The disclosed subject matter is directed to medical devices for endovascular, percutaneous or minimally invasive surgical treatment of bodily tissues, such as tissue approximation or valve repair. More particularly, the present disclosure relates to repair of valves of the heart and venous valves.
Surgical repair of bodily tissues can involve tissue approximation and fastening of such tissues in the approximated arrangement. When repairing valves, tissue approximation includes coapting the leaflets of the valve in a therapeutic arrangement which can then be maintained by fastening or fixing the leaflets. Such coaptation can be used to treat regurgitation, which commonly occurs in the mitral valve and in the tricuspid valve.
Mitral valve regurgitation is characterized by retrograde flow from the left ventricle of the heart through an incompetent mitral valve into the left atrium. During a normal cycle of heart contraction (systole), the mitral valve acts as a check valve to prevent flow of oxygenated blood from the left ventricle back into the left atrium. Instead, as the left ventricle contracts the oxygenated blood is pumped from the left ventricle into the aorta through the aortic valve. Regurgitation of the mitral valve can significantly decrease the pumping efficiency of the heart, placing the patient at risk of severe, progressive heart failure.
Mitral valve regurgitation can result from a number of different mechanical defects in the mitral valve or the left ventricular wall. The valve leaflets, the valve chordae connecting the leaflets to the papillary muscles, the papillary muscles, or the left ventricular wall can be damaged or otherwise dysfunctional. Commonly, the valve annulus can be damaged, dilated, or weakened, limiting the ability of the mitral valve to close adequately against the high pressures of the left ventricle.
Treatments for mitral valve regurgitation can involve valve replacement or repair including leaflet and annulus remodeling, the latter generally referred to as valve annuloplasty. Another technique for mitral valve repair, which can be referred to as the “bow-tie” or “edge-to-edge” technique, can involve suturing adjacent segments of the opposed valve leaflets together. Preferably, devices and systems for mitral valve repair can be utilized without open chest access, and, rather, can be capable of being performed endovascularly, i.e., delivering fixation devices (e.g., a valve repair clip) using delivery systems advanced to the heart from a point in the patient's vasculature remote from the heart. Furthermore, such delivery systems should allow for repositioning and optional removal of the fixation devices prior to fixation to provide proper placement. Stabilizer devices, such as a support frame, can be provided to support one or more portions of the delivery systems that remain external to the patient during repair procedures. Stabilizers are configured to maintain relative positions of various components of the delivery systems. During edge-to-edge repair procedures, however, the user (e.g., the medical professional performing the procedure) must be able to advance and retract various portions (or components) of the delivery system relative to one another. Typically, the user must manually lift and physically move the components relative to one another. The user also must be able to advance or retract the entire delivery system relative the patient's body. To do this, the user typically lifts and moves the entire system, including the stabilizer, relative the patient's body. As such, there remains a need for a stabilizer or system capable of simplified and controlled movement of related delivery systems and components. Such devices and systems likewise can be useful for repair of tissues in the body other than heart valves.
The purpose and advantages of the disclosed subject matter will be set forth in and apparent from the description that follows, as well as will be learned by practice of the disclosed subject matter. Additional advantages of the disclosed subject matter will be realized and attained by the systems and methods particularly pointed out in the written description and claims hereof, as well as from the appended drawings.
To achieve these and other advantages and in accordance with the purpose of the disclosed subject matter, as embodied and broadly described, the disclosed subject matter is directed to a stabilizer for a medical delivery system, as well as a system including the same.
In accordance with the disclosed subject matter, a stabilizer for a medical delivery system is provided, wherein the medical delivery system has at least two portions translatable relative each other. The stabilizer includes a base and a sled coupled to the base. The sled includes a distal arm including a distal attachment for receiving a first portion of the medical delivery system, and a proximal arm including a proximal attachment for receiving a second portion of the medical delivery system. The sled is translatable relative to the base and the proximal attachment is translatable relative to the proximal arm.
The stabilizer can include a sled drive mechanism coupled to the base and the sled. The sled drive mechanism can include a control knob to control movement of the sled drive mechanism to translate the sled relative the base. The sled drive mechanism can be a sled lead screw. The sled lead screw can be coupled to the sled by a threaded boss. Additionally or alternatively, the stabilizer can include an attachment drive mechanism coupled to the proximal arm and the proximal attachment. The attachment drive mechanism can include a control knob to control movement of the proximal attachment to translate the proximal attachment relative the proximal arm. The attachment drive mechanism can be an attachment lead screw. The attachment lead screw can be coupled to proximal arm by at least one threaded bearing block.
