The foregoing are incorporated by reference as though set forth herein in their entirety.
The present disclosure relates to a drill guide for use in surgery. More specifically, the present disclosure relates to a drill guide for orthopedic surgery, such as glenoid arthroplasty. One of skill in the art will appreciate that the principles set forth herein are applicable to other types of surgery where a drill guide is used.
Orthopedic implants are designed to be rigidly fixed within bone, both with and without the use of bone cement. It is imperative than the implants are seated within bone in channels that precisely match the actual shape of the implants in order for them to lie flat or otherwise seat in the way to minimize chance of failure. If the channels created for the implant to seat are in an improper position, orientation, size, or incorrect depth, the implant may not seat correctly, and may be prone to abnormal forces, loosening, or may not function properly.
Loosening of an implanted orthopedic device can cause pain, loss of motion and further tissue destruction, possibly leading to the implant needing to be removed or revised. Reoperation for loose orthopedic implants is a major source of increased costs to the healthcare system. Therefore it is important that implants are implanted precisely the way they were engineered to be placed in order maximize the chance of success.
The various systems and methods of the present technology have been developed in response to the present state of the art, and in particular, in response to the problems and needs in the art that have not yet been fully solved by currently available drill guides. The systems and methods of the present technology may provide meaningful improvement in the stability of the drill guide working portion, thereby improving the accuracy of the prepared bone socket, thereby improving the implanted position of the corresponding prosthesis (to be closer to the nominal design implant position).
To achieve the foregoing, and in accordance with the technology as embodied and broadly described herein, an aspect of the technology includes a drill guide including: a working portion including a bone-facing side, an opposite obverse side, and a through hole that extends through at least a portion of the working portion, wherein the through hole receives a drill with clearance; and a shaft coupled to the working portion by a joint, wherein the shaft is movable relative to the working portion about the joint.
Embodiments of this aspect may include one or more of the following attributes. The joint is selected from the group consisting of a hinge joint, a universal joint, a ball-and-socket joint, a polyaxial joint, a saddle joint, a flexible shaft portion, and a magnetic joint. The joint is a hinge joint between the shaft and the working portion. The working portion is captive to the shaft. The shaft is movable relative to the working portion about the joint while the drill is actuated in the through hole. The shaft is movable relative to the working portion about the joint within a range of motion, wherein the obverse side includes at least one range of motion stop associated with the joint. The drill guide includes a biasing element that biases the shaft to contact the at least one range of motion stop. The biasing element is selected from the group consisting of a spring, a magnet, a cam, and a drag pin. The at least one range of motion stop includes a ridge on the obverse side, wherein the shaft contacts the ridge at a first end of the range of motion. The drill guide includes a locking mechanism including a first setting and a second setting; wherein when the locking mechanism is in the first setting, the shaft is immobilized relative to the working portion; wherein when the locking mechanism is in the second setting, the shaft is freely movable relative to the working portion. The bone-facing side includes a stabilizing feature that stabilizes the working portion relative to a bone. The stabilizing feature includes a spike protruding from the bone-facing side. The working portion includes at least one anatomical reference feature. The working portion includes a pair of outwardly extending anatomical reference tabs on opposite sides of the working portion. When the bone-facing side is placed against a glenoid socket, the working portion is positionable so that the pair of outwardly extending anatomical reference tabs are aligned along a superior-inferior direction.
Another aspect of the technology includes a drill guide including: a working portion including a through hole, wherein the through hole receives a drill with clearance; and a handle portion coupled to the working portion by a joint, wherein the handle portion is movable relative to the working portion about the joint.
Embodiments of this aspect may include one or more of the following attributes. The joint is selected from the group consisting of a hinge joint, a universal joint, a ball-and-socket joint, a polyaxial joint, a saddle joint, a flexible shaft portion, and a magnetic joint. The joint is a hinge joint between the handle portion and the working portion. The working portion is captive to the handle portion. The handle portion is movable relative to the working portion about the joint while the drill is actuated in the through hole. The handle portion is movable relative to the working portion about the joint within a range of motion, wherein the obverse side includes at least one range of motion stop associated with the joint. The drill guide includes a biasing element that biases the handle portion to contact the at least one range of motion stop. The biasing element is selected from the group consisting of a spring, a magnet, a cam, and a drag pin. The at least one range of motion stop includes a ridge on the obverse side, wherein the handle portion contacts the ridge at a first end of the range of motion. The drill guide includes a locking mechanism including a first setting and a second setting; wherein when the locking mechanism is in the first setting, the handle portion is immobilized relative to the working portion; wherein when the locking mechanism is in the second setting, the handle portion is freely movable relative to the working portion. The working portion includes a bone-facing side includes a stabilizing feature that stabilizes the working portion relative to a bone. The stabilizing feature includes a spike protruding from the bone-facing side. The working portion includes at least one anatomical reference feature. The working portion includes a pair of outwardly extending anatomical reference tabs on opposite sides of the working portion. When the bone-facing side is placed against a glenoid socket, the working portion is positionable so that the pair of outwardly extending anatomical reference tabs are aligned along a superior-inferior direction.
