Stabilizer wheel assembly and methods of use

Information

  • Patent Grant
  • 10569794
  • Patent Number
    10,569,794
  • Date Filed
    Thursday, September 20, 2018
    6 years ago
  • Date Issued
    Tuesday, February 25, 2020
    4 years ago
Abstract
Included is a stabilizer wheel assembly that may assist in stabilizing a medical device during a medical procedure. A medical device may comprise a body; and a plurality of stabilizer wheel assemblies coupled to the body, wherein the stabilizer wheel assemblies each comprise a motor assembly and a stabilization leg, wherein the motor assembly is configured to drive the stabilization leg onto a contact surface to stabilize the body.
Description
FIELD OF THE INVENTION

Embodiments are directed to a stabilizer wheel assembly and, more particularly, a stabilizer wheel assembly that may assist in stabilizing a medical device during a medical procedure.


BACKGROUND

Various medical devices may need to be stabilized before a medical procedure. However, most flooring may not be flat throughout the entire surface area. Often there may be high and low areas within flooring that may prevent a medical device from remaining stable. A stabilized medical device may be essential for many medical procedures. Even the slightest movement of the medical device may lead to catastrophic harm of a patient. Conventionally, medical personnel may place stops and/or wedges to help stabilize the medical device. This manual process, even if done correctly, may allow movement of the medical device during a medical procedure. The success of a medical procedure may largely depend on the stability of the medical device.


Consequently, there is a need for a stabilizer wheel assembly that may be used to stabilize a medical device. The ability to perform a medical procedure on a patient with a stable device may greatly diminish the possibility of harming a patient during the medical procedure. The application of a stabilizer wheel assembly and the techniques used with the stabilizer wheel assembly may enhance the overall medical procedure and the results of the procedure.


SUMMARY

An embodiment may include a medical device, wherein the medical device may comprise a body; and a plurality of stabilizer wheel assemblies coupled to the body, wherein the stabilizer wheel assemblies each comprise a motor assembly and a stabilization leg, wherein the motor assembly is configured to drive the stabilization leg onto a contact surface to stabilize the body.


Another embodiment may include a method of stabilizing a medical device, wherein the method may comprise positioning the medical device for a medical procedure; activating a plurality of stabilizer wheel assemblies of the medical device to lower a stabilization leg from each of the stabilizer wheel assemblies; and driving the stabilization leg of each of the stabilizer wheel assemblies onto a contact surface.





BRIEF DESCRIPTION OF THE DRAWINGS

For a detailed description of the preferred embodiments of the invention, reference will now be made to the accompanying drawings in which:



FIG. 1 illustrates an embodiment of a stabilizer wheel assembly;



FIG. 2 illustrates a cutaway view of an embodiment of a stabilizer wheel assembly;



FIG. 3 illustrates an embodiment of a motor and a stabilizing leg assembly;



FIG. 4 illustrates an exploded view of an embodiment of a stabilizer wheel assembly;



FIG. 5 illustrates an embodiment of a computer infrastructure; and



FIG. 6 illustrates and embodiment of a medical robot system.





DETAILED DESCRIPTION

Embodiments relate generally to a stabilizer wheel assembly for use with medical devices. More particularly, embodiments relate to a motor assembly and stabilizing leg assembly mounted to a caster, which may be used to stabilize medical devices. A stabilizer wheel assembly may comprise a caster, a stem, a motor assembly, a bumper, and a stabilizing leg assembly. In embodiments, a medical device may have a plurality of stabilizer wheel assemblies. The stabilizer wheel assemblies may allow personnel to maneuver medical devices to a medical procedure with ease. The medical devices may then be positioned to help facilitate the medical procedure. In many cases, the floor upon which the medical devices may be disposed may be uneven. This may lead to sudden movement of medical devices during a medical procedure. The stabilizer wheel assembly may be used to stabilize medical devices and prevent sudden movements. In embodiments a stabilizing leg assembly and motor assembly may be used to drive a stabilization leg onto a contact surface. The stabilization leg may stabilize the medical device and help prevent sudden movements of the medical device.



