The present invention relates generally to a jack for elevating a vehicle. More specifically, the present invention is a stabilized jack assembly that allows the user to quickly elevate and stabilize a vehicle before moving beneath and performing work underneath the vehicle.
It is often necessary to elevate a vehicle for various reasons ranging from replacing a tire to routine maintenance. This is typically done by utilizing a jack to slowly elevate the vehicle until sufficient room to perform work is present below the vehicle. A jack stand is then utilized to stabilize and hold the vehicle in place in the lifted position as the jack alone is unstable, leading to danger for the person performing work underneath the vehicle. Virtually all vehicles are manufactured with engineered jacking points that are the most structurally stable positions from which to elevate the vehicles. When utilizing a conventional jack and a separate jack stand, the vehicle is first lifted utilizing the jack and then the jack stand is placed into a secure position near the jack. However, once a jacking point has been utilized to lift the vehicle, the jacking point is unavailable when inserting the jack stand to stabilize the vehicle. Because the jack stand placement is by default left to the discretion of the user once the engineered jacking point is occupied by the jack, the jack stand may be poorly positioned to provide stability for the vehicle. The person is additionally forced to move underneath an unstable vehicle in order to identify a “safe and secure” position to place the jack stand. This must be done three additional times if the person wishes to elevate the entire vehicle.
The present invention is a stabilized jack assembly that is utilized to both elevate and stabilize a vehicle before the user moves underneath the vehicle. The present invention serves as a single device that is utilized to perform both the elevation and the stabilization of the vehicle. This eliminates the step of moving underneath and stabilizing the vehicle once the vehicle is elevated, allowing the user to avoid a potentially dangerous situation.
All illustrations of the drawings are for the purpose of describing selected versions of the present invention and are not intended to limit the scope of the present invention.
The present invention is a stabilized jack assembly that is utilized to elevate and stabilize a vehicle without requiring the user to venture beneath the vehicle until the vehicle has been stabilized. The preferred embodiment of the present invention is shown in
The planar base 1 serves as a stable foundation for the present invention and is placed onto a surface such as the ground when the present invention is in use. The mounting bracket 10 is utilized to secure the scissor lift assembly 2 to the planar base 1. The mounting bracket 10 is centrally fixed on the planar base 1 in order to allow the planar base 1 to provide maximum stability to the scissor lift assembly 2 when the present invention is in use. The mounting bracket 10 may be independent of the planar base 1 or integrated with the planar base 1 for further stability of the present invention. The scissor lift assembly 2 is utilized to elevate or lower a vehicle. A first end 3 of the scissor lift assembly 2 is hingedly connected to the mounting bracket 10. The scissor lift assembly 2 may thus be hingedly repositioned and reoriented relative to the mounting bracket 10 as the scissor lift assembly 2 is raised or lowered.
The mounting head 11 is the component that is placed into contact with the vehicle while the vehicle is elevated or lowered. The mounting head 11 is hingedly connected to a second end 4 of the scissor lift assembly 2. As a result, the scissor lift assembly 2 is able to hingedly reposition and reorient relative to the mounting head 11 while the scissor lift assembly 2 is raised or lowered. The mounting head 11 is offset from the planar base 1 by an adjustable distance 25. The adjustable distance 25 changes as the vehicle is elevated or lowered and may vary based on the individual height requirement for elevating the vehicle.
The plurality of support struts 18 is utilized to stabilize the present invention and the vehicle once the vehicle is elevated. The plurality of strut braces 23 is utilized to secure the plurality of support struts 18 in place in order to stabilize the present invention and the vehicle after the vehicle has been elevated to the desired height. An upper end 19 of each of the plurality of support struts 18 is hingedly and removably connected to the mounting head 11. The plurality of support struts 18 is thus able to hinge relative to the mounting head 11 as the vehicle is elevated. In the preferred embodiment of the present invention, the hinged connection between the plurality of support struts 18 and the mounting head 11 enables the plurality of support struts 18 to automatically engage the plurality of strut braces 23 once the vehicle has been sufficiently elevated. The plurality of support struts 18 is removable from the mounting head 11 when the present invention is not in use. The plurality of strut braces 23 is distributed about the planar base 1, allowing the plurality of strut braces 23 to evenly and sufficiently stabilize the present invention. In the preferred embodiment of the present invention, the plurality of strut braces 23 is positioned in the four corners of the planar base 1 to provide maximum stability to the present invention. A lower end 20 of each of the plurality of support struts 18 is removably engaged into a corresponding brace from the plurality of strut braces 23. Once engaged into the corresponding brace, the lower end 20 of each of the plurality support struts is fixed in place in order to prevent the present invention from shifting or otherwise moving.