Yet another aspect of the technology includes a drill guide including: a working portion including a through hole and a first joint portion, wherein the through hole receives a drill with clearance; and a handle portion including a second joint portion, wherein the handle portion is coupled to the working portion by a joint formed by the first and second joint portions, wherein the handle portion is movable relative to the working portion about the joint.
Embodiments of this aspect may include one or more of the following attributes. The joint is selected from the group consisting of a hinge joint, a universal joint, a ball-and-socket joint, a polyaxial joint, a saddle joint, a flexible shaft portion, and a magnetic joint. The joint is a hinge joint between the handle portion and the working portion. The working portion is captive to the handle portion. The handle portion is movable relative to the working portion about the joint while the drill is actuated in the through hole. The handle portion is movable relative to the working portion about the joint within a range of motion, wherein the obverse side includes at least one range of motion stop associated with the joint. The drill guide includes a biasing element that biases the handle portion to contact the at least one range of motion stop. The biasing element is selected from the group consisting of a spring, a magnet, a cam, and a drag pin. The at least one range of motion stop includes a ridge on the obverse side, wherein the handle portion contacts the ridge at a first end of the range of motion. The drill guide includes a locking mechanism including a first setting and a second setting; wherein when the locking mechanism is in the first setting, the handle portion is immobilized relative to the working portion; wherein when the locking mechanism is in the second setting, the handle portion is freely movable relative to the working portion. The working portion includes a bone-facing side includes a stabilizing feature that stabilizes the working portion relative to a bone. The stabilizing feature includes a spike protruding from the bone-facing side. The working portion includes at least one anatomical reference feature. The working portion includes a pair of outwardly extending anatomical reference tabs on opposite sides of the working portion. When the bone-facing side is placed against a glenoid socket, the working portion is positionable so that the pair of outwardly extending anatomical reference tabs are aligned along a superior-inferior direction.
These and other features and advantages of the present technology will become more fully apparent from the following description and appended claims, or may be learned by the practice of the technology as set forth hereinafter.
Exemplary embodiments of the technology will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. Understanding that these drawings depict only exemplary embodiments and are, therefore, not to be considered limiting of the scope of the technology, the exemplary embodiments will be described with additional specificity and detail through use of the accompanying drawings in which:
Exemplary embodiments of the technology will be best understood by reference to the drawings, wherein like parts are designated by like numerals throughout. It will be readily understood that the components of the technology, as generally described and illustrated in the figures herein, could be arranged and designed in a wide variety of different configurations. Thus, the following more detailed description of the embodiments of the apparatus, system, and method is not intended to limit the scope of the invention, as claimed, but is merely representative of exemplary embodiments of the technology.
The phrases “connected to,” “coupled to” and “in communication with” refer to any form of interaction between two or more entities, including mechanical, electrical, magnetic, electromagnetic, fluid, and thermal interaction. Two components may be functionally coupled to each other even though they are not in direct contact with each other. The term “abutting” refers to items that are in direct physical contact with each other, although the items may not necessarily be attached together. The phrase “fluid communication” refers to two features that are connected such that a fluid within one feature is able to pass into the other feature.
The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any embodiment described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments. While the various aspects of the embodiments are presented in drawings, the drawings are not necessarily drawn to scale unless specifically indicated.
Standard medical planes of reference and descriptive terminology are employed in this specification. A sagittal plane divides a body into right and left portions. A mid-sagittal plane divides the body into bilaterally symmetric right and left halves. A coronal plane divides a body into anterior and posterior portions. A transverse plane divides a body into superior and inferior portions. The sagittal, coronal, and transverse planes are mutually perpendicular. A scapular plane is parallel to the body of the scapula and normal to the glenoid articular surface; the scapular plane is normally 30 to 45 degrees anterior of the coronal plane. Anterior means toward the front of the body. Posterior means toward the back of the body. Superior means toward the head. Inferior means toward the feet. Medial means toward the midline of the body. Lateral means away from the midline of the body. Axial means toward a central axis of the body. Abaxial means away from a central axis of the body. Ipsilateral means on the same side of the body. Contralateral means on the opposite side of the body. These descriptive terms may be applied to an animate or inanimate body.
The drill guide 4000 disclosed herein may be included in a system with implants and/or other instruments. For example, the illustrated drill guide 4000 is adapted for glenoid arthroplasty and may be included in a system with the implants and/or instruments disclosed at least in the following copending applications: U.S. patent application Ser. No. 14/042,258, filed on Sep. 30, 2013; U.S. patent application Ser. No. 15/587,895, filed on May 5, 2017; U.S. patent application Ser. No. 14/592,837, filed on Jan. 8, 2015; U.S. patent application Ser. No. 15/228,443, filed on Aug. 4, 2016; and U.S. patent application Ser. No. 15/653,305, filed on Jul. 18, 2017. The foregoing are incorporated by reference as though set forth herein in their entirety.