FIG. 1 illustrates an embodiment of a stabilizer wheel assembly 2. Stabilizer wheel assembly 2 may comprise a caster 4, a stem 6, a motor assembly 8, attachment means 20, and a bumper 18. Caster 4 may be a structure upon which the rest of stabilizer wheel assembly 2 may be disposed. In embodiments, caster 4 may comprise a single, double, and/or compound wheels. Caster 4 may be any type of rigid, swivel, industrial, and/or braking and locking wheels. Caster 4 may comprise any material suitable for supporting and facilitating movement of a medical device. Suitable material may be, but is not limited to, rubber, plastic, nylon, aluminum, stainless steel, and/or any combination thereof. Additionally, caster 4 may be of any suitable diameter and width. A suitable diameter may be about one inch to about six inches, about two inches to about four inches, or about three inches to about six inches. A suitable width may be about a quarter inch to about two inches, about half an inch to about an inch, or about an inch to about two inches. In embodiments, caster 4 may rotate three hundred and sixty degrees around stem 6. Stem 6 may provide an additional structure which other components of stabilizer wheel assembly 2 may be disposed.


As illustrated in FIG. 1, stem 6 may be a structure in which caster 4, motor assembly 8, and bumper 18 are disposed. In embodiments, stem 6 may be a hollow tube with at least one flanged surface 7, best illustrated in FIG. 2. Referring to FIG. 1, caster 4 may attach to stem 6 through a tapered roller bearing and a coaxial roller bearing. A retaining ring captures caster 4 and prevents the caster housing from falling off the stem. Additionally, caster 4 may be disposed on stem 6 at any suitable location. In embodiments, caster 4 may be disposed about an edge and/or about the bottom of stem 6. Stem 6 may further house stabilizing leg assembly 22, as disclosed below. In embodiments, stem 6 may be made of any suitable material in which to support a medical device. Suitable material may be, but is not limited to, rubber, plastic, nylon, aluminum, stainless steel, and/or any combination thereof. Stem 6 may be any suitable length to support stabilizer wheel assembly 2. A suitable length may be about one inch to about six inches, about two inches to about four inches, or about three inches to about five inches. Additionally, stem 6 may have any suitable inside diameter in which to dispose stabilizing leg assembly 22. A suitable diameter may be about half an inch to about two inches, about three quarters of an inch to about an inch and a half, or about one inch to about two inches. Stabilizing leg assembly 22 may be powered by motor assembly 8. In embodiments, motor assembly 8 may be disposed upon stem 6.


Referring to FIG. 3, motor assembly 8 may be disposed about the top of stem 6. Additionally, motor assembly 8 may be disposed upon stem 6 at any suitable location. In embodiments, motor assembly may be disposed about an edge and/or along the bottom of stem 6. Motor assembly 8 may attach to stem 6 by any suitable means. Suitable means may be, but are not limited to, nuts and bolts, screws, adhesive, and/or any combination thereof. As illustrated in FIGS. 1-3, motor assembly 8 may comprise a motor 10, a motor cover 12, a motor cap 14, and a motor bracket 16. Motor 10 may be a structure upon which motor cover 12, motor cap 14, and motor bracket 16 may be disposed. Additionally, motor 10 may attach about the top and/or about and edge of stem 6. In embodiments, motor 10 may be any type of suitable motor 10. A suitable motor 10 may be, but is not limited to, a permanent magnet stepper, a hybrid synchronous stepper, a variable reluctance stepper, a lavet type stepping motor, a brushed servo motor, and/or a brushless servo motor. Additionally, motor 10 may comprise a unipolar or bipolar stepper motor. In embodiments, motor 10 may attach to a motor bracket 16. Attachment means 20, as illustrated in FIGS. 1-3, may attach motor 10, motor bracket 16, and motor assembly 8 to stem 6. Attachment means 20 may be, but are not limited to, nuts and bolts, screws, press fittings, adhesive, and/or any combination thereof. In embodiments, attachment means 20 may further connect motor cover 12 to stem 6. There may be a plurality of attachment means 20 disposed about the top of stem 6.


Motor bracket 16, as illustrated in FIGS. 2 and 3, may be used to stabilize motor 10 and may protect motor 10 from outside forces. In embodiments, motor bracket 16 may comprise any suitable material to firmly hold and protect motor 10. Suitable material may be, but is not limited to, rubber, plastic, nylon, aluminum, stainless steel, and/or any combination thereof. Additionally, best illustrated in FIG. 3, motor bracket 16 may be used as an attachment point for communication circuitry, which may allow motor 10 to communicate with robot system 42 (discussed below on FIG. 6). In embodiments, motor 10 and motor bracket 16 may attach to stem 6 through attachment means 20. Motor bracket 16 may be disposed about any suitable location of motor 10. Specifically, motor bracket 16 may be disposed below, above, or about a side of motor 10. In embodiments, motor bracket 16 may be disposed between stem 6 and motor 10, which may secure motor bracket 16 in place. Motor bracket 16 may attach to stem 6 and/or motor 10 by any suitable means. Suitable means may be, but are not limited to, nuts and bolts, screws, adhesive, press fittings, and/or any combination thereof. In embodiments, motor bracket 16 and motor 10 may be enclosed by motor cover 12 and motor cap 14.


