abramson | Jan 2007 | B2 |
7179260 | Gerlach et al. | Feb 2007 | B2 |
7250053 | Orbay | Jul 2007 | B2 |
7294130 | Orbay | Nov 2007 | B2 |
7322983 | Harris | Jan 2008 | B2 |
7341589 | Weaver et al. | Mar 2008 | B2 |
7344538 | Myerson et al. | Mar 2008 | B2 |
7354441 | Frigg | Apr 2008 | B2 |
7604657 | Orbay et al. | Oct 2009 | B2 |
7632277 | Woll et al. | Dec 2009 | B2 |
7635381 | Orbay | Dec 2009 | B2 |
7637928 | Fernandez | Dec 2009 | B2 |
7655029 | Niedernberger et al. | Feb 2010 | B2 |
7655047 | Swords | Feb 2010 | B2 |
7695472 | Young | Apr 2010 | B2 |
7717946 | Oepen et al. | May 2010 | B2 |
7722653 | Young et al. | May 2010 | B2 |
7740648 | Young et al. | Jun 2010 | B2 |
D622853 | Raven, III | Aug 2010 | S |
7771457 | Kay et al. | Aug 2010 | B2 |
7776076 | Grady, Jr. et al. | Aug 2010 | B2 |
7857838 | Orbay | Dec 2010 | B2 |
7867260 | Meyer et al. | Jan 2011 | B2 |
7867261 | Sixto, Jr. et al. | Jan 2011 | B2 |
7875062 | Lindemann et al. | Jan 2011 | B2 |
7905910 | Gerlach et al. | Mar 2011 | B2 |
7909858 | Gerlach et al. | Mar 2011 | B2 |
7951178 | Jensen | May 2011 | B2 |
7951179 | Matityahu | May 2011 | B2 |
7976570 | Wagner et al. | Jul 2011 | B2 |
D643121 | Millford et al. | Aug 2011 | S |
D646785 | Milford | Oct 2011 | S |
8043297 | Grady, Jr. et al. | Oct 2011 | B2 |
8057520 | Ducharme et al. | Nov 2011 | B2 |
8062296 | Orbay et al. | Nov 2011 | B2 |
8100953 | White et al. | Jan 2012 | B2 |
8105367 | Austin et al. | Jan 2012 | B2 |
8114081 | Kohut et al. | Feb 2012 | B2 |
8118846 | Leither et al. | Feb 2012 | B2 |
8118848 | Ducharme et al. | Feb 2012 | B2 |
8162950 | Digeser et al. | Apr 2012 | B2 |
8167918 | Strnad et al. | May 2012 | B2 |
8177820 | Anapliotis et al. | May 2012 | B2 |
8246661 | Beutter et al. | Aug 2012 | B2 |
8252032 | White et al. | Aug 2012 | B2 |
8257403 | Den Hartog et al. | Sep 2012 | B2 |
8257405 | Haidukewych et al. | Sep 2012 | B2 |
8257406 | Kay et al. | Sep 2012 | B2 |
8262707 | Huebner et al. | Sep 2012 | B2 |
8267972 | Gehlert | Sep 2012 | B1 |
8317842 | Graham et al. | Nov 2012 | B2 |
8323321 | Gradl | Dec 2012 | B2 |
8337535 | White et al. | Dec 2012 | B2 |
8343155 | Fisher et al. | Jan 2013 | B2 |
8382807 | Austin et al. | Feb 2013 | B2 |
8394098 | Orbay et al. | Mar 2013 | B2 |
8394130 | Orbay et al. | Mar 2013 | B2 |
8398685 | McGarity et al. | Mar 2013 | B2 |
8403966 | Ralph et al. | Mar 2013 | B2 |
8419775 | Orbay et al. | Apr 2013 | B2 |
8435272 | Dougherty et al. | May 2013 | B2 |
8439918 | Gelfand | May 2013 | B2 |
8444679 | Ralph et al. | May 2013 | B2 |
8491593 | Prien et al. | Jul 2013 | B2 |
8506608 | Cerynik et al. | Aug 2013 | B2 |
8512384 | Beutter et al. | Aug 2013 | B2 |
8512385 | White et al. | Aug 2013 | B2 |
8518090 | Huebner et al. | Aug 2013 | B2 |
8523862 | Murashko, Jr. | Sep 2013 | B2 |
8523919 | Huebner et al. | Sep 2013 | B2 |
8523921 | Horan et al. | Sep 2013 | B2 |
8540755 | Whitmore | Sep 2013 | B2 |
8551095 | Fritzinger et al. | Oct 2013 | B2 |
8551143 | Norris et al. | Oct 2013 | B2 |
8568462 | Sixto, Jr. et al. | Oct 2013 | B2 |