The illustrated drill guide 4000 may be included in a system with the implants and/or instruments disclosed in U.S. patent application Ser. Nos. 14/042,258 and 15/587,895, including glenoid components 100, 200, 300, 400, 500, 600, 700 (
The illustrated drill guide 4000 may be included in a system with the implants and/or instruments disclosed in U.S. patent application Ser. No. 14/592,837, including glenoid component 700 (
The illustrated drill guide 4000 may be included in a system with the implants and/or instruments disclosed in U.S. patent application Ser. No. 15/228,443, including glenoid components 800, 1000, 1100, 2500, 2700, 2800, 2900 (
The illustrated drill guide 4000 may be included in a system with the implants and/or instruments disclosed in U.S. patent application Ser. No. 15/653,305, including glenoid components 800, 1000, 1100, 2500, 2700, 2800, 2900, 3000, 3100, 3200, 3300, 3400, 3500, 3600, 3700, 3800, 3900 (
The drill guide 4000 disclosed herein includes a guide body, or working portion 4200, and a handle 4400 with a shaft 4300. The guide body 4200 includes one or more cylindrical holes 4224, 4226 which serve as the guide(s) for a drill which is actuated through the hole(s). The drill guide 4000 controls the direction and/or the depth to which the drill is advanced into a bone, which dictates the shape of the hole made by the drill in the bone. The handle 4400 is held by the operator, and is used to hold the guide body 4200 against the bone into which the operator is drilling. The handle 4400 is not rigidly fixed to the guide body 4200 as is typical, but instead is coupled to the guide body 4200 by an articulation or joint which allows movement between the two parts. With this design, the operator can apply pressure along the handle 4400 to firmly secure the guide body 4200 against the bone, but once the guide body 4200 is secured against the bone, small movements of the operator's hand and the handle 4400 will not alter the position of the guide body 4200. The articulation or joint permits the handle 4400 to move relative to the guide body 4200, thus the guide body 4200 may remain stationary against the bone while a drill is actuated through the hole(s). This ensures that the holes created by the drill guide 4000 will be accurately placed in the intended position and/or depth and/or trajectory. Without the articulation or joing, small movements of the handle of the drill guide 4000 may alter the trajectory of the drill guide, then the trajectory of the drilled hole, and thus the final resting position of the implant inserted into that hole. Malpositioning of the drill guide, specifically the working portion 4200, may directly correlate to malpositioning of the implant, which puts the implant at risk for loosening or other failure modes.
The articulation may be a hinge joint, a universal joint, a ball-and-socket joint, a polyaxial joint, a saddle joint, or any other joint. A polyaxial joint is a joint that provides for rotation about at least two axes, wherein the second axis intersects or is skew to the first axis. The articulation may be a flexible shaft that couples the working portion 4200 to the handle 4400 or shaft 4300. The articulation may be spring biased. The articulation may be a magnetic joint that includes a magnet acting on a ferrous material, or magnets acting on each other. The articulation may be fixed (so that the guide body 4200 is captive to the handle 4400 or shaft 4300 in use, albeit free to move relative to the handle 4400), or may be dissociated into separate parts (so that the guide body 4200 is removable and connectable to the handle 4400 or shaft 4300 in use). The articulation or joint may include a first joint portion or joint feature carried by the working portion 4200 and a second joint portion or joint feature carried by the handle 4400 or shaft 4300. Some joint designs may include more than just two joint portions or joint features.
In an embodiment, the body 4202 of the drill guide 4000 contains a projection, or spike 4244, on the bone facing side which fits into a corresponding hole on the bone, which serves to resist side-side movement. In another embodiment, the body of the drill guide 4000 contains an additional hole or cannulation on the bone facing side into which a pin or dowel, anchored in the bone, is placed, which also serves to resist side-side movement. These are examples of stabilizing features that stabilize the body 4202 relative to a bone.