The threaded spindle 24 is utilized in conjunction with the scissor lift assembly 2 in order to elevate or lower the vehicle. The threaded spindle 24 is axially engaged through the scissor lift assembly 2. In order to elevate the vehicle, the user is required to provide rotational force to the threaded spindle 24. The vehicle may be lowered by rotating the threaded spindle 24 in the opposite direction. The threaded spindle 24 engages the scissor lift assembly 2 in order to translate the rotational force of the threaded spindle 24 to vertical elevation or lowering of the mounting head 11. The threaded spindle 24 may include a stopper for preventing the threaded spindle 24 from separating from the scissor lift assembly 2.
In the preferred embodiment of the present invention, the scissor lift assembly 2 further comprises a first pair of arms 5 and a second pair of arms 6. The first pair of arms 5 and the second pair of arms 6 are utilized to hingedly elevate and lower the mounting head 11. The first pair of arms 5 and the second pair of arms 6 are positioned adjacent to each other on the mounting bracket 10, allowing the first pair of arms 5 and the second pair of arms 6 to be positioned and oriented relative to each other as the vehicle is elevated or lowered. The first pair of arms 5 and the second pair of arms 6 each comprise a lower arm 7, an upper arm 8, and a joint 9. The lower arm 7 is positioned toward the planar base 1 and the mounting bracket 10 while the upper arm 8 is positioned toward the mounting head 11. The joint 9 serves as a connection point between the lower arm 7 and the upper arm 8.
The lower arm 7 is hingedly connected to the mounting bracket 10 and as such is able to pivot about the mounting bracket 10 as the vehicle is elevated or lowered. The upper arm 8 is hingedly connected to the lower arm 7 by the joint 9, opposite to the mounting bracket 10. The joint 9 provides the hinged scissor-like expansion or contraction movement between the lower arm 7 and the upper arm 8 that serves to elevate and lower the mounting head 11. The mounting head 11 is hingedly connected to the upper arm 8, opposite to the lower arm 7. The mounting head 11 is thus able to remain oriented parallel to the planar base 1 for stability of the present invention as the vehicle is elevated or lowered. The threaded spindle 24 is axially engaged through the joint 9 of the first pair of arms 5 and the joint 9 of the second pair of arms 6. As a result, the rotation of the threaded spindle 24 is able to simultaneously move both the first pair of arms 5 and the second pair of arms 6 to elevate or lower the vehicle.
The present invention further comprises a first mounting plate 26 and a second mounting plate 27. Additionally, the plurality of support struts 18 further comprises a first pair of support struts 21 and a second pair of support struts 22. The first mounting plate 26 and the second mounting plate 27 are utilized to respectively connect the first pair of support struts 21 and the second pair of support struts 22 to the mounting head 11. The first mounting plate 26 is connected to the upper end 19 of the first pair of support struts 21 while the second mounting plate 27 is connected to the upper end 19 of the second pair of support struts 22. As a result, the first mounting plate 26 and the second mounting plate 27 are able to connect the upper end 19 of the first pair of support struts 21 and the upper end 19 of the second pair of support struts 22 to the mounting head 11. The first pair of support struts 21 is hingedly connected to the mounting head 11 by the first mounting plate 26 while the second pair of support struts 22 is hingedly connected to the mounting head 11 by the second mounting plate 27, opposite to the first pair of support struts 21. The first pair of support struts 21 and the second pair of support struts 22 are thus oriented with respect to each other to provide stability for the scissor lift assembly 2 on the planar base 1. In the preferred embodiment of the present invention, the first pair of support struts 21 and the second pair of support struts 22 are positioned to provide stability on the four corners of the planar base 1 corresponding to the plurality of strut braces 23. As a result, the first pair of support struts 21 and the second pair of support struts 22 are able to provide a wide base of support for the present invention when the mounting head 11 is elevated by the scissor lift assembly 2.
