Kurokawa et al, Nucleic Acids Res. 16: 5201 (1988).* |
Kim et al, Am. J. Physiol. 264(1)(Part 1 of Two), F66 (1993).* |
Tamkun et al., Cell 46: 271 (1986).* |
Staunton et al, Cell 52: 925 (1988).* |
Th'ng et al, Cell 63: 313 (1990).* |
Matsumoto et al., EMBO J. 6: 637 (1987).* |
Shimatsu et al, J. Biol. Chem. 262: 7894 (1987).* |
Sommer et al, Biochem. Biophys. Res. Commun. 144: 543 (1987).* |
Smith et al, J. Virol. 64: 6286 (1990).* |
Robert-Guroff et al, J. Virol. 64: 3391 (1990).* |
Mackem et al, J. Virol. 44: 939 (1982).* |
Minor et al, J. gen. Virol. 69: 1091 (1988).* |
Hayday et al, Nature 307: 334 (1984).* |
Calabi et al, EMBO J. 4: 667 (1985).* |
Majello et al, Proc. Natl. Acad. Sci. USA 83: 9636 (1986).* |
Van Bevern et al, Cell 32: 1241 (1983).* |
Ullrich et al, Nature 309: 418 (1984).* |
Petch et al, Mol. Cell. Biol. 10: 2973 (1990).* |
Bienz-Tadmor et al, EMBO J. 4: 3209 (1985).* |
Jenkins et al, Nucleic Acids Res. 12: 5609 (1984).* |
Simmons et al, Nature 331: 624 (1988).* |
Bender et al, Proc Natl. Acad. Sci. USA 83: 3204 (1986).* |
Derwent Abstract of German Priority document DE 4321946 as claimed in WOA-95/01363. |
Lisziewicz et al., “Long-term Treatment of Human Immunodeficiency Virus—infected Cells with Antisense Oligonucleotide Phosphorothiates”, P.N.A.S. USA, 90: p. 3860 only (1993). |
Chemical Abstracts, 114(7):55778n (1991), McGrath, “Tumor-specific Antisense Oligonucleotides for Controlling Cancer”. |
E. Uhlmann et al., “Antisense Oligonucleotides: A New Therapeutic Principle,” Chemical Reviews, 90(4):544-583 (1990). |
J. Milligan et al., “Current Concepts in Antisense Drug Design,” Journal of Medicinal Chemistry, 36(14):1923-1937, (1993). |
C. Stein et al., “Antisense Oligonucleotides as Therapeutic Agents—Is the Bullet Really Magical?”, Science, 261:1004-1012, (1993). |
S. Crooke et al., “Antisense Research and Applications, Medicinal Chemistry Strategies for Antisense Research,” pp. 153-154 and 307-316, CRC Press, Inc., (1993). |
P. Cook, “Medicinal Chemistry Strategies for Antisense Research,” 9:149-187, CRC Press, Inc., (1993). |
C. Stein et al., “Physiochemical Properties of Phosphorothioate Oligodeoxynucleotides,” Nucleic Acids Research, 16(8), (1988). |
T. Woolf et al., “The Stability, Toxicity and Effectiveness of Unmodified and Phosphorothioate Antisense Oligodeoxynucleotides in Xenopus Oocytes and Embryos,” Nucleic Acids Research, 18(7):1763-1769, (1990). |
M. Ghosh et al., “Phosphorothioate-Phosphodiester Oligonucleotide Co-Polymers: Assessment for Antisense Application,” Anti-Cancer Drug Design, 8:15-32, (1993). |
P. Furdon et al., “RNase H Cleavage of RNA Hybridized to Oligonucleotides Containing Methylphosphonate, Phosphorothioate and Phosphodiester Bonds,” Nucleic Acids Research, 17(22), (1989). |
C. Marcus-Sekura et al., “Comparative Inhibition of Chloramphenicol Acetyltransferase Gene Expression by Antisense Oligonucletide Analogues Having Alkyl Phosphotriester, Methylphosphonate and Phosphorothioate Linkages,” Nucleic Acids Research, 15(14):5749-5763, (1987). |