Referring to
Referring to
The working portion 4200 may include a body 4202 with an obverse side 4204 and a reverse side 4206 opposite the obverse side. The obverse side 4204 may be referred to as a top side or proximal side, and the reverse side 4206 may be referred to as a bottom side or distal side. The body 4202 may also have a front side 4208, a back side 4210, a left side 4212, and a right side 4214. In use, the reverse side 4206 faces a bone surface such as a glenoid socket, while the obverse side 4204 faces away from the bone surface. The reverse side 4206 may be referred to as a bone facing side, and may make close contact with the bone surface. The reverse side 4206 is shown as a convex spherical surface. However, the reverse side 4206 need not be spherical, and may be flat (planar), concave, or otherwise shaped to complement a particular bone surface. The reverse side 4206 may be used against one or more natural bone surfaces, or against one or more bone resection surfaces, or a combination of natural and resected surfaces. The obverse side 4204 is shown as a planar surface (seen best in
In the example shown, the obverse side 4204 includes a left barrel 4220, a right barrel 4222, a left barrel hole 4224, a right barrel hole 4226, a left barrel hole axis 4225, a right barrel hole axis 4227, a left pin base 4228, a right pin base 4230, a left pin hole 4232, a right pin hole 4234, a left lateral tab 4236, and a right lateral tab 4238. The left and right barrels 4220, 4222 support the left and right barrel holes 4224, 4226, respectively. The left and right barrel holes 4224, 4226 extend completely through the working portion 4200 along the left and right barrel hole axes 4225, 4227, respectively. The left and right barrel hole axes 4225, 4227 are parallel to each other and to the plane of symmetry 4201 in this example, and they run in an oblique direction from obverse-back (top-back) to reverse-front (bottom-front). The left and right pin bases 4228, 4230 support the left and right pin holes 4232, 4234, respectively. The left and right pin holes 4232, 4234 are coaxial and may share the same diameter. Together, the left and right pin holes 4232, 4234 may be thought of as a single pin hole that extends completely through the working portion 4200 from left to right, perpendicular to the plane of symmetry 4201. The left and right pin holes 4232, 4234 may be referred to as a joint portion or joint feature of the working portion 4200; the joint portion or joint feature may also include the left and right pin bases 4228, 4230. The left and right lateral tabs 4236, 4238 project outwardly from the body 4202 and may be located below the left and right pin holes 4232, 4234 or elsewhere. The left and right lateral tabs 4236, 4238 are examples of anatomical reference features that may be included in the drill guide 4000, preferably in the working portion 4200. Along the plane of symmetry 4201, the obverse side 4204 includes a slot 4231, a ridge 4240 and an aperture 4242. The slot 4231 extends from front to back between the left and right pin bases 4228, 4230. The joint portion or joint feature may also include the slot 4231. The ridge 4240 runs from left to right between the left and right pin bases 4228, 4230. The aperture 4242 extends completely through the body 4202 from obverse to reverse near the front side 4208.
The reverse side 4206 includes a central spike 4244. The spike 4244 may include a trocar point as shown, a drill tip, or it may be blunt. The spike 4244 is one example of a stabilizing feature that stabilizes the working portion 4200 relative to a bone. The left and right barrel holes 4224, 4226 and the aperture 4242 extend through the reverse side 4206; the left and right lateral tabs 4236, 4238 extend to the reverse side 4206.
Other embodiments of the working portion may be designed differently from the working portion 4200. For example, other embodiments may be asymmetric instead of bilaterally symmetric, or they may have another type of symmetry besides bilateral symmetry. Other embodiments may lack clearly defined front, back, left, and right sides, although these basic directional terms may still be employed with these embodiments even if some or all of these four sides are indistinguishable from each other. Other embodiments may have only one barrel, barrel hole, barrel hole axis, pin base, pin hole, and/or tab; yet other embodiments may have more than two barrels, barrel holes, barrel hole axes, pin bases, pin holes, and/or tabs. A single barrel hole and its corresponding barrel hole axis may be inclined at an oblique angle relative to the reverse side as shown, or they may be at any other angle relative to the reverse side, including perpendicular or parallel, according to the design constraints for a particular surgical site. Multiple barrel holes and their corresponding barrel hole axes may all be parallel as shown, or they may be arranged at any other relative angle, including oblique, acute, obtuse, or perpendicular, according to the design constraints for a particular surgical site. Multiple barrel holes and their corresponding barrel hole axes may be located as desired on the working portion, for example in a linear array, a circular array, or in another arrangement, according to the need for bone holes for a particular application of the technology. The pin base(s) and pin hole(s) may be replaced with another feature or features to provide any of the types of joints discussed previously. The tab(s) may be oriented according to the anatomical landmarks for a particular surgical site, and may be replaced with grooves or other indicia as a matter of design choice.
Referring to
The working portion 4200 may be assembled to the first end 4302 of the shaft 4300 by inserting the first end 4302 between the left and right pin bases 4228, 4230 so that the pin hole 4306 is aligned with the left and right pin holes 4232, 4234 and the first portion of the shaft 4300 is oriented as shown in
The shaft 4300 may be assembled to the handle 4400 by pressing the second end 4304 of the shaft 4300 into a hole 4402 in one end (distal end) of the handle. Alternatively, the second end 4304 and the hole 4402 may be provided with complementary external and internal threads, respectively. Other means for rigid, secure assembly are contemplated. The shaft 4300 and handle 4400 may be detachably coupled together. When the shaft 4300 and the handle 4400 are coupled together, whether permanently or detachably, they may be referred to collectively as a handle portion of the drill guide 4000.
The drill guide 4000 may include an optional biasing element or biasing mechanism (not shown) to bias the shaft 4300 to a particular neutral position relative to the working portion 4200. For example, with reference to
The drill guide 4000 may include an optional user-selectable control or lockout (not shown) that stabilizes or immobilizes the shaft 4300 relative to the working portion 4200 when the control is in a first setting and permits free movement of the shaft 4300 relative to the working portion 4200 when the control is in a second setting. For example, a cable or mechanical linkage may be strung through a cannulation in the shaft 4300 to couple a handle-mounted control to a mechanism near the joint.