As illustrated in FIGS. 1 and 2, motor cover 12 and motor cap 14 may protect motor 10 from foreign objects and outside forces. Both motor cover 12 and motor cap 14 may comprise any suitable material which may protect motor 10 from foreign objects and outside forces. Suitable material may be, but is not limited to, rubber, plastic, nylon, aluminum, stainless steel, and/or any combination thereof. In embodiments, motor cap 14 may attach to motor cover 12 by any suitable means. Suitable means may be, but are not limited to, snap fittings, threaded fitting, adhesive, nuts and bolts, screws, O-rings, and/or any combination thereof. Motor cover 12 may be any suitable shape. A suitable shape may be, but is not limited to, circular, triangular, square, rectangular, polyhedral, and/or any combination thereof. Best illustrated in FIG. 4, motor cover 12 may be disposed at the top of motor 10. Additionally, motor cover 10 may be disposed below or at about any edge of motor 10. In embodiments, motor cover 10 may partially enclose components of motor assembly 8. Motor cap 14 may be disposed on top of motor cover 12 and/or motor 10, which may partially enclose components of motor assembly 8. In embodiments, motor cap 14 may attach to motor cover 12 or motor 10 by any suitable means. Suitable means may be, but are not limited to, nuts and bolts, screws, adhesive, press fitting, O-ring, and/or any combination thereof. Motor cover 12 may be any suitable shape. A suitable shape may be, but is not limited to, circular, triangular, square, rectangular, polyhedral, and/or any combination thereof. Motor cover 12 and motor cap 14 may protect motor assembly 8. Stabilizer wheel assembly may further be protected from outside forces by bumper 18.


Bumper 18, as illustrated in FIGS. 1 and 2, may protect stem 6 from foreign objects, outside forces, and may prevent cables and/or other cords from going under stem 6. Bumper 18 may be made of any suitable material to absorb impacts from foreign objects and prevent objects from sliding under stem 6. Suitable material may be, but is not limited to, rubber, plastic, nylon, polyurethane, and/or any combination thereof. In embodiments bumper 18 may snap fit into the caster or by any suitable means. Suitable means may be, but are not limited to, snap fittings, adhesive, nuts and bolts, screws, and/or any combination thereof. Bumper 18 may be any suitable shape. A suitable shape may be, but is not limited to, circular, triangular, square, rectangular, polyhedral, and/or any combination thereof. In embodiments, bumper 18 may be disposed opposite casters 4. Additionally, bumper 18 may be disposed about any edge and a plurality of bumpers 18 may be disposed along any number of edges of stem 6. Any item under stem 6 may prevent stabilizing leg assembly 22 from operating correctly, which may prevent stabilization of a medical device. Removing objects from stem 6 may allow for stabilizing leg assembly 22 to firmly stabilize a medical device. Bumper 18 may be any suitable length in which to prevent objects from moving below stem 6. In embodiments, best illustrated in FIG. 1, bumper 18 may almost touch the same contact surface as caster 4. This additional length may facilitate in pushing and/or removing cables and other objects from the path of caster 4 and stem 6. Removing objects from beneath stabilizing leg assembly 22 may allow properly stabilize medical robot system 42, discussed below.


As illustrated in FIGS. 2 and 3, stabilizing leg assembly 22 may be used to stabilize a medical device. Stabilizing leg assembly 22 may comprise a lead screw 24, a nut 26, a stabilizing leg 28, a foot 30, a channel 32, and a set screw 34. To prevent failure of stabilizing leg assembly 22 under weight of a medical device, stabilizing leg assembly may be made of any suitable material to support the weight of the medical device. Suitable material may be, but is not limited to, rubber, plastic, nylon, aluminum, stainless steel, and/or any combination thereof. In embodiments, lead screw 24 may be directly disposed within motor 10. Lead screw 24 may be disposed below and/or within motor 10. Lead screw 24 may attach to motor 10 by any suitable means. Suitable means may be, but are not limited to, nuts and bolts, screws, adhesive, press fittings, and/or any combination thereof. In embodiments, lead screw 24 may operate as a transmission shaft, which may rotate in any direction, distributing rotational force to an attached device. Additionally, lead screw 24 may rotate as fast and/or as slow as motor 10 may allow. Rotation of lead screw 24 may remove stabilizing leg 28 from a contact surface and may dispose stabilizing leg 28 onto the contact surface. In embodiments, lead screw 24 may comprise low pitch threading. Low pitch threading may require more revolutions of lead screw 24 in order to move stabilizing leg 28 up and/or down. Low pitch threading as well as high friction or inefficient force transmission may prevent lead screw 24 from moving and/or rotating under the weight of a medical device, which may prevent stabilizing leg 28 from collapsing into stabilizer wheel assembly 2. The rotational force, for creating up and down movement of stabilizing leg 28, may be transferred from lead screw 24 to stabilizing leg 28 through nut 26. Nut 26 may be disposed upon lead screw 24 and stabilizing leg 28.