8574268 | Chan et al. | Nov 2013 | B2 |
8597334 | Mocanu | Dec 2013 | B2 |
8603147 | Sixto, Jr. et al. | Dec 2013 | B2 |
8617224 | Kozak et al. | Dec 2013 | B2 |
8632574 | Kortenbach et al. | Jan 2014 | B2 |
8641741 | Murashko, Jr. | Feb 2014 | B2 |
8641744 | Weaver et al. | Feb 2014 | B2 |
8663224 | Overes et al. | Mar 2014 | B2 |
8728082 | Fritzinger et al. | May 2014 | B2 |
8728126 | Steffen | May 2014 | B2 |
8740905 | Price et al. | Jun 2014 | B2 |
8747442 | Orbay et al. | Jun 2014 | B2 |
8764751 | Orbay et al. | Jul 2014 | B2 |
8764808 | Gonzalez-Hernandez | Jul 2014 | B2 |
8777998 | Daniels et al. | Jul 2014 | B2 |
8790376 | Fritzinger et al. | Jul 2014 | B2 |
8790377 | Ralph et al. | Jul 2014 | B2 |
8808333 | Kuster et al. | Aug 2014 | B2 |
8808334 | Strnad et al. | Aug 2014 | B2 |
8834532 | Velikov et al. | Sep 2014 | B2 |
8834537 | Castanada et al. | Sep 2014 | B2 |
8852246 | Hansson | Oct 2014 | B2 |
8852249 | Ahrens et al. | Oct 2014 | B2 |
8864802 | Schwager et al. | Oct 2014 | B2 |
8870931 | Dahners et al. | Oct 2014 | B2 |
8888825 | Batsch et al. | Nov 2014 | B2 |
8906076 | Mocanu et al. | Dec 2014 | B2 |
8911482 | Lee et al. | Dec 2014 | B2 |
8926675 | Leung et al. | Jan 2015 | B2 |
8940026 | Hilse et al. | Jan 2015 | B2 |
8940028 | Austin et al. | Jan 2015 | B2 |
8940029 | Leung et al. | Jan 2015 | B2 |
8951291 | Impellizzeri | Feb 2015 | B2 |
8968368 | Tepic | Mar 2015 | B2 |
9011457 | Grady, Jr. et al. | Apr 2015 | B2 |
9023052 | Lietz et al. | May 2015 | B2 |
9050151 | Schilter | Jun 2015 | B2 |
9072555 | Michel | Jul 2015 | B2 |
9072557 | Fierlbeck et al. | Jul 2015 | B2 |
9107678 | Murner et al. | Aug 2015 | B2 |
9107711 | Hainard | Aug 2015 | B2 |
9107713 | Horan et al. | Aug 2015 | B2 |
9107718 | Isch | Aug 2015 | B2 |
9113970 | Lewis et al. | Aug 2015 | B2 |
9149310 | Fritzinger et al. | Oct 2015 | B2 |
9161791 | Frigg | Oct 2015 | B2 |
9161795 | Chasbrummel et al. | Oct 2015 | B2 |
9168075 | Dell'Oca | Oct 2015 | B2 |
9179950 | Zajac et al. | Nov 2015 | B2 |
9179956 | Cerynik et al. | Nov 2015 | B2 |
9180020 | Gause et al. | Nov 2015 | B2 |
9211151 | Weaver et al. | Dec 2015 | B2 |
9259217 | Fritzinger et al. | Feb 2016 | B2 |
9259255 | Lewis et al. | Feb 2016 | B2 |
9271769 | Batsch et al. | Mar 2016 | B2 |
9283010 | Medoff et al. | Mar 2016 | B2 |
9295506 | Raven, III et al. | Mar 2016 | B2 |
9314284 | Chan et al. | Apr 2016 | B2 |
9320554 | Greenberg et al. | Apr 2016 | B2 |
9322562 | Takayama et al. | Apr 2016 | B2 |
9370388 | Globerman et al. | Jun 2016 | B2 |
D765851 | Early et al. | Sep 2016 | S |
9433407 | Fritzinger et al. | Sep 2016 | B2 |
9433452 | Weiner et al. | Sep 2016 | B2 |
9468479 | Marotta et al. | Oct 2016 | B2 |
9480512 | Orbay | Nov 2016 | B2 |
9486262 | Andermahr et al. | Nov 2016 | B2 |
9492213 | Orbay | Nov 2016 | B2 |
9510878 | Nanavati et al. | Dec 2016 | B2 |
9510880 | Terrill et al. | Dec 2016 | B2 |
9517097 | Rise | Dec 2016 | B2 |
9526543 | Castaneda et al. | Dec 2016 | B2 |
9545277 | Wolf et al. | Jan 2017 | B2 |
9549819 | Bravo | Jan 2017 | B1 |