Referring to
A method of using the drill guide 4000 may include some or all of the following steps in any order: inserting the spike 4244 into a complementary hole in a bone surface; positioning the reverse side 4206 against the bone surface; aligning the left and/or right lateral tab 4236, 4238 with one or more anatomical directions or anatomical landmarks; pivoting the shaft 4300 with attached handle 4400 about the pin 4398 relative to the working portion 4200 within the range of motion 4396; and drilling a bone hole through one or both of the left and right barrel holes 4224, 4226.
These steps may be preceded by one or more steps of resecting bone to form one or more resected bone surfaces.
The step of pivoting the shaft 4300 about the pin 4398 relative to the working portion 4200 is advantageous for at least the following reasons.
Firstly, unintentional movements of the user's hand, the handle 4400, and/or the shaft 4300 are not transferred to the working portion 4200 as they would be in a conventional, completely rigid drill guide. More specifically, in the example shown, unintentional movements which cause rotation about the pin 4398 are not transferred. In other examples, the hinge joint formed by the pin 4398 in the holes 4306, 4232, 4234 may be replaced by a ball and socket joint (or other polyaxial joint), in which case unintentional movements which cause rotation about the center point of the ball and socket joint would not be transferred.
Secondly, the user may intentionally pivot the shaft 4300 about the pin 4398 relative to the working portion 4200 so that the shaft 4300 may be used as a retractor or pry bar to lever surrounding anatomical structures out of the way, without disturbing the position of the working portion 4200. In the context of glenoid arthroplasty, for example, the humeral head may be in the way when attempting to drill into the glenoid socket. The shaft 4300 may be pivoted toward the second position to push the humeral head away from its anatomical position relative to the glenoid socket.
Thirdly, the shaft 4300 may be positioned relative to the working portion 4200 to avoid contacting surrounding anatomical structures.
In the context of glenoid arthroplasty, the step of aligning the left and/or right lateral tab 4236, 4238 with an anatomical direction or bony landmark may mean aligning the left and right lateral tabs 4236, 4238 with the superior-inferior direction.
The method may also include the step of inserting a glenoid component into a prepared glenoid fossa of a scapula. This step may include the step of applying bone cement to the prepared glenoid fossa before inserting the glenoid component.
The method may also include steps of using other instruments in conjunction with the drill guide 4000.
Any methods disclosed herein includes one or more steps or actions for performing the described method. The method steps and/or actions may be interchanged with one another. In other words, unless a specific order of steps or actions is required for proper operation of the embodiment, the order and/or use of specific steps and/or actions may be modified.
Reference throughout this specification to “an embodiment” or “the embodiment” means that a particular feature, structure or characteristic described in connection with that embodiment is included in at least one embodiment. Thus, the quoted phrases, or variations thereof, as recited throughout this specification are not necessarily all referring to the same embodiment.
Similarly, it should be appreciated that in the above description of embodiments, various features are sometimes grouped together in a single embodiment, Figure, or description thereof for the purpose of streamlining the disclosure. This method of disclosure, however, is not to be interpreted as reflecting an intention that any claim require more features than those expressly recited in that claim. Rather, as the following claims reflect, inventive aspects lie in a combination of fewer than all features of any single foregoing disclosed embodiment. Thus, the claims following this Detailed Description are hereby expressly incorporated into this Detailed Description, with each claim standing on its own as a separate embodiment. This disclosure includes all permutations of the independent claims with their dependent claims.
Recitation in the claims of the term “first” with respect to a feature or element does not necessarily imply the existence of a second or additional such feature or element. Elements recited in means-plus-function format are intended to be construed in accordance with 35 U.S.C. § 112 Para. 6. It will be apparent to those having skill in the art that changes may be made to the details of the above-described embodiments without departing from the underlying principles of the technology.
While specific embodiments and applications of the present technology have been illustrated and described, it is to be understood that the technology is not limited to the precise configuration and components disclosed herein. Various modifications, changes, and variations which will be apparent to those skilled in the art may be made in the arrangement, operation, and details of the methods and systems of the present technology disclosed herein without departing from the spirit and scope of the technology.