In accordance with the disclosed subject matter, the sled can be releasably coupled to the base. The base can include a flexible tab to releasably couple the base and the sled. The flexible tab can provide a distal stop to restrict translation of the sled relative the base.
At least one of the sled and the base can include indicia for position of the sled relative the base. The indicia can include a series of graduation marks disposed at equal intervals. The proximal arm can include a zero-reference marker for positioning the proximal attachment.
In accordance with the disclosed subject matter, a medical delivery system is provided. The medical delivery system can include an outer guide catheter, an inner guide catheter, an outer-guide-catheter handle, and inner-guide-catheter handle, and a stabilizer. The outer guide catheter has a distal end portion and a proximal end portion, and the inner guide catheter has a distal end portion and a proximal end portion. The outer-guide-catheter handle is coupled to the proximal end portion of the outer guide catheter and the inner-guide-catheter handle is coupled to the proximal end portion of the inner guide catheter. The stabilizer includes a base and a sled. The sled includes an outer-guide-catheter arm including an outer-guide-catheter attachment for receiving the outer-guide-catheter handle and an inner-guide-catheter arm including an inner-guide-catheter attachment for receiving the inner-guide-catheter handle. The sled is translatable relative to the base and the inner-guide-catheter attachment can be translatable relative to the inner-guide-catheter arm.
In accordance with the disclosed subject matter the medical delivery system can include a sled drive mechanism coupled to the base and the sled. The sled drive mechanism can include a control knob to control movement of the sled drive mechanism to translate the sled relative the base. The sled drive mechanism can be a sled lead screw. The sled lead screw can be coupled to the sled by a threaded boss. Additionally or alternatively, the medical delivery system can include an attachment drive mechanism coupled to the inner-guide-catheter arm and the inner-guide-catheter attachment. The attachment drive mechanism can include a control knob to control movement of the inner-guide-catheter attachment to translate the inner-guide-catheter attachment relative the inner-guide-catheter arm. The attachment drive mechanism can be an attachment lead screw. The attachment lead screw can be coupled to inner-guide-catheter arm by at least one threaded bearing block.
In accordance with the disclosed subject matter, the sled can be releasably coupled to the base. The base can include a flexible tab to releasably couple the base and the sled. The flexible tab can provide a distal stop to restrict translation of the sled relative the base.
At least one of the sled and the base can include indicia for position of the sled relative the base. The indicia can include a series of graduation marks disposed at equal intervals. The inner-guide-catheter arm can include a zero-reference marker for positioning the inner-guide-catheter attachment.
In accordance with the disclosed subject matter, the medical delivery system can include a delivery catheter having a distal end portion and a proximal end portion. The medical delivery system can include a fixation device coupled to the distal end portion of the delivery catheter. Additionally or alternatively the medical delivery system can include a delivery-catheter handle coupled to the proximal end portion of the delivery catheter.
Reference will now be made in detail to the various exemplary embodiments of the disclosed subject matter, exemplary embodiments of which are illustrated in the accompanying drawings.
The stabilizer of the disclosed subject matter can be used for edge-to-edge transcatheter valve repair for patients having various conditions, including regurgitant mitral valves or tricuspid valves. Although described with respect to edge-to-edge repair, the stabilizer of the disclosed subject matter can be used with a wide variety of suitable transcatheter delivery systems. Transcatheter (e.g., trans-septal) edge-to-edge valve repair has been established using a fixation device, such as the MitraClip Transcatheter Mitral Valve Repair device. These fixation devices generally are configured to capture and secure opposing native leaflets using two types of leaflet contacting elements. The first element is a sub-valvular arm (also known as a distal element or fixation element) to contact the ventricular side of a native leaflet to be grasped. With the arm positioned underneath to stabilize the native leaflet in a beating heart, a second gripping element (also known as a proximal element) can be lowered or moved into contact with the atrial side of the native leaflet to capture the leaflet therebetween. Once each opposing leaflet is captured by a respective arm and gripper element, the fixation device can be closed by moving the arms toward a center of the fixation device such that the leaflets are brought into coaptation, which results in a reduction in valvular regurgitation during ventricular systole. Furthermore, a covering can be provided on the arms and/or gripper elements to facilitate tissue ingrowth with the captured leaflets. Such fixation devices can be delivered to the mitral valve using a delivery system. The delivery system can include multiple steerable catheter components that can be steered independently and moved relative one another to facilitate proper alignment of the fixation device with the leaflets prior to leaflet capture. Alignment can also be facilitated by moving the entire delivery system relative to the patient.