As illustrated in FIGS. 2 and 3, nut 26 may attach to stabilizing leg 28 by any suitable means. Suitable means may be, but are not limited to, weld, adhesive, forming, nuts and bolts, screws, and/or any combination thereof. Nut 26 may be disposed at an end of stabilizing leg 28 opposite foot 30 and closest to motor 10. In embodiments, the rotation of lead screw 24 may move nut 26, and in turn stabilizing leg 28, up and down. As nut 26 and stabilizing leg 28 traverse lead screw 24, lead screw 24 may enter into a pocket 36 of stabilizing leg 28, best illustrated in FIG. 2. Pocket 36 may allow stabilizing leg 28 and nut 26 to traverse lead screw 24 without binding and/or collapsing lead screw 24. In embodiments, pocket 36 may be a hollow section within stabilizing leg 28. Pocket 36 may traverse the length of stabilizing leg 28 and/or be located at an end of stabilizing leg 28 opposite foot 30. Pocket 36 may allow for stabilizing leg 28 to rotate, be risen, and/or lowered without harming stabilizing leg 28. In embodiments, to prevent stabilizing leg 28 from rotating with lead screw 24, a channel 32 and set screw 34 may be used to prevent rotational motion of stabilizing leg 28.


Best illustrated in FIGS. 2 and 3, channel 32 may be a vertical cut-out along stabilizing leg 28. Channel 32 may be disposed along any edge of stabilizing leg 28. Additionally, channel 32 may be disposed on an edge of stabilizing leg 28 closest to bumper 18 and opposite caster 4. In embodiments, channel 32 may run the length of movement allowed by stabilizer motor 10. In additional embodiments, channel 32 may run the entire length of stabilizing leg 28. Referring to FIGS. 2 and 4, a set screw 34 may protrude through stem 6 and into channel 32. In embodiments, set screw 34 may be disposed along any edge of stem 6. Specifically, set screw 34 may be disposed at an edge opposite caster 4 and closest to bumper 18. Set screw 34 may attach to stem 6 by any suitable means, suitable means may be, but are not limited to, a snap fitting, threaded fitting, nuts and bolts, and/or any combination thereof. Protruding into channel 32 from stem 6, set screw 34 may prevent the rotational movement, in any direction, of stabilizing leg 28. This may allow stabilizing leg 28 to move up and/or down and not rotate with lead screw 24. In embodiments, stabilizing leg 28 may contact any surface. A foot 30 may act as a buffer between stabilizing leg 28 and the contact surface.


Foot 30, as illustrated in FIGS. 2 and 3 may act as a medium between stabilizing leg 28 and a contact surface. Foot 30 may comprise any suitable material in which to prevent damage and movement of stabilizing leg 28. Suitable material may be, but is not limited to, rubber, plastic, nylon, polyurethane, and/or any combination thereof. In embodiments, foot 30 may be any suitable shape. A suitable shape may be, but is not limited to circular, triangular, oval, square, rectangular, polyhedral, and/or any combination thereof. Additionally, foot 30 may attach to stabilizing leg 28 by any suitable means. Suitable means may be, but are not limited to, nuts and bolts, screws, adhesive, press fitting, and/or any combination thereof. Foot 30 may be disposed at an end of stabilizing leg 28 opposite nut 26 and farthest away from motor 10. In embodiments, foot 30 may increase the friction between stabilizing leg 28 and a contact surface, which may further help prevent movement of stabilizing leg 28. In embodiments, the force exerted upon a contact surface by stabilizing leg 28 and foot 30 may be controlled by medical robot system 42.



