The present invention generally relates to stabilizer bars for vehicle suspensions. More particularly, the present invention relates to a stabilizer bar mounting system that can improve both the mounting of the stabilizer bar to the vehicle frame and the lateral retention of the stabilizer bar.
Stabilizer bars, also known as sway bars or anti-roll bars, are employed in a vehicle suspension system to reduce a body roll in a vehicle during a turn. With reference to
Lateral forces exerted on the stabilizer bar during the operation of the vehicle tend to push the center section 110 in an axial direction and as such, the center section 110 of prior art stabilizer bars includes first and second thrust flanges 126 and 128, respectively, that are disposed adjacent the bushings. The first and second thrust flanges 126 and 128 are employed to retain the first and second bushings 116 and 118, respectively, in a desired location. The thrust flanges 126 and 128 can be of a formed metal (upset) type collar, a plastic injection molded type collar, a crimp type collar, a multi-piece wedge type collar or a weld-type collar.
One drawback associated with this configuration is that the thrust flanges 126 and 128 must be precisely positioned so as to inhibit an undesired amount of lateral movement but yet not interfere with the rotation of the center section 110. Given normal manufacturing variation with, for example, the location of the mounting holes in the suspension component, the location of the mounting holes in the vehicle frame 124, the overall length of the center section 110, the length of the first and second arms 112 and 114, and the accuracy and repeatability with which the thrust flanges 126 and 128 may be fixedly secured to the center section 110, it can be challenging to accurately place the first and second thrust flanges 126 and 128 in a manner that provides satisfactory performance and yet may be utilized with components across the broad spectrum of manufacturing tolerances.
In one form, the present teachings provide a vehicle suspension system with a stabilizer bar assembly having a bar structure, an intermediate bushing, a first bushing and a second bushing. The bar structure includes a center section and first and second arms that are disposed on opposite sides of the center section. The intermediate bushing is coupled to the center section and has a locating collar. The first and second bushings are at least partially formed of a resilient material. The first bushing is disposed over the locating collar and the second busing is mounted on the center section axially spaced apart from the first bushing. The locating collar limits movement of the first bushing along an axis of the center section in a first direction that is parallel to the axis of the center section and a second direction that is opposite the first direction.
In another form, the present teachings provide a vehicle suspension system with a stabilizer bar assembly having a bar structure, an intermediate bushing, a first bushing and a second bushing. The bar structure can include a center section and first and second arms that are disposed on opposite sides of the center section. The intermediate bushing is coupled to the center section. The first bushing is disposed over the intermediate bushing, while the second busing is mounted on the center section axially spaced apart from the first bushing. The intermediate bushing limits movement of the first bushing along an axis of the center section in a first direction that is parallel to the axis of the center section and a second direction that is opposite the first direction.
In yet another form, the present teachings provide a method for forming a stabilizer bar. The method can include: forming a bar structure with a center section; forming an intermediate bushing onto the center section, the intermediate bushing having at least one locating collar; and assembling a resilient bushing to the intermediate bushing such that the at least one collar limits relative axial movement of the resilient bushing along the center section in a first direction and a second direction opposite the first direction.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
Additional advantages and features of the present invention will become apparent from the subsequent description and the appended claims, taken in conjunction with the accompanying drawings, wherein:
With reference to
The suspension system 8 can include a lower control arm 26 and an upper control arm 28, both of which can be pivotally attached to the frame 20. A strut assembly having a helical coil spring 30 and a strut damper 32 can be retained between an intermediate portion of the lower control arm 26 and the frame 20 to support the weight of the vehicle and any loads which are transmitted through the lower control arm 26. The upper control arm 28 can be connected to the lower control arm 26 by a steering knuckle 34. A hub and a rotor assembly 36 can be rotatably attached to a spindle portion (not shown) of a steering knuckle 34 such that a wheel and a tire may can be mounted thereon.
With additional reference to
The intermediate bushing 42 can include at least one locating collar 60 and can be coupled to the central section 50 at a location where the first resilient bushing 44 is to be placed. The intermediate bushing 42 can include two distinct thrust surfaces 62 that can be configured to cooperate to limit relative axial movement of the first resilient bushing 44 along the central section 50. In the particular example provided, the thrust surfaces 62 are formed on the opposite lateral surfaces of the locating collar 60. It will be appreciated, however, that the intermediate bushing 42a may employ two or more spaced-apart locating collars 60a as is shown in
Returning to
The first resilient bushing 44 can be assembled to the central section 50 (e.g., prior to formation of the arm members 52 and the intermediate bushing 42) and pushed axially over the intermediate bushing 42 such that the first resilient bushing 44 is engaged to the at least one locating collar 60. In the example provided, the first resilient bushing 44 is received over the intermediate bushing 42 and is configured to engage the opposite thrust surfaces 62 that are formed on the locating collar 60. Accordingly, contact between the thrust surfaces 62 and corresponding surfaces 70 formed on the first resilient bushing 44 can limit relative axial movement of the first resilient bushing 44 along the central section 50.
The second resilient bushing 46 can also be assembled to the central section 50 (e.g., prior to formation of the arm members 52 and the intermediate bushing 42) and pushed into a desired location. Unlike the arrangement for the first resilient bushing 44, the second resilient bushing 46 is “free floating” and can be translated along the central section 50.
A pair of mounting brackets 74a and 74b can be employed to rotatably attach the central section 50 to the frame 20. The mounting brackets 74a and 74b are conventional in their construction and operation and need not be discussed in significant detail herein. Briefly, each of the mounting brackets 74a and 74b can be mounted about an associated one of the first and second resilient bushings 44 and 46 and thereafter aligned to mating holes (not specifically shown) in an appropriate structure or structure, such as the frame 20. As those of ordinary skill in the art will appreciate from this disclosure, the mounting brackets 74a and 74b can be mounted to any appropriate structure, including control arms, beam axles, etc., and the mounting brackets 74a and 74b need not be mounted to the same type of structure (i.e., both mounting brackets need not be mounted to the frame 20 but rather one could be mounted to one type of structure, such as the frame 20, and the other could be mounted to another type of structure, such as a control arm. Note that when the mounting bracket 74b is to be aligned to the mating holes in the appropriate structure (i.e., the frame 20 in the particular example provided), the second resilient bushing 46 may be readily moved in an axial direction along the central section 50. Threaded fasteners (not specifically shown) can be employed to secure the mounting brackets 74a and 74b to the frame 20 or other structure. As the mounting brackets 74a and 74b engage the first and second resilient bushings 44 and 46, movement of the first and second resilient bushings 44 and 46 relative to the frame 20 is inhibited. Furthermore, as the thrust surfaces 62 of the locating collar 60 are disposed between the corresponding surfaces 70 formed on the first resilient bushing 44, movement of the central section 50 in an axial direction relative to the first resilient bushing 44 and the corresponding structure (i.e., the frame 20 in the example provided) is limited.
Those of ordinary skill in the art will appreciate from this disclosure that the use of an intermediate bushing permits additional functionality to be incorporated into the intermediate bushing/first resilient bushing arrangement. In the example of
In yet another embodiment, which is illustrated in
While the intermediate bushing 42 has been described herein as being formed of plastic and molded onto the central section 50 of the stabilizer bar structure 40, those of ordinary skill in the art will appreciate that the intermediate bushing 42 may be formed in numerous other ways. For example the intermediate bushing 42 (or portions thereof) may be formed of an appropriate metal or plastic material and bonded (e.g., via an adhesive) to the central section 50, or from an appropriate metal and brazed or welded (e.g., via arc, TIG, MIG, spot/resistance, laser and/or friction/spin welding) to the central section 50, or from an appropriate metal or plastic and press-fit to the central section 50, or formed from an appropriate metal or plastic and fixedly coupled to the central section 50 via pins, threads, threaded fasteners, rivets, etc., or formed from the central section 50 in a forming operation (e.g., forging, spinning, rolling, hydroforming).
While the invention has been described in the specification and illustrated in the drawings with reference to various embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention as defined in the claims. Furthermore, the mixing and matching of features, elements and/or functions between various embodiments is expressly contemplated herein so that one of ordinary skill in the art would appreciate from this disclosure that features, elements and/or functions of one embodiment may be incorporated into another embodiment as appropriate, unless described otherwise, above. Moreover, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment illustrated by the drawings and described in the specification as the best mode presently contemplated for carrying out this invention, but that the invention will include any embodiments falling within the foregoing description and the appended claims.
This application is a continuation of U.S. patent application Ser. No. 11/251,369 filed on Oct. 14, 2005. The disclosure of the above application is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 11251369 | Oct 2005 | US |
Child | 12267090 | US |