9566097 | Fierlbeck et al. | Feb 2017 | B2 |
9579133 | Guthlein | Feb 2017 | B2 |
9622799 | Orbay et al. | Apr 2017 | B2 |
9636157 | Medoff | May 2017 | B2 |
9649141 | Raven, III et al. | May 2017 | B2 |
9668794 | Kuster et al. | Jun 2017 | B2 |
9801670 | Hashmi et al. | Oct 2017 | B2 |
9814504 | Ducharme et al. | Nov 2017 | B2 |
20020045901 | Wagner et al. | Apr 2002 | A1 |
20020128654 | Steger | Sep 2002 | A1 |
20040097937 | Pike et al. | May 2004 | A1 |
20040117016 | Abramson | Jun 2004 | A1 |
20040193165 | Orbay | Sep 2004 | A1 |
20040210220 | Tornier | Oct 2004 | A1 |
20050107796 | Gerlach | May 2005 | A1 |
20050131413 | O'Driscoll et al. | Jun 2005 | A1 |
20050187551 | Orbay et al. | Aug 2005 | A1 |
20050216008 | Zwimmann | Sep 2005 | A1 |
20050261688 | Grady et al. | Nov 2005 | A1 |
20050273104 | Oepen | Dec 2005 | A1 |
20060149265 | James et al. | Jul 2006 | A1 |
20060241607 | Myerson et al. | Oct 2006 | A1 |
20060264949 | Kohut | Nov 2006 | A1 |
20070088360 | Orbay | Apr 2007 | A1 |
20070173840 | Huebner | Jul 2007 | A1 |
20070270849 | Orbay et al. | Nov 2007 | A1 |
20070288022 | Lutz | Dec 2007 | A1 |
20080021477 | Strnad et al. | Jan 2008 | A1 |
20080234677 | Dahners et al. | Sep 2008 | A1 |
20080234749 | Forstein | Sep 2008 | A1 |
20080275510 | Schonhardt et al. | Nov 2008 | A1 |
20090024172 | Pizzicara | Jan 2009 | A1 |
20090024173 | Reis, Jr. | Jan 2009 | A1 |
20090118773 | James et al. | May 2009 | A1 |
20090198285 | Raven, III | Aug 2009 | A1 |
20090228010 | Gonzalez-Hernandez et al. | Sep 2009 | A1 |
20090228047 | Derouet et al. | Sep 2009 | A1 |
20090248084 | Hintermann | Oct 2009 | A1 |
20090281543 | Orbay et al. | Nov 2009 | A1 |
20090299369 | Orbay et al. | Dec 2009 | A1 |
20090312760 | Forstein et al. | Dec 2009 | A1 |
20100057086 | Price et al. | Mar 2010 | A1 |
20100069973 | Castaneda | Mar 2010 | A1 |
20100114097 | Siravo et al. | May 2010 | A1 |
20100121326 | Woll et al. | May 2010 | A1 |
20100274247 | Grady, Jr. et al. | Oct 2010 | A1 |
20110008745 | McQuillan | Jan 2011 | A1 |
20110054539 | Knopfle | Mar 2011 | A1 |
20110106086 | Laird | May 2011 | A1 |
20110218580 | Schwager et al. | Sep 2011 | A1 |
20120010667 | Eglseder | Jan 2012 | A1 |
20120059424 | Epperly et al. | Mar 2012 | A1 |
20120123484 | Lietz et al. | May 2012 | A1 |
20120197303 | King | Aug 2012 | A1 |
20120203227 | Martin | Aug 2012 | A1 |
20120232599 | Schoenly et al. | Sep 2012 | A1 |
20120277749 | Mootien | Nov 2012 | A1 |
20120323284 | Baker et al. | Dec 2012 | A1 |
20130018426 | Tsai et al. | Jan 2013 | A1 |
20130046347 | Cheng | Feb 2013 | A1 |
20130060291 | Petersheim | Mar 2013 | A1 |
20130123841 | Lyon | May 2013 | A1 |
20130138156 | Derouet | May 2013 | A1 |
20130150902 | Leite | Jun 2013 | A1 |
20130165981 | Clasbrummet et al. | Jun 2013 | A1 |
20130211463 | Mizuno et al. | Aug 2013 | A1 |
20130289630 | Fritzinger | Oct 2013 | A1 |
20140005728 | Koay et al. | Jan 2014 | A1 |
20140018862 | Koay et al. | Jan 2014 | A1 |
20140031879 | Sixto, Jr. et al. | Jan 2014 | A1 |