The present invention further comprises a first quick-release pin 28 and a second quick-release pin 29 that are utilized to secure the first mounting plate 26 and the second mounting plate 27 to the mounting head 11. The first quick-release pin 28 and the second quick-release pin 29 additionally allow the first mounting plate 26 and the second mounting plate 27 to be easily separated from the mounting head 11 in order to remove the first pair of support struts 21 and the second pair of support struts 22 from the mounting head 11. As shown in
The embodiment of the present invention shown in
With continued reference to
The present invention may be utilized with various types of engineered jacking points found on vehicles. The embodiment of the present invention shown in
The embodiment of the present invention shown in
The embodiment of the present invention shown in
The scissor lift assembly 2, the plurality of support struts 18, and the plurality of strut braces 23 are shown in a lowered configuration in
The scissor lift assembly 2, the plurality of support struts 18, and the plurality of strut braces 23 are shown in an elevated configuration in
In addition to the three aforementioned examples, the design of the components of present invention may further vary in order to accommodate various additional types of engineered jacking points on vehicles.
The present invention is utilized by inserting the present invention underneath a vehicle jacking point while in the lowered configuration. The mounting head 11 is placed into contact with the jacking point. The threaded spindle 24 is then turned by applying a rotational force to the threaded spindle 24. This may be done by connecting a power tool to the input socket 30 or by turning the leveraging handle 31. As the threaded spindle 24 is rotated, the scissor lift assembly 2 is expanded in order to elevate the mounting head 11, elevating the vehicle. After the present invention is in the elevated configuration and the vehicle has reached a sufficient elevation, the lower end 20 of each of the plurality of support struts 18 is automatically moved and engaged into the plurality of strut braces 23 due to the hinged connection between the plurality of support struts 18 and the mounting head 11. Once the plurality of support struts 18 is engaged into the plurality of strut braces 23, the vehicle is elevated and the present invention is stabilized along with the vehicle as the mounting head 11 is unable to move due to the plurality of support struts 18 and the plurality of strut braces 23. There is no need for the user to venture underneath the vehicle while the vehicle is unstable in order to stabilize the present invention. The user is then able to perform work underneath the vehicle as needed. After work is completed, the first pair of support struts 21 and the second pair of support struts 22 are removed from the mounting head 11 by removing the first quick-release pin 28 and the second quick-release pin 29. The threaded spindle 24 is rotated in the opposite direction in order to lower the mounting head 11 and the vehicle. After the vehicle has been lowered, the present invention may be removed from underneath the vehicle.
Although the present invention has been explained in relation to its preferred embodiment, it is understood that many other possible modifications and variations can be made without departing from the spirit and scope of the present invention as hereinafter claimed.
Number | Name | Date | Kind |
---|---|---|---|
2075398 | Kunath | Mar 1937 | A |
2924463 | Livermont | Feb 1960 | A |
3232584 | Miles | Feb 1966 | A |
3314655 | Steele | Apr 1967 | A |
3475008 | Taylor | Oct 1969 | A |
3834548 | Cliffton | Sep 1974 | A |
4014517 | Keagle | Mar 1977 | A |
4718519 | Barker | Jan 1988 | A |
5261644 | Armstrong | Nov 1993 | A |
6331016 | Wallace | Dec 2001 | B1 |
7073763 | Trout | Jul 2006 | B1 |
7188842 | Thorpe | Mar 2007 | B2 |
7338052 | Hanscom | Mar 2008 | B2 |
20070284499 | Hammac | Dec 2007 | A1 |
20090200527 | Christie | Aug 2009 | A1 |