The present application claims the benefit of: U.S. Provisional Patent Application No. 62/367,533, Attorney's Docket No. CAO-6 PROV, entitled STABILIZED DRILL GUIDE, which was filed on Jul. 27, 2016. The present application is also a continuation-in-part of: U.S. patent application Ser. No. 14/042,258, Attorney's Docket No. CAO-1, entitled GLENOID ARTHROPLASTY, which was filed on Sep. 30, 2013; U.S. patent application Ser. No. 15/587,895, Attorney's Docket No. CAO-1 CON1, entitled GLENOID ARTHROPLASTY, which was filed on May 5, 2017; U.S. patent application Ser. No. 14/592,837, Attorney's Docket No. CAO-1 CIP1, entitled GLENOID ARTHROPLASTY AND OFFSET REAMERS, which was filed on Jan. 8, 2015; U.S. patent application Ser. No. 15/228,443, Attorney's Docket No. CAO-4, entitled GLENOID ARTHROPLASTY WITH MULTI-DIRECTIONAL FIXATION, which was filed on Aug. 4, 2016; and U.S. patent application Ser. No. 15/653,305, Attorney's Docket No. CAO-4 CIP1, entitled ARTHROPLASTY PROSTHESES WITH MULTI-AXIS FIXATION, which was filed on Jul. 18, 2017. U.S. patent application Ser. No. 14/042,258 claims the benefit of: U.S. Provisional Patent Application No. 61/776,398, Attorney's Docket No. 3858U.001, entitled OBLIQUE-INSERTION ANCHORING MECHANISM FOR GLENOID PROSTHETIC COMPONENT, which was filed on Mar. 11, 2013. U.S. patent application Ser. No. 15/587,895 is a continuation of U.S. patent application Ser. No. 14/042,258. U.S. patent application Ser. No. 14/592,837 claims the benefit of: U.S. Provisional Patent Application No. 61/925,893, Attorney's Docket No. CAO-3 PROV, entitled OFFSET REAMERS, which was filed on Jan. 10, 2014. U.S. patent application Ser. No. 14/592,837 is also a continuation-in-part of U.S. patent application Ser. No. 14/042,258. U.S. patent application Ser. No. 15/228,443 claims the benefit of: U.S. Provisional Patent Application No. 62/203,255, Attorney's Docket No. CAO-4 PROV, entitled GLENOID ARTHROPLASTY WITH MULTI-DIRECTIONAL FIXATION, which was filed on Aug. 10, 2015. U.S. patent application Ser. No. 15/653,305 claims the benefit of: U.S. Provisional Patent Application No. 62/363,607, Attorney's Docket No. CAO-5 PROV, entitled ARTHROPLASTY PROSTHESES WITH MULTI-AXIS FIXATION, which was filed on Jul. 18, 2016. U.S. patent application Ser. No. 15/653,305 is also a continuation-in-part of U.S. patent application Ser. No. 15/228,443.
Number | Name | Date | Kind |
---|---|---|---|
4106130 | Scales | Aug 1978 | A |
4206517 | Pappas | Jun 1980 | A |
4550450 | Kinnett | Nov 1985 | A |
4795468 | Hodorek | Jan 1989 | A |
4865605 | Dines | Sep 1989 | A |
4936853 | Fabian | Jun 1990 | A |
4964865 | Burkhead | Oct 1990 | A |
4986833 | Worland | Jan 1991 | A |
5030219 | Matsen, III | Jul 1991 | A |
5032132 | Matsen, III | Jul 1991 | A |
5383936 | Kubein-Meesenburg | Jan 1995 | A |
5489309 | Lackey | Feb 1996 | A |
5489310 | Mikhail | Feb 1996 | A |
5593448 | Dong | Jan 1997 | A |
5702447 | Walch | Dec 1997 | A |
5723018 | Cyprien | Mar 1998 | A |
5769856 | Dong | Jun 1998 | A |
5800551 | Williamson | Sep 1998 | A |
5814049 | Pratt | Sep 1998 | A |
5851207 | Cesarone | Dec 1998 | A |
5919195 | Wilson | Jul 1999 | A |
5928285 | Bigliani | Jul 1999 | A |
5944758 | Mansat | Aug 1999 | A |
5976144 | Fishbein | Nov 1999 | A |
6129732 | Lechot | Oct 2000 | A |
6245074 | Allard | Jun 2001 | B1 |
6364910 | Shultz | Apr 2002 | B1 |
6379386 | Resch | Apr 2002 | B1 |
6406495 | Schoch | Jun 2002 | B1 |
6475221 | White | Nov 2002 | B1 |
6673115 | Resch | Jan 2004 | B2 |
6679916 | Frankle | Jan 2004 | B1 |
6699289 | Iannotti | Mar 2004 | B2 |
6783549 | Stone | Aug 2004 | B1 |
6875234 | Lipman | Apr 2005 | B2 |