20140066998 | Martin | Mar 2014 | A1 |
20140094856 | Sinha | Apr 2014 | A1 |
20140121710 | Weaver et al. | May 2014 | A1 |
20140180345 | Chan et al. | Jun 2014 | A1 |
20140277178 | O'Kane | Sep 2014 | A1 |
20140277181 | Garlock | Sep 2014 | A1 |
20140316473 | Pfeffer et al. | Oct 2014 | A1 |
20140330320 | Wolter | Nov 2014 | A1 |
20140378975 | Castaneda et al. | Dec 2014 | A1 |
20150051650 | Verstreken et al. | Feb 2015 | A1 |
20150051651 | Terrill et al. | Feb 2015 | A1 |
20150073486 | Marotta et al. | Mar 2015 | A1 |
20150105829 | Laird | Apr 2015 | A1 |
20150112355 | Dahners et al. | Apr 2015 | A1 |
20150134011 | Medoff | May 2015 | A1 |
20150142065 | Schonhardt et al. | May 2015 | A1 |
20150190185 | Koay et al. | Jul 2015 | A1 |
20150209091 | Sixto, Jr. et al. | Jul 2015 | A1 |
20150216571 | Impellizzeri | Aug 2015 | A1 |
20150223852 | Lietz et al. | Aug 2015 | A1 |
20150272638 | Langford | Oct 2015 | A1 |
20150282851 | Michel | Oct 2015 | A1 |
20150313652 | Burckhardt | Nov 2015 | A1 |
20150313653 | Ponce et al. | Nov 2015 | A1 |
20150313654 | Horan et al. | Nov 2015 | A1 |
20150327898 | Martin | Nov 2015 | A1 |
20150327899 | Early | Nov 2015 | A1 |
20150351816 | Lewis et al. | Dec 2015 | A1 |
20150374421 | Rocci et al. | Dec 2015 | A1 |
20160022336 | Bateman | Jan 2016 | A1 |
20160030035 | Zajac et al. | Feb 2016 | A1 |
20160045237 | Cerynik et al. | Feb 2016 | A1 |
20160045238 | Bohay et al. | Feb 2016 | A1 |
20160074081 | Weaver et al. | Mar 2016 | A1 |
20160089191 | Pak | Mar 2016 | A1 |
20160166297 | Mighell et al. | Jun 2016 | A1 |
20160166298 | Mighell et al. | Jun 2016 | A1 |
20160183990 | Koizumi et al. | Jun 2016 | A1 |
20160192970 | Dayton | Jul 2016 | A1 |
20160262814 | Wainscott | Sep 2016 | A1 |
20160278828 | Ragghianti | Sep 2016 | A1 |
20160310183 | Shah et al. | Oct 2016 | A1 |
20160310185 | Sixto et al. | Oct 2016 | A1 |
20160324552 | Baker et al. | Nov 2016 | A1 |
20160354122 | Montello et al. | Dec 2016 | A1 |
20170035478 | Andermahr et al. | Feb 2017 | A1 |
20170042592 | Kim | Feb 2017 | A1 |
20170042596 | Mighell et al. | Feb 2017 | A9 |
20170049493 | Gauneau et al. | Feb 2017 | A1 |
20170065312 | Lauf et al. | Mar 2017 | A1 |
20170105775 | Ricker | Apr 2017 | A1 |
20170209194 | Ricker | Jul 2017 | A1 |
20170215931 | Cremer et al. | Aug 2017 | A1 |
Number | Date | Country |
---|---|---|
201987653 | Sep 2011 | CN |
202313691 | Jul 2012 | CN |
202821574 | Mar 2013 | CN |
202821575 | Mar 2013 | CN |
203506858 | Apr 2014 | CN |
203815563 | Sep 2014 | CN |
105982727 | Oct 2016 | CN |
2846870 | May 2004 | FR |
2928259 | Sep 2009 | FR |
2003210478 | Jul 2003 | JP |
2008-500143 | Jan 2008 | JP |
2008-505700 | Feb 2008 | JP |
2010-522019 | Jul 2010 | JP |
2013-521046 | Jun 2013 | JP |
201316942 | May 2013 | TW |
2011109127 | Sep 2011 | WO |
2016079504 | May 2016 | WO |
Number | Date | Country | |
---|---|---|---|
20180161081 A1 | Jun 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15405368 | Jan 2017 | US |
Child | 15893774 | US | |
Parent | 15238772 | Aug 2016 | US |
Child | 15405368 | US |