Additional details of exemplary fixation devices and delivery systems in accordance with the disclosed subject matter are set forth below. Furthermore, various patents and published applications disclose additional details of such fixation devices and delivery systems and related operations, for example, U.S. Pat. No. 7,226,467 to Lucatero et al., U.S. Pat. No. 7,563,267 to Goldfarb et al., U.S. Pat. No. 7,655,015 to Goldfarb et al., U.S. Pat. No. 7,736,388 to Goldfarb et al., U.S. Pat. No. 7,811,296 to Goldfarb et al., U.S. Pat. No. 8,057,493 to Goldfarb et al., U.S. Pat. No. 8,303,608 to Goldfarb et al., U.S. Pat. No. 8,500,761 to Goldfarb et al., U.S. Pat. No. 8,734,505 to Goldfarb et al., U.S. Pat. No. 8,740,920 to Goldfarb et al., U.S. Pat. No. 9,510,829 to Goldfarb et al., U.S. Pat. No. 7,635,329 to Goldfarb et al., U.S. Pat. No. 8,945,177 to Dell et al., U.S. Pat. No. 9,011,468 to Ketai et al., U.S. Patent Application Publication No. 2017/0042546 to Goldfarb et al., U.S. Patent Application Publication No. 2017/0239048 to Goldfarb et al., U.S. Patent Application Publication No. 2018/0325671 to Abunassar et al., the entirety of the contents of each of these patents and published applications is incorporated herein by reference.
Generally, and as set forth in greater detail below, the disclosed subject matter provided herein includes a stabilizer for a medical delivery system. The stabilizer of the disclosed subject matter can provide the user the ability to move various components of the medical delivery system as a whole without manually lifting and moving the structure. Also, the stabilizer of the disclosed subject matter provides the user with more precision and control when moving various portions of the delivery system relative to one another and when moving the entire delivery system relative to the patient.
In accordance with the disclosed subject matter, a stabilizer is provided including a base and a sled coupled to the base. The sled includes a distal arm including a distal attachment for receiving a first portion of the medical delivery system, and a proximal arm including a proximal attachment for receiving a second portion of the medical delivery system. The sled is translatable relative to the base and the proximal attachment is translatable relative to the proximal arm.
Referring now to
Distal attachment 2211 can include a yoke or similar structure which can include set screws and gripping elements or similar structure for receiving the first portion of the delivery system. The proximal attachment 2221 can be a block or similar structure, including a recess configured to receive the second portion of the delivery system. The proximal attachment 2221 can include set screws and gripping elements or similar structure for receiving the second portion of the delivery system.
The sled 2200 as disclosed herein is translatable relative to the base 2100. For example, the sled 2200 can be moved axially or longitudinally along the base 2100 within a guide or track or the like. Referring to
In accordance with the disclosed subject matter, the proximal attachment 2221 separately is translatable relative to the proximal arm 2220 (and therefore relative to the sled 2200 because the proximal arm 2220 and the sled 2200 are fixed relative one another). Referring to
Although this disclosure describes specific designs for the sled drive mechanism 2230 and attachment drive mechanism 2240, this disclosure contemplates any suitable drive mechanisms. For example, the sled drive mechanism 2230 and/or attachment drive mechanism 2240 can include worm gears, rack and pinion, pistons, solenoids or the like.
In accordance with the disclosed subject matter, at least one of the sled 2200 and the base 2100 can include indicia 2250 for positioning of the sled 2200 relative the base 2100. For example, the indicia 2250 can include a series of graduation marks 2251. The graduation marks can be disposed at equal intervals, such as 1 mm. The other of the sled 2200 and base 2100 can include an indicator arrow 2252 or the like.
Additionally or alternatively, the proximal arm 2220 can include a zero-reference marker 2222. This can provide the user with a reference location for connecting the inner delivery catheter to the proximal attachment 2221. In accordance with the disclosed subject matter, the marker 2222 can assist the user in positioning the tip of the fixation device 104 relative to the outer guide catheter 1000. The user can then advance the proximal attachment 2221 using the attachment control knob 2241, which can provide enhanced control of translation of the inner guide catheter handle 1057 and the delivery catheter handle 304 relative to the outer guide catheter handle 1056.