6911047 | Rockwood, Jr. | Jun 2005 | B2 |
7008430 | Dong | Mar 2006 | B2 |
7048740 | White | May 2006 | B2 |
7160328 | Rockwood, Jr. | Jan 2007 | B2 |
7204854 | Guederian | Apr 2007 | B2 |
7217272 | Salyer | May 2007 | B2 |
7294149 | Hozack | Nov 2007 | B2 |
7329284 | Maroney | Feb 2008 | B2 |
7588572 | White | Sep 2009 | B2 |
7621962 | Lakin | Nov 2009 | B2 |
7670382 | Parrott | Mar 2010 | B2 |
7780669 | Lechot | Aug 2010 | B2 |
7815685 | Farrar | Oct 2010 | B2 |
7867234 | Collazo | Jan 2011 | B2 |
7892287 | Deffenbaugh | Feb 2011 | B2 |
8007538 | Gunther | Aug 2011 | B2 |
8038719 | Gunther | Oct 2011 | B2 |
8048161 | Guederian | Nov 2011 | B2 |
8080063 | Ferrand | Dec 2011 | B2 |
8157866 | Winslow | Apr 2012 | B2 |
8308809 | Bishop | Nov 2012 | B2 |
8425614 | Winslow | Apr 2013 | B2 |
8444646 | Long | May 2013 | B2 |
8465548 | Long | Jun 2013 | B2 |
8475460 | Roger | Jul 2013 | B1 |
8480674 | Roger | Jul 2013 | B1 |
8540778 | Rhodes | Sep 2013 | B2 |
8556980 | Deffenbaugh | Oct 2013 | B2 |
8591592 | Dreyfuss | Nov 2013 | B2 |
8673015 | Maroney | Mar 2014 | B2 |
8764836 | De Wilde | Jul 2014 | B2 |
8778028 | Gunther | Jul 2014 | B2 |
8870962 | Roche | Oct 2014 | B2 |
8876907 | Baptista | Nov 2014 | B2 |
8974537 | Dreyfuss | Mar 2015 | B2 |
8986309 | Murphy | Mar 2015 | B1 |
D730522 | Goldberg | May 2015 | S |
9119643 | Winslow | Sep 2015 | B2 |
9180016 | Maroney | Nov 2015 | B2 |
9233003 | Roche | Jan 2016 | B2 |
9237894 | Hernandez | Jan 2016 | B2 |
9283076 | Sikora | Mar 2016 | B2 |
9289306 | Goldberg | Mar 2016 | B2 |
9345578 | Collazo | May 2016 | B2 |
9351844 | Walch | May 2016 | B2 |
D759819 | Goldberg | Jun 2016 | S |
9370428 | Winslow | Jun 2016 | B2 |
9433507 | Reubelt | Sep 2016 | B2 |
9474619 | Reubelt | Oct 2016 | B2 |
9610166 | Gunther | Apr 2017 | B2 |
D810940 | Goldberg | Feb 2018 | S |
D835276 | Humphrey | Dec 2018 | S |
10524922 | Courtney, Jr. | Jan 2020 | B2 |
20020077702 | Castro | Jun 2002 | A1 |
20030134252 | Sussman | Jul 2003 | A1 |
20030187449 | McCleary | Oct 2003 | A1 |
20030204263 | Justin | Oct 2003 | A1 |
20040117027 | Reiley | Jun 2004 | A1 |
20050015093 | Suh | Jan 2005 | A1 |
20050038444 | Binder | Feb 2005 | A1 |
20050049709 | Tornier | Mar 2005 | A1 |
20050060039 | Cyprien | Mar 2005 | A1 |
20050222572 | Chana | Oct 2005 | A1 |
20050261775 | Baum | Nov 2005 | A1 |
20060030946 | Ball | Feb 2006 | A1 |
20060069443 | Deffenbaugh | Mar 2006 | A1 |
20060074430 | Deffenbaugh | Apr 2006 | A1 |
20060094958 | Marquart | May 2006 | A1 |
20060100637 | Rathbun | May 2006 | A1 |
20060111787 | Bailie | May 2006 | A1 |
20070055380 | Berelsman | Mar 2007 | A1 |
20070142917 | Roche | Jun 2007 | A1 |
20070219637 | Berelsman | Sep 2007 | A1 |
20070219638 | Jones | Sep 2007 | A1 |
20080058948 | Biegun | Mar 2008 | A1 |
20080109000 | Maroney | May 2008 | A1 |
20080147070 | Michel | Jun 2008 | A1 |
20080188855 | Brown | Aug 2008 | A1 |
20080287952 | Mcminn | Nov 2008 | A1 |
20080294266 | Steinberg | Nov 2008 | A1 |
20090005798 | Brunner | Jan 2009 | A1 |
20090018664 | Kropf | Jan 2009 | A1 |
20090138016 | Berthusen | May 2009 | A1 |
20090192621 | Winslow | Jul 2009 | A1 |
20090226068 | Fitz | Sep 2009 | A1 |
20090228114 | Clark | Sep 2009 | A1 |
20090240333 | Trudeau | Sep 2009 | A1 |
20090312839 | Scheker | Dec 2009 | A1 |
20100049327 | Isch | Feb 2010 | A1 |
20100087876 | Gunther | Apr 2010 | A1 |
20100087877 | Gunther | Apr 2010 | A1 |
20100094429 | Otto | Apr 2010 | A1 |
20100161065 | Williams, Jr. | Jun 2010 | A1 |
20100228352 | Courtney, Jr. | Sep 2010 | A1 |
20100241235 | Basamania | Sep 2010 | A1 |
20100268239 | Sikora | Oct 2010 | A1 |
20110098710 | Spratt | Apr 2011 | A1 |
20110106266 | Schwyzer | May 2011 | A1 |
20110144760 | Wong | Jun 2011 | A1 |
20110190898 | Lenz | Aug 2011 | A1 |
20110230972 | Katrana | Sep 2011 | A1 |
20110276144 | Wirth | Nov 2011 | A1 |
20120130500 | Maroney | May 2012 | A1 |
20120209392 | Angibaud | Aug 2012 | A1 |
20120221112 | Lappin | Aug 2012 | A1 |
20120239156 | De Wilde | Sep 2012 | A1 |
20120310360 | Parrott | Dec 2012 | A1 |
20120330429 | Axelson, Jr. | Dec 2012 | A1 |
20130024000 | Bojarski | Jan 2013 | A1 |
20130090737 | Flaherty | Apr 2013 | A1 |
20130144393 | Mutchler | Jun 2013 | A1 |
20130166033 | Gunther | Jun 2013 | A1 |
20130190827 | Butters | Jul 2013 | A1 |
20130204254 | Slone et al. | Aug 2013 | A1 |
20130309030 | Winslow | Nov 2013 | A1 |
20140128983 | Flaherty | May 2014 | A1 |
20140163565 | Bollinger | Jun 2014 | A1 |
20140257495 | Goldberg | Sep 2014 | A1 |
20150119891 | Goldberg | Apr 2015 | A1 |
20150320567 | Terrill | Nov 2015 | A1 |
20150335440 | Linares | Nov 2015 | A1 |
20160089164 | Winslow | Mar 2016 | A1 |
20160095607 | Hernandez | Apr 2016 | A1 |
20160143637 | Nering | May 2016 | A1 |
20160242921 | Walch | Aug 2016 | A1 |
20160287266 | Sikora | Oct 2016 | A1 |
20170014238 | Reubelt | Jan 2017 | A1 |
20170042689 | Goldberg | Feb 2017 | A1 |
20170151061 | Lavi | Jun 2017 | A1 |
20170231642 | Chaney | Aug 2017 | A1 |
20170239058 | Goldberg | Aug 2017 | A1 |
20170273795 | Neichel | Sep 2017 | A1 |
20170319348 | Goldberg | Nov 2017 | A1 |
20180028323 | Servidio | Feb 2018 | A1 |
20180200068 | Goldberg | Jul 2018 | A1 |
20180303619 | Kehres | Oct 2018 | A1 |
20190350717 | Tuttle | Nov 2019 | A1 |
20200038194 | Kester | Feb 2020 | A1 |
Number | Date | Country |
---|---|---|
2013209336 | Feb 2014 | AU |
2014249514 | Oct 2015 | AU |
2015204637 | Aug 2016 | AU |
2821529 | Jan 2014 | CA |
2941440 | Oct 2014 | CA |
2972664 | Jul 2015 | CA |
101442961 | Nov 2012 | CN |
102014800 | Apr 2014 | CN |
105377195 | Mar 2016 | CN |
106132355 | Nov 2016 | CN |
10130796 | Jan 2003 | DE |
10134511 | Feb 2003 | DE |
1518519 | Mar 2005 | EP |
1159939 | Jul 2005 | EP |
2238949 | Oct 2010 | EP |
2446859 | May 2012 | EP |
2559406 | Feb 2013 | EP |
2689751 | Jan 2014 | EP |
2967892 | Jan 2016 | EP |
3091940 | Nov 2016 | EP |
3284442 | Feb 2018 | EP |
2825263 | Dec 2002 | FR |
2836821 | May 2004 | FR |
2308068 | Sep 1999 | GB |
201508960 | Jul 2016 | IN |
201617026041 | Aug 2016 | IN |
WO1998015241 | Apr 1998 | WO |
WO2000018335 | Apr 2000 | WO |
WO2002017822 | Mar 2002 | WO |
WO2006110896 | Oct 2006 | WO |
WO2007109800 | Sep 2007 | WO |
WO2009108591 | Sep 2009 | WO |
WO2011029911 | Mar 2011 | WO |
WO2012030794 | Mar 2012 | WO |
WO2013020026 | Feb 2013 | WO |
WO2014005644 | Jan 2014 | WO |
WO2014164265 | Oct 2014 | WO |
WO2015106136 | Jul 2015 | WO |
WO2018017615 | Jan 2018 | WO |
Number | Date | Country | |
---|---|---|---|
20170348112 A1 | Dec 2017 | US |
Number | Date | Country | |
---|---|---|---|
62367533 | Jul 2016 | US | |
61776398 | Mar 2013 | US | |
61925893 | Jan 2014 | US | |
62203255 | Aug 2015 | US | |
62363607 | Jul 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14042258 | Sep 2013 | US |
Child | 15587895 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14042258 | Sep 2013 | US |
Child | 15660942 | US | |
Parent | 15587895 | May 2017 | US |
Child | 14042258 | US | |
Parent | 14592837 | Jan 2015 | US |
Child | 15587895 | US | |
Parent | 15228443 | Aug 2016 | US |
Child | 14592837 | US | |
Parent | 15653305 | Jul 2017 | US |
Child | 15228443 | US | |
Parent | 14042258 | Sep 2013 | US |
Child | 14592837 | US | |
Parent | 15228443 | Aug 2016 | US |
Child | 15653305 | Jul 2017 | US |