J.P. Shaw et al. “Modified Deoxyoligonucleotides Stable to Exonuclease Degradation in Serum,” Nucleic Acids Research, 19(4):747-750, (1991). |
H. Seliger et al., “Oligonucleotide Analogues with Terminal 3′-3′-and 5′-5′-Internucleotidic Linkages as Antisense Inhibitors of Viral Gene Expression,” Nucleosides & Nucleotides, 10(1-3):469-477 (1991). |
R. Giles et al., “Chimeric Oligodeoxynucleotide Analogues: Enhanced Cell Uptake of Structures Which Direct Ribonuclease H with High Specificity,” Anti-Cancer Drug Design, 8:33-51, (1993). |
G. Hoke et al, “Effects of Phosphorothioate Capping on Antisense Oligo-Nucleotide Stability, Hybridization and Antiviral Efficacy Versus Herpes Simples Virus Infection,” Nucleic Acids Research, 19(20):5743-5748, (1991). |
E. Uhlmann et al., “Chapter 16: Oligonucleotide Analogs Containing Dephospho-Internucleoside Linkages,” Methods in Molecular Biology, 20:355-389, (1993). |
E. Stirchak et al., “Uncharged Stereoregular Nucleic Acid Analogs: 2. Morpholino Nucleoside Oligomers with Carbamate Internucleoside Linkages,” Nucleic Acids Research, 17(15):6129-6141, (1989). |
B. Froehler et al., “Triple-Helix Formation by Oligodeoxynucleotides Containing the Carbocyclic Analogs of Thymidine and 5-Methyl-2′-Deoxy-cytidine,” American Chemical Society, 114:8320-8322, (1992). |
F. Vandendriessche et al., “Acylic Oligonucleotides: Possibilities and Limitations,” Tetrahedron, 49(33):7223-7238, (1993). |
M. Tarköy et al, “31. Nucleic-Acid Analogues with Constraint Conformational Flexibility in the Sugar-Phosphate Backbone (‘Bicylo-DNA’), Part I, Preparation of (3′S,5′R)-2′-Deoxy-3′, -5′-ethano-αβ-D-Ribonucleosides (‘Bicyclonucleosides’),” Helvetica Chimica Acta, 76:481-511, (1993). |
M. Manoharan, “Designer Antisense Oligonucleotides: Conjugation Chemistry and Functionality Placement,” Antisense Research and Applications, 7:304-349, (1993). |
M. Koga et al., “Alternating α,β-Oligothymidylates with Alternating (3′→3′- and (5′→5′)-Internucleotidic Phosphodiester Linkages as Models for Antisense Oligodeoxyribonucleotides,” The Journal of Organic Chemistry, 56(12):3757-3759, (1991). |
L. Bock et al, “Selection of Single-Stranded DNA Molecules that Bind and Inhibit Human Thrombin,” Nature, 355:564-566, (1992). |
D. Castanotta et al., “Biological and Functional Aspects of Catalytic RNAs,” Critical Reviews in Eukaryotic Gene Expression, 2(4):331-357, (1992). |
M. Sawadogo et al., “A Rapid Method for the Purification of Deprotected Oligodoxynucleotides,” Nucleic Acids Research, 19(3):674, (1991). |
J. Mann et al., “Synthesis and Properties of an Oligodeoxynucleotide Modified with a Pyrene Derivative at the 5′-Phosphate,” Bioconjugate Chem., 3:554-558, (1992). |
S. Biro et al., “Inhibitory Effects of Antisense Oligodeoxynucleotides Targeting c-myc mRNA on Smooth Muscle Cell Proliferation and Migration,” Proc. Natl. Acad. Sci., 90:654-658, (1993). |