In accordance with the disclosed subject matter, the stabilizer 2000 can be a reusable device. That is, the same stabilizer 2000 can be made of suitable materials to be sterilized and used for multiple surgical procedures. The base and 2100 and the sled 2200 can be releasably couple, which can allow for easier cleaning and sterilization between uses. Referring to
Referring to
With reference to
As depicted herein in
The fixation device 104 can further include at least one gripping element 116 moveable relative to the at least one arm 108 to capture native leaflet therebetween. In accordance with the disclosed subject matter, each arm can be configured to define or have a trough aligned along the longitudinal axis. The trough can have a width sized greater than a width of the gripper element so as to receive the gripper element therein.
The fixation device can further include a second gripping element 118 moveable relative to the second arm 110 to capture a second native leaflet therebetween. Further, in accordance with the disclosed subject matter, the at least one gripping element 116, 118 can have at least one friction element 152 along a length thereof. As embodied herein, each gripping element 116, 118 can include a plurality of friction elements 152, which can be disposed in rows. For example, each gripping element 116 and 118 can have a least four rows of friction elements 152. The friction elements 152 can allow for improved tissue engagement during leaflet capture. This gripping element design can increase the assurance that single device leaflet detachment will not occur during or after a procedure. To adjust the fixation device after an initial leaflet capture, the arms can be opened, the gripping element can be raised vertically, and issue can disengage from the fixation device, facilitating re-grasp and capture.
As further embodied herein, each gripping element 116, 118 can be biased toward each respective arm 108, 110. Prior to leaflet capture, each gripping element 116, 118 can be moved inwardly toward a longitudinal center of the device (e.g., away from each respective arm 108, 110) and held with the aid of one or more gripper element lines (not shown), which can be in the form of sutures, wire, nitinol wires, rods, cables, polymeric lines, or other suitable structures. The sutures can be operatively connected with the gripping elements 116, 118 in a variety of ways, such as by being threaded though loops disposed on gripping elements 116, 118.
Fixation device 104 can further include two link members or legs 168, and as embodied herein, each leg 168 has a first end rotatably joined with one of the arms 108, 110 and a second end rotatably joined with a base 170. The base 170 can be operatively connected with a stud 176 which can be operatively attached to an actuator rod 64 of the delivery system (see
As previously noted, a native leaflet can be captured between each arm and respective gripping element. Each arm can then be moved toward its closed position. In this matter, adjacent leaflets can further be captured between the arms in the closed position. For example, and for illustration only,
Referring to
Referring to
Manipulation of the guide catheter 1000, 1020 can be achieved with the use of handles 1056, 1057 attached to the proximal ends of the catheter 1000, 1020. As shown, handle 1056 is attached to the proximal end 1014 of outer guide catheter 1000 and handle 1057 is attached to the proximal end 1024 of inner guide catheter 1020. Inner guide catheter 1020 is inserted through handle 1056 and is positioned coaxially within outer guide catheter 1000.
The delivery catheter 300 can be inserted though handle 1057 and can be positioned coaxially within inner guide catheter 1020 and outer guide catheter 1000. The delivery catheter 300 includes a shaft 302, having a proximal end 322 and a distal end 324, and a handle 304 attached to the proximal end 322. A fixation device 104 can be removably coupled to the distal end 324 for deliver to a site within the patient
The outer guide catheter 1000 and/or the inner guide catheter 1020 can be precurved and/or have steering mechanisms to position the distal ends 1016, 1026 in desired directions. Precurvature or steering of the outer guide catheter 1000 can direct the distal end 1016 in a first direction to create a primary curve while precurvature and/or steering of the inner guide catheter 1020 can direct distal end 1026 in a second direction, different from the first, to create a secondary curve. Together, the primary and secondary curves can form a compound curve. Furthermore, advancement of the entire interventional system 3 or the inner guide catheter 1020 (relative to the outer guide catheter 1000) can further direct the distal end 1026 of the inner guide catheter 1020 toward a desired position. Advancement of the delivery catheter 300 through the coaxial guide catheters 1000, 1020 can guide the delivery catheter 300 through the compound curve toward a desired direction, usually in a direction which will position the fixation device 104 in a desired location in the body.