FIG. 5 illustrates a schematic of software architecture 50 which may be used within medical robot system 42 to communicate with stabilizer wheel assembly 2. Software architecture 50 may be used to lower and raise stabilizing leg 28. Additionally, software architecture 50 may allow an operator to manipulate medical robot system 42 based upon commands given from an operator. In examples, operator commands may comprise Picture Archival and Communication Systems (PACS) 52, USB Devices 90, and commands from a wireless device 56. These operator commands may be received and transferred throughout medical robot system 42 by a computer processor 58. Computer processor 58 may be able to receive all commands and manipulate medical robot system 42 accordingly. In examples, computer processor 58 may be able to control and identify the location of individual parts that comprise medical robot system 42. Communicating with tool assembly 46 and display assembly 48, discussed below, computer processor 58 may be able to assist medical personnel during a medical procedure. Additionally, computer processor 58 may be able to use commands from display assembly 48 to alter the positions of tool assembly 46. Computer processor 58 may use firmware 60 to issue commands and process signals. Firmware 60 may comprise commands that are hardwired to medical robot system 42. For example, computer processor 58 may communicate with stabilizer wheel assembly 2, and platform interface 62. Platform interface 62 may be a series of hardwired button commands that directly control medical robot system 42. Button commands are not limited to but may comprise functions that may move lower and rise stabilization legs 28. Additionally, computer processor 92 may process and distribute all operator commends from display assembly 48 to lower and rise stabilization legs 28.


To stabilize a medical device, computer processor 58 disposed within the medical robot system 42 may be used to communicate with stabilizer wheel assembly 2 to exert a predetermined amount of force through stabilizing leg 28 to a contact surface. Motor 10 may use firmware 60 to interface with computer processor 58 disposed within medical robot system 42. Suitable firmware 60 may be, but is not limited to I2C and SPI. In embodiments, disposing stabilizing leg 28 onto a contact surface may be broken down into two states, a ground state and a lifting state. These states may help stabilize the medical device in a controlled manner.


In embodiments, the ground state may dispose stabilizing leg 28 and foot 30 onto a contact surface without applying force upon the contact surface. This may be accomplished by driving motor 10 at a low current, about 0.01 Amps to about 1.2 Amps, and monitoring for two encoder-based stop conditions. The first stop condition may be measuring instantaneous speed along an encoder frequency. A peak width of an encoder channel may be chosen as a proxy for frequency as the base line. With low torque, a certain empirically determined peak width may be encountered while stabilizing leg 28 may be moving with no resistance. Resistance may produce a consecutive number of peak widths that may be higher than the original base line, which may satisfy the first stop condition. The second stop condition may comprise of reading a moving average of peak counts at 100 ms, which may simply be a measurement of displacement over time. If the value falls below a quarter percent of the empirically determined “no load” average displacement, the second stop condition is satisfied. Both conditions may be satisfied simultaneously and/or separately, but both conditions must be met to complete the ground state. Satisfying the ground state, the second lift state may then begin. During the lift state, a current of about 2.5 Amps to about 4 Amps may be applied to the motor. The second lift state may only measure the encoder count of lead screw 24 revolutions. Meeting a predetermined count or a timeout condition, the second lift state may end. The second lifting state may be based on a prescribed displacement of stabilizing leg 28 and not force and/or torque. Additionally, the onboard computer, disposed on the medical device, may use states to retract stabilizing leg 28 from a contact surface. The system just drives the stabilizers up into the caster. In embodiments, stabilizing leg 28 may move manually upon activation of a manual override switch 38.


As illustrated in FIGS. 2 and 3, a manual override switch 38 may be disposed about the top and/or about an edge of motor 10. In embodiments, override switch 38 may attach to lead screw 24. In the event medical robot system 42 loses power, medical personnel may need to retract stabilizing leg 28 and foot 30 from the contact surface. A loss of power may prevent motor 10 from retracting stabilizing leg 28. Manual override switch 38 may be manually rotated to retract and/or lower stabilizing leg 28. In embodiments, manual override switch 38 may be made of any suitable material to facilitate rotation of lead screw 24. Suitable material may be, but is not limited to, rubber, plastic, nylon, aluminum, stainless steel, and/or any combination thereof. Manual override switch 38 may be any suitable shape. A suitable shape may be, but is not limited to circular, oval, square, triangular, rectangular, polyhedral, and/or any combination thereof Rotation of manual override switch 38 may rotate lead screw 24 and in turn move stabilizing leg 28 up and down. This may allow medical personnel to move the medical device without power, even when stabilizing leg 28 is activated. Additionally, manual override switch 38 may be rotated in an opposite direction, which may lower stabilizing leg 28 on to a contact surface. In embodiments, manual override switch 38 may be accessed by removing motor cap 14. Motor assembly 2 may be disposed at any suitable location within medical robot device 42, which may allow access to manual override switch 38.


As illustrated in FIG. 4, a medical device attachment 40 may be attach to stabilizer wheel assembly 2 between stem 6 and motor assembly 8 through attachment devices 20. Medical device attachment 40 may transfer the weight of a medical device to stabilizer wheel assembly 2. In embodiments, medical device attachment 40 may also help protect stabilizer wheel assembly 2 from foreign objects and outside forces. Medical device attachment 40 may be made of any suitable material to structurally support the medical device and protect stabilizer wheel assembly 2 form foreign objects and outside forces. Suitable material may be, but is not limited to, rubber, plastic, nylon, aluminum, stainless steel, and/or any combination thereof. In embodiments, medical device attachment 40 may have any suitable geometry in which to properly attach to a medical device. A suitable geometry may be circular, square, triangular, polyhedral, oval, and/or any combination thereof. Medical device attachment 40 may be used to attach any number of stabilizer wheel assemblies to medical robot system 42.


Referring now to FIG. 6, a medical robot system 42 is illustrated in accordance with embodiments of the present invention. In the illustrated embodiment, the medical robot system comprises body 44, tool assembly 46, display assembly 48, and base 50. In embodiments, base 50 may provide a structure upon which stabilizer wheel assembly 2 and body 44 may be disposed. Stabilizer wheel assembly 2 may attach to base 50 through medical device attachments 40. Medical device attachments 40 may connect to base 50 by any suitable means. Suitable means may be, but are not limited to, nuts and bolts, screws, adhesive, press fittings, and/or any combination thereof. Additionally, there may be any suitable number of stabilizer wheel assemblies 2 to support and provide movement to base 50. In the illustrated, four stabilizer wheel assemblies 2 are shown arranged around the periphery of base. In embodiments, body 44 may be disposed on top of base 50. Body 44 may provide structure to medical robot system 42. Additionally, tool assembly 46 and display assembly 48 may be disposed at any suitable location on body 44. Tool assembly 46 may be disposed on top, about an edge, or about a side of body 44. Specifically, tool assembly 46 maybe disposed about the center of the top of base 44. Without limitation, tool assembly 46 may be configured to hold a surgical tool in a medical procedure. In embodiments, display assembly 48 may be disposed on top, about an edge, or about a side of body 44 or tool assembly 46. Specifically, display assembly 48 maybe disposed on top of tool assembly 46. In embodiments, body 4 may further house electronics, not illustrated, which may control medical robot system 42. It should be understood that medical robot system 42 illustrated on FIG. 6 is merely illustrative and the stabilizer wheel assemblies 2 may be used for stabilization of any of a variety of different medical robot systems.


To perform a medical procedure, medical robot system 42 may be moved from storage to a medical procedure room using stabilizer wheel assemblies 2. Stabilizer wheel assemblies 2 may allow medical personnel to maneuver medical robot system 42 around corners, through doors, through hallways, and elevators. Additionally, stabilizer wheel assemblies 2 may move medical robot system 42 in any direction and may allow for medical robot system 42 to rotate. After being positioned for a medical procedure, stabilizer wheel assemblies 2 may be activated using on board computers and circuitry housed in body 44. Display assembly 48 may provide an interface in which medical personnel may activate and control stabilizer wheel assemblies 2. Stabilizing leg 28 may be disposed to contact the surface below stabilizer wheel assemblies 2. As described above, a designated amount of force may be applied through stabilizing leg 28 to the contact surface. Applying an equal amount of force at each stabilizer wheel assembly 2 may create a stable platform, which may prevent medical robot system 42 from moving during a medical procedure. When medical robot system 42 may need to be moved after being activated, medical personnel may retract stabilizing leg 28 from the contact surface using display assembly 48 and/or manual override switch 38. Medical robot system 42 may then be maneuvered to any location for storage and/or further use.


Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations may be made herein without departing from the spirit and scope of the invention as defined by the appended claims.

Claims
  • 1. A method of stabilizing a medical robot system comprising the steps of: providing a medical robot system comprising: a body;a computer processor disposed within the body;a tool assembly attached to the body;a display assembly attached to the body;a base attached to the body; andat least one stabilizer wheel assembly disposed on the base,wherein each stabilizer wheel assembly comprises a motor and a stabilizer leg, andwherein each stabilizer wheel assembly comprises a foot attached to an end of the corresponding stabilization leg opposite a nut,receiving one or more commands from a platform interface to move each stabilizer leg by controlling each motorwherein each stabilizer wheel assembly further comprises a bumper.
  • 2. The method of claim 1, wherein the steps further include driving each stabilization leg into a contact surface until each stabilization leg exerts a predetermined force on the contact surface.
  • 3. The method of claim 2, wherein each stabilizer wheel assembly further comprises a caster.
  • 4. The method of claim 3, wherein each stabilizer wheel assembly further comprises a stem, wherein the corresponding caster rotates three hundred and sixty degrees around each stem.
  • 5. The method of claim 4, wherein each motor is connected to a top of the corresponding stem.
  • 6. The method of claim 5, wherein the steps further include extending each stabilization leg through the corresponding caster to the contact surface.
  • 7. The method of claim 1, wherein each stabilizer wheel assembly further comprises a motor cover that encloses each motor, a motor cap disposed on top of each motor, and a motor bracket that supports each motor.
  • 8. The method of claim 1, wherein each foot increases the friction between the corresponding stabilization leg and a contact surface.
  • 9. The method of claim 8, wherein each stabilizer wheel assembly further comprises a caster and a set screw is disposed on a side of the caster.
  • 10. The method of claim 9, wherein the steps further include securing each stabilizer wheel assembly into a corresponding channel to prevent the corresponding stabilization leg from rotating.
  • 11. A method of stabilizing a medical robot comprising the steps of: providing the medical robot comprising: a body;a stabilizer wheel assembly coupled to the body, wherein the stabilizer wheel assembly comprises a motor assembly and stabilization leg, wherein the motor assembly is configured to drive the stabilization leg onto a contact surface to stabilize the body; anda computer processor disposed within the body,wherein the stabilizer wheel assembly comprises a foot attached to an end of the corresponding stabilization leg opposite a nutreceiving one or more commands from a platform interface to move each stabilizer leg by controlling each motor wherein each stabilizer wheel assembly further comprises a bumper.
  • 12. The method of claim 11, wherein the steps further include driving the stabilization leg into the contact surface until the stabilization leg exerts a predetermined force on the contact surface.
  • 13. The method of claim 12, wherein the stabilizer wheel assembly further comprises a caster.
  • 14. The method of claim 13, wherein the stabilizer wheel assembly further comprises a stem, wherein the caster rotates three hundred and sixty degrees around the stem.
  • 15. The method of claim 14, wherein the motor assembly is connected to a top of the stem.
  • 16. The method of claim 15, further includes the step of extending the stabilization leg through the caster to the contact surface.
  • 17. The method of claim 11, wherein the motor assembly further comprises a motor, a motor cover that encloses each motor, a motor cap disposed on top of each motor, and a motor bracket that supports each motor.
  • 18. The method of claim 11, wherein the stabilizer wheel assembly comprises a foot attached to an end of the stabilization leg opposite a nut.
  • 19. A method of stabilizing a medical robot system comprising the steps of: providing a medical robot system comprising: a body;a computer processor disposed within the body;a tool assembly attached to the body;a display assembly attached to the body;a base attached to the body; andat least one stabilizer wheel assembly disposed on the base,wherein each stabilizer wheel assembly comprises a motor and a stabilizer leg, anreceiving one or more commands from a platform interface to move each stabilizer leg by controlling each motorwherein each stabilizer wheel assembly further comprises a bumper.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/681,838 filed on Aug. 21, 2017 which is a continuation of U.S. patent application Ser. No. 14/881,291, filed on Oct. 13, 2015 (published as U.S. Patent Publication No. 2017-0101118), the contents of which is hereby incorporated by reference in its entirety for all purposes.

US Referenced Citations (687)
Number Name Date Kind
4150293 Franke Apr 1979 A
5184601 Putman Feb 1993 A
5246010 Gazzara et al. Sep 1993 A
5354314 Hardy et al. Oct 1994 A
5397323 Taylor et al. Mar 1995 A
5598453 Baba et al. Jan 1997 A
5772594 Barrick Jun 1998 A
5791908 Gillio Aug 1998 A
5794639 Enbinder Aug 1998 A
5820559 Ng et al. Oct 1998 A
5825982 Wright et al. Oct 1998 A
5887121 Funda et al. Mar 1999 A
5911449 Daniele et al. Jun 1999 A
5951475 Gueziec et al. Sep 1999 A
5987960 Messner et al. Nov 1999 A
6012216 Esteves et al. Jan 2000 A
6031888 Ivan et al. Feb 2000 A
6033415 Mittelstadt et al. Mar 2000 A
6080181 Jensen et al. Jun 2000 A
6106511 Jensen Aug 2000 A
6122541 Cosman et al. Sep 2000 A
6144875 Schweikard et al. Nov 2000 A
6157853 Blume et al. Dec 2000 A
6167145 Foley et al. Dec 2000 A
6167292 Badano et al. Dec 2000 A
6201984 Funda et al. Mar 2001 B1
6203196 Meyer et al. Mar 2001 B1
6205411 DiGioia, III et al. Mar 2001 B1
6212419 Blume et al. Apr 2001 B1
6231565 Tovey et al. May 2001 B1
6236875 Bucholz et al. May 2001 B1
6246900 Cosman et al. Jun 2001 B1
6301495 Gueziec et al. Oct 2001 B1
6306126 Montezuma Oct 2001 B1
6312435 Wallace et al. Nov 2001 B1
6314311 Williams et al. Nov 2001 B1
6320929 Von Der Haar Nov 2001 B1
6322567 Mittelstadt et al. Nov 2001 B1
6325808 Bernard et al. Dec 2001 B1
6340363 Bolger et al. Jan 2002 B1
6377011 Ben-Ur Apr 2002 B1
6379302 Kessman et al. Apr 2002 B1
6402762 Hunter et al. Jun 2002 B2
6424885 Niemeyer et al. Jul 2002 B1
6447503 Wynne et al. Sep 2002 B1
6451027 Cooper et al. Sep 2002 B1
6477400 Barrick Nov 2002 B1
6484049 Seeley et al. Nov 2002 B1
6487267 Wolter Nov 2002 B1
6490467 Bucholz et al. Dec 2002 B1
6490475 Seeley et al. Dec 2002 B1
6499488 Hunter et al. Dec 2002 B1
6501981 Schweikard et al. Dec 2002 B1
6507751 Blume et al. Jan 2003 B2
6535756 Simon et al. Mar 2003 B1
6560354 Maurer, Jr. et al. May 2003 B1
6565554 Niemeyer May 2003 B1
6587750 Gerbi et al. Jul 2003 B2
6614453 Sun et al. Sep 2003 B1
6614871 Kobiki et al. Sep 2003 B1
6619840 Rasche et al. Sep 2003 B2
6636757 Jascob et al. Oct 2003 B1
6645196 Nixon et al. Nov 2003 B1
6666579 Jensen Dec 2003 B2
6669635 Kessman et al. Dec 2003 B2
6701173 Nowinski et al. Mar 2004 B2
6757068 Foxlin Jun 2004 B2
6782287 Grzeszczuk et al. Aug 2004 B2
6783524 Anderson et al. Aug 2004 B2
6786896 Madhani et al. Sep 2004 B1
6788018 Blumenkranz Sep 2004 B1
6804581 Wang et al. Oct 2004 B2
6823207 Jensen et al. Nov 2004 B1
6827351 Graziani et al. Dec 2004 B2
6837892 Shoham Jan 2005 B2
6839612 Sanchez et al. Jan 2005 B2
6856826 Seeley et al. Feb 2005 B2
6856827 Seeley et al. Feb 2005 B2
6879880 Nowlin et al. Apr 2005 B2
6892090 Verard et al. May 2005 B2
6920347 Simon et al. Jul 2005 B2
6922632 Foxlin Jul 2005 B2
6968224 Kessman et al. Nov 2005 B2
6978166 Foley et al. Dec 2005 B2
6988009 Grimm et al. Jan 2006 B2
6991627 Madhani et al. Jan 2006 B2
6996487 Jutras et al. Feb 2006 B2
6999852 Green Feb 2006 B2
7007699 Martinelli et al. Mar 2006 B2
7016457 Senzig et al. Mar 2006 B1
7043961 Pandey et al. May 2006 B2
7062006 Pelc et al. Jun 2006 B1
7063705 Young et al. Jun 2006 B2
7072707 Galloway, Jr. et al. Jul 2006 B2
7083615 Peterson et al. Aug 2006 B2
7097640 Wang et al. Aug 2006 B2
7099428 Clinthorne et al. Aug 2006 B2
7108421 Gregerson et al. Sep 2006 B2
7130676 Barrick Oct 2006 B2
7139418 Abovitz et al. Nov 2006 B2
7139601 Bucholz et al. Nov 2006 B2
7155316 Sutherland et al. Dