The present invention relates to a stabilizer bar for a motor vehicle. More particularly, the present invention relates to a stabilizer bar with a lateral retention collar cast thereon.
When a motor vehicle takes a turn, tile sprung mass of a vehicle body rotates around the vehicle roll axis, which passes through its center of gravity Lateral forces from the vehicle suspension at each end of the vehicle are transmitted into the sprung mass at a location known as the roll center. If the vertical distance between the roll center and the vehicle center of gravity is not zero, a torque or roll moment is exerted on the sprung mass, causing the vehicle to lean towards the outside of the turn. This force, known as the roll couple, causes a positive camber of the wheels on the outside of the turn, thereby reducing their cornering grip.
The roll couple is resisted by the suspension's roll stiffness, which is a function of the spring rate of the vehicle springs and the vehicle stabilizer bars. Increasing the roll stiffness of the suspension increases the rate of weight transfer to the wheels on the outside of the turn, thereby increasing their cornering grip. The stabilizer bar connects opposite wheels (left/right) through short lever arms linked by a torsion spring.
The stabilizer bar is typically attached to the motor vehicle chassis in order to retard lateral movement but not prevent vertical movement. The stabilizer bar utilizes a pair of bushings within retainer brackets to attach to the chassis. The bushings are typically installed on the stabilizer bar adjacent to a pair of lateral retention collars that are permanently attached to said bar. The collars can be welded, mechanically fastened or press fit onto the stabilizer bar. All of these methods of attachment can result in increased weight, labor and/or material cost to the component. Therefore, there is a need to provide an economical method for the manufacture and attachment of lateral retention collars to stabilization bars.
A stabilizer bar with a lateral retention collar is provided. The lateral retention collar is cast onto the stabilizer bar and can be made from a zinc-aluminum alloy. In addition, the lateral retention collar is cast onto the stabilizer bar using a die casting machine. The lateral retention collar has an axial sleeve with a flange that extends radially therefrom. In some instances, the flange has a width in the axial direction, with the width being between 5 and 50% of an overall axial width of the lateral retention collar. In addition, the flange has a radial thickness that is between 5 and 100% greater than the radial thickness of the sleeve. Casting of the lateral retention collar onto the stabilizer bar can provide a push-off load of greater than 5,000 pounds.
The present invention discloses a stabilizer bar with a lateral retention collar that is cast thereon. As such, the present invention has utility as a component of a suspension system for a motor vehicle.
The stabilizer bar with the cast lateral retention collar can be produced by placing the stabilizer bar at least partially within a die casting machine and subsequently die casting the lateral retention collar onto the stabilizer bar. In some instances, the lateral retention collar is made from a zinc-aluminum alloy. In some instances, the stabilizer bar has an outer surface that is painted before the lateral retention collar is cast thereon.
The lateral retention collar has an axial sleeve and a flange that extends radially therefrom. The flange can have a width in the axial direction, the axial width being between 5 and 50% of an overall width of the lateral retention collar. In some instances, the axial width of the flange is between 5 and 30% of thie overall width of the lateral retention collar. In addition, the flange can have a radial thickness that is between 5 and 100% greater than the radial thickness of the sleeve. The casting of the lateral retention collar onto the stabilizer bar affords for decreased cost and improved quality of the stabilizer bar plus lateral retention collar assembly. In addition, the casting of the lateral retention collar onto the stabilizer bar can provide an increase in the push-off load required to move the lateral retention collar relative to the stabilizer bar. This increase in push-off load affords for an increase in stresses that can be applied to the stabilizer bar without lateral movement of tie bar relative to a suspension or motor vehicle component, for example the chassis of a motor vehicle.
A method of manufacturing the stabilizer bar with the lateral retention collar can include providing the stabilizer bar, providing a die casting machine with molten metal available to cast the lateral retention collar, placing the stabilizer bar at least partially within the die casting machine, casting the lateral retention collar onto the stabilizer bar using the molten metal, and removing the stabilizer bar with the lateral retention collar from the die casting machine. It is appreciated that the die casting of the lateral retention collar results in a near net shape collar process that eliminates the need for welding, press fitting and the like of the lateral retention collar onto the stabilizer bar. In addition, the process disclosed herein affords for the casting of two lateral retention collars onto the stabilizer bar at the approximate same time, thereby affording for the production of the lateral retention collars simultaneously.
Turning now to
Turning now to
The lateral retention collar 200 is permanently attached to the stabilizer bar 100 by initially placing the bar 100 within a die casting machine (not shown) with an appropriate mold(s) or die(s) held within the die casting machine. After the stabilizer bar 100 is placed within the die casting machine, the collar 200 is formed by the injection of a molten metal or alloy into a collar cavity (not shown) at high pressure. In some instances the molten metal is aluminum and the molten alloy is an aluminum alloy. In other instances, the molten alloy is a zinc-aluminum alloy. After the molten metal or alloy is injected into the collar cavity about the stabilizer bar 100, the molten metal or alloy solidifies and forms the collar 200. In this manner the collar 200 is cast onto the stabilizer bar 100.
Upon casting of the collar 200, an inner surface 230 as shown in
Referring to
A stabilizer bar 100 with a cast lateral retention collar 200 can experience push-off loads (force required to move the collar on the stabilizer bar) of more than 5,000 pounds. Furthermore, production of the lateral retention collars 200 can be produced on stabilizer bars 100 over and/or under painted surfaces and more than one collar 200 can be cast at a given time.
Turning now to
The foregoing discussion discloses and describes several embodiments of the present invention. One skilled in the art will readily recognize from such discussion, and from the accompanying drawings and claims, that various changes, modifications and the like can be made without departing from the true spirit and fair scope of the invention as defined in the following claims.
This application claims priority of U.S. Provisional Patent Application Ser. No. 60/865,511 filed Nov. 13, 2006, which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60865511 | Nov 2006 | US |