In accordance with the disclosed subject matter, the fixation device 104 can be adapted for repair of a heart valve, such as a mitral valve, using an antegrade approach from a patient's left atrium. The fixation device 104 can be introduced in a femoral vein of a patient and advanced through the inferior vena cava into the heart and, for mitral valve repair, across a penetration in the interatrial septum. The fixation device 104 can be advanced through the mitral valve from the left atrium to the left ventricle. The arms 108, 110 can be oriented to be perpendicular to a line of coaptation and positioned with the arms 108, 110 contacting the ventricular surface of the valve leaflets, thereby grasping the leaflets. The gripping elements 116, 118 can remain on the atrial side of the valve leaflets with the leaflets disposed between the gripping elements 116, 118 and the arms 108, 110. The fixation device 104 can be manipulated as desired to reposition the device such that the leaflets are properly grasped at a desired location. Repositioning can be performed with the fixation device 104 in the open position. As embodied herein, regurgitation of the valve can also be checked while the fixation device 104 is in the open position. If regurgitation is not satisfactorily reduced, the fixation device 104 can be repositioned and regurgitation checked again until the desired results are achieved.
With reference to
Once the fixation device 104 has been positioned in a desired location relative to the valve leaflets, the leaflets can then be captured between the gripping elements 116, 118 and the arms 108, 110. As embodied herein, the gripping elements 116, 118 can be lowered toward the arms 108, 110 to dispose the leaflets therebetween. The arms 108, 110 can be closed to an angle selectable by the user and locked to the prevent the arms 108, 110 from moving toward an open position. The fixation device 104 can then be detached from the distal end of the delivery catheter 300. After detachment, the repair of the leaflets or tissue can be observed by non-invasive visualization techniques, such as echocardiography, to ensure the desired outcome. If the repair is not desired, the fixation device 14 can be retrieved. If the repair is satisfactory, the gripper element lines can be disconnected, and the fixation device can be released for implantation.
In view of the above and in accordance with the disclosed subject matter, a system is provided including an outer guide catheter, an inner guide catheter, an outer-guide-catheter handle, an inner-guide-catheter handle, and a stabilizer. The outer guide catheter includes a distal end portion and a proximal end portion, and the inner guide catheter includes a distal end portion and a proximal end portion. The outer-guide-catheter handle is coupled to the proximal end portion of the outer guide catheter and the inner-guide catheter handle is coupled to the proximal end portion of the inner guide catheter. The stabilizer includes a base and a sled coupled to the base. The sled includes an outer-guide-catheter arm including an outer-guide-catheter attachment for receiving the outer-guide-catheter handle, and an inner-guide-catheter arm including an inner-guide-catheter attachment for receiving the inner-guide-catheter handle. The sled is translatable relative to the base and the inner-guide-catheter attachment is translatable relative to the inner-guide-catheter arm. Additional features as described above can be incorporated in the system.
While the embodiments disclosed herein utilize a push-to-open, pull-to-close mechanism for opening and closing arms it should be understood that other suitable mechanisms can be used, such as a pull-to-open, push-to-close mechanism. A closure bias can be included, for example using a compliant mechanism such as a linear spring, helical spring, or leaf spring. Other actuation elements can be used for deployment of the gripper elements.
While the disclosed subject matter is described herein in terms of certain preferred embodiments for purpose of illustration and not limitation, those skilled in the art will recognize that various modifications and improvements can be made to the disclosed subject matter without departing from the scope thereof. Moreover, although individual features of one embodiment of the disclosed subject matter can be discussed herein or shown in the drawings of one embodiment and not in other embodiments, it should be readily apparent that individual features of one embodiment can be combined with one or more features of another embodiment or features from a plurality of embodiments.
In addition to the specific embodiments claimed below, the disclosed subject matter is also directed to other embodiments having any other possible combination of the dependent features claimed below and those disclosed above. As such, the particular features presented in the dependent claims and disclosed above can be combined with each other in other possible combinations. Thus, the foregoing description of specific embodiments of the disclosed subject matter has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosed subject matter to those embodiments disclosed.
It will be apparent to those skilled in the art that various modifications and variations can be made in the method and system of the disclosed subject matter without departing from the spirit or scope of the disclosed subject matter. Thus, it is intended that the disclosed subject matter include modifications and variations that are within the scope of the appended claims and their equivalents.
This application claims priority to U.S. Provisional Application No. 62/931,687, filed Nov. 6, 2019, the full disclosure of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3378010 | Codling, et al. | Apr 1968 | A |
3874388 | King et al. | Apr 1975 | A |
4007743 | Blake | Feb 1977 | A |
4055861 | Carpentier et al. | Nov 1977 | A |
4327736 | Inoue | May 1982 | A |
4340091 | Skelton et al. | Jul 1982 | A |
4657024 | Coneys | Apr 1987 | A |
4693248 | Failla | Sep 1987 | A |
4716886 | Schulman et al. | Jan 1988 | A |
4795458 | Regan | Jan 1989 | A |
4809695 | Gwathmey et al. | Mar 1989 | A |
4930674 | Barak | Jun 1990 | A |
5002562 | Oberlander | Mar 1991 | A |
5069679 | Taheri | Dec 1991 | A |
5098440 | Hillstead | Mar 1992 | A |
5125895 | Buchbinder et al. | Jun 1992 | A |
5147370 | McNamara et al. | Sep 1992 | A |
5171259 | Inoue | Dec 1992 | A |
5222963 | Brinkerhoff et al. | Jun 1993 | A |
5271544 | Fox et al. | Dec 1993 | A |
5327905 | Avitall | Jul 1994 | A |
5330501 | Tovey et al. | Jul 1994 | A |
5334217 | Das | Aug 1994 | A |
5363861 | Edwards et al. | Nov 1994 | A |
5389077 | Melinyshyn et al. | Feb 1995 | A |
5403326 | Harrison et al. | Apr 1995 | A |
5425744 | Fagan et al. | Jun 1995 | A |
5450860 | O'Connor | Sep 1995 | A |
5452837 | Williamson, IV et al. | Sep 1995 | A |
5456400 | Shichman et al. | Oct 1995 | A |
5456674 | Bos et al. | Oct 1995 | A |
5478353 | Yoon | Dec 1995 | A |
5542949 | Yoon | Aug 1996 | A |
5562678 | Booker | Oct 1996 | A |
5601224 | Bishop et al. | Feb 1997 | A |
5601574 | Stefanchik et al. | Feb 1997 | A |
5607462 | Imran | Mar 1997 | A |
5607471 | Seguin et al. | Mar 1997 | A |
5609598 | Laufer et al. | Mar 1997 | A |
5611794 | Sauer et al. | Mar 1997 | A |
5636634 | Kordis et al. | Jun 1997 | A |
5695504 | Gifford, III et al. | Dec 1997 | A |
5713911 | Racenet et al. | Feb 1998 | A |
5716417 | Girard et al. | Feb 1998 | A |
5741297 | Simon | Apr 1998 | A |
5755778 | Kleshinski | May 1998 | A |
5782239 | Webster, Jr. | Jul 1998 | A |
5797960 | Stevens et al. | Aug 1998 | A |
5810847 | Laufer et al. | Sep 1998 | A |
5814097 | Sterman et al. | Sep 1998 | A |
5843178 | Vanney et al. | Dec 1998 | A |
5849019 | Yoon | Dec 1998 | A |
5855601 | Bessler et al. | Jan 1999 | A |
5976159 | Bolduc et al. | Nov 1999 | A |
6015417 | Reynolds, Jr. | Jan 2000 | A |
6048351 | Gordon et al. | Apr 2000 | A |
6079414 | Roth | Jun 2000 | A |
6117144 | Nobles et al. | Sep 2000 | A |
6120496 | Whayne et al. | Sep 2000 | A |
6149658 | Gardiner et al. | Nov 2000 | A |
6165183 | Kuehn et al. | Dec 2000 | A |
6182664 | Cosgrove | Feb 2001 | B1 |
6193734 | Bolduc et al. | Feb 2001 | B1 |
6200315 | Gaiser et al. | Mar 2001 | B1 |
6217528 | Koblish et al. | Apr 2001 | B1 |
6269819 | Oz et al. | Aug 2001 | B1 |
6290674 | Roue et al. | Sep 2001 | B1 |
6312447 | Grimes | Nov 2001 | B1 |
6332880 | Yang et al. | Dec 2001 | B1 |
6346074 | Roth | Feb 2002 | B1 |
6419696 | Ortiz et al. | Jul 2002 | B1 |
6461366 | Seguin | Oct 2002 | B1 |
6482224 | Michler et al. | Nov 2002 | B1 |
6496420 | Manning | Dec 2002 | B2 |
6544215 | Bencini et al. | Apr 2003 | B1 |
6551303 | Van Tassel et al. | Apr 2003 | B1 |
6575971 | Hauck et al. | Jun 2003 | B2 |
6599311 | Biggs et al. | Jul 2003 | B1 |
6626930 | Allen et al. | Sep 2003 | B1 |
6629534 | St. Goar et al. | Oct 2003 | B1 |
6669687 | Saadat | Dec 2003 | B1 |
6695866 | Kuehn et al. | Feb 2004 | B1 |
6719767 | Kimblad | Apr 2004 | B1 |
6752813 | Goldfarb et al. | Jun 2004 | B2 |
6770083 | Seguin | Aug 2004 | B2 |
6797002 | Spence et al. | Sep 2004 | B2 |
6837867 | Kortelling | Jan 2005 | B2 |
6855137 | Bon | Feb 2005 | B2 |
6875224 | Grimes | Apr 2005 | B2 |
6908481 | Cribier | Jun 2005 | B2 |
6926730 | Nguyen et al. | Aug 2005 | B1 |
7011669 | Kimblad | Mar 2006 | B2 |
7101395 | Tremulis et al. | Sep 2006 | B2 |
7112207 | Allen et al. | Sep 2006 | B2 |
7125421 | Tremulis et al. | Oct 2006 | B2 |
7226467 | Lucatero et al. | Jun 2007 | B2 |
7556632 | Zadno | Jul 2009 | B2 |
7563267 | Goldfarb et al. | Jul 2009 | B2 |
7569062 | Kuehn et al. | Aug 2009 | B1 |
7604646 | Goldfarb et al. | Oct 2009 | B2 |
7635329 | Goldfarb et al. | Dec 2009 | B2 |
7655015 | Goldfarb et al. | Feb 2010 | B2 |
7666204 | Thornton et al. | Feb 2010 | B2 |
7736388 | Goldfarb et al. | Jun 2010 | B2 |
7811296 | Goldfarb et al. | Oct 2010 | B2 |
7972323 | Bencini et al. | Jul 2011 | B1 |
7981139 | Martin et al. | Jul 2011 | B2 |
8057493 | Goldfarb et al. | Nov 2011 | B2 |
8062313 | Kimblad | Nov 2011 | B2 |
8118822 | Schaller et al. | Feb 2012 | B2 |
8216230 | Hauck et al. | Jul 2012 | B2 |
8216256 | Raschdorf, Jr. et al. | Jul 2012 | B2 |
8303608 | Goldfarb et al. | Nov 2012 | B2 |
8500761 | Goldfarb et al. | Aug 2013 | B2 |
8734505 | Goldfarb et al. | May 2014 | B2 |
8740920 | Goldfarb et al. | Jun 2014 | B2 |
8945177 | Dell et al. | Feb 2015 | B2 |
9011468 | Ketai et al. | Apr 2015 | B2 |
9510829 | Goldfarb et al. | Dec 2016 | B2 |
10076415 | Metchik et al. | Sep 2018 | B1 |
10105222 | Metchik et al. | Oct 2018 | B1 |
10123873 | Metchik et al. | Nov 2018 | B1 |
10130475 | Metchik et al. | Nov 2018 | B1 |
10136993 | Metchik et al. | Nov 2018 | B1 |
10159570 | Metchik et al. | Dec 2018 | B1 |
10231837 | Metchik et al. | Mar 2019 | B1 |
10238493 | Metchik et al. | Mar 2019 | B1 |
10245144 | Metchik et al. | Apr 2019 | B1 |
D847983 | Ho et al. | May 2019 | S |
10314586 | Greenberg et al. | Jun 2019 | B2 |
10413408 | Krone et al. | Sep 2019 | B2 |
10507109 | Metchik et al. | Dec 2019 | B2 |
10517726 | Chau et al. | Dec 2019 | B2 |
10524792 | Hernandez et al. | Jan 2020 | B2 |
10595997 | Metchik et al. | Mar 2020 | B2 |
10646342 | Marr et al. | May 2020 | B1 |
10779837 | Lee et al. | Sep 2020 | B2 |
D902403 | Marsot et al. | Nov 2020 | S |
10856988 | McNiven et al. | Dec 2020 | B2 |
20020013571 | Goldfarb et al. | Jan 2002 | A1 |
20020183787 | Wahr et al. | Dec 2002 | A1 |
20030069593 | Tremulis et al. | Apr 2003 | A1 |
20030167071 | Martin et al. | Sep 2003 | A1 |
20040034365 | Lentz et al. | Feb 2004 | A1 |
20040044350 | Martin et al. | Mar 2004 | A1 |
20050267493 | Schreck et al. | Dec 2005 | A1 |
20070038293 | Goar St. et al. | Feb 2007 | A1 |
20070239105 | Weitzner | Oct 2007 | A1 |
20100160825 | Parihar et al. | Jun 2010 | A1 |
20170042546 | Goldfarb et al. | Feb 2017 | A1 |
20170049455 | Seguin | Feb 2017 | A1 |
20170100201 | Ho | Apr 2017 | A1 |
20170100250 | Marsot | Apr 2017 | A1 |
20170239048 | Goldfarb et al. | Aug 2017 | A1 |
20170265994 | Krone | Sep 2017 | A1 |
20180021133 | Barbarino | Jan 2018 | A1 |
20180036119 | Wei et al. | Feb 2018 | A1 |
20180092661 | Prabhu | Apr 2018 | A1 |
20180146964 | Garcia et al. | May 2018 | A1 |
20180235657 | Abunassar | Aug 2018 | A1 |
20180242976 | Kizuka | Aug 2018 | A1 |
20180243086 | Barbarino et al. | Aug 2018 | A1 |
20180325671 | Abunassar et al. | Nov 2018 | A1 |
20180344460 | Wei | Dec 2018 | A1 |
20180353181 | Wei | Dec 2018 | A1 |
20180360457 | Ellis et al. | Dec 2018 | A1 |
20190053803 | Ketai et al. | Feb 2019 | A1 |
20190125536 | Prabhu et al. | May 2019 | A1 |
20190151041 | Ho et al. | May 2019 | A1 |
20190151089 | Wei | May 2019 | A1 |
20190159899 | Marsot et al. | May 2019 | A1 |
20190167197 | Abunassar et al. | Jun 2019 | A1 |
20190183571 | De Marchena | Jun 2019 | A1 |
20190209293 | Metchik et al. | Jul 2019 | A1 |
20190247187 | Kizuka | Aug 2019 | A1 |
20190274831 | Prabhu | Sep 2019 | A1 |
20190321597 | Van Hoven et al. | Oct 2019 | A1 |
20190343630 | Kizuka | Nov 2019 | A1 |
20190350702 | Hernandez | Nov 2019 | A1 |
20190350710 | Ketai et al. | Nov 2019 | A1 |
20190365536 | Prabhu | Dec 2019 | A1 |
20200000473 | Dell et al. | Jan 2020 | A1 |
20200060687 | Hernández et al. | Feb 2020 | A1 |
20200078173 | McNiven et al. | Mar 2020 | A1 |
20200113678 | McCann et al. | Apr 2020 | A1 |
20200121460 | Dale et al. | Apr 2020 | A1 |
20200121894 | Prabhu et al. | Apr 2020 | A1 |
20200187942 | Wei | Jun 2020 | A1 |
20200205829 | Wei | Jul 2020 | A1 |
20200245998 | Basude et al. | Aug 2020 | A1 |
20200261107 | Cohen | Aug 2020 | A1 |
20200281591 | Krone et al. | Sep 2020 | A1 |
20200323528 | Khairkhahan | Oct 2020 | A1 |
20200323549 | Goldfarb et al. | Oct 2020 | A1 |
20200323634 | Von Oepen et al. | Oct 2020 | A1 |
20200360018 | Dell et al. | Nov 2020 | A1 |
20200367871 | Van Hoven et al. | Nov 2020 | A1 |
20200405485 | Rohl | Dec 2020 | A1 |
Number | Date | Country |
---|---|---|
2 296 317 | Jan 2009 | CA |
0 558 031 | Sep 1993 | EP |
1 383 448 | Jun 2008 | EP |
2 768 324 | Mar 1999 | FR |
2 768 325 | Nov 1999 | FR |
WO 9101689 | Feb 1991 | WO |
WO 9212690 | Aug 1992 | WO |
WO 94018893 | Sep 1994 | WO |
WO 9632882 | Oct 1996 | WO |
WO 9727807 | Aug 1997 | WO |
WO 9807375 | Feb 1998 | WO |
WO 9907354 | Feb 1999 | WO |
WO 9913777 | Mar 1999 | WO |
WO 9915223 | Apr 1999 | WO |
WO 0003759 | Jan 2000 | WO |
WO 0060995 | Oct 2000 | WO |
WO 0128432 | Apr 2001 | WO |
WO 03020179 | Mar 2003 | WO |
WO 03049619 | Jun 2003 | WO |
WO 2015057289 | Apr 2015 | WO |
WO 2016178722 | Nov 2016 | WO |
WO 2018093663 | May 2018 | WO |
Entry |
---|
International Search Report mailed Feb. 18, 2021 in International Application No. PCT/US2020/059013. |
Number | Date | Country | |
---|---|---|---|
20210128305 A1 | May 2021 | US |
Number | Date | Country | |
---|---|---|---|
62931687 | Nov 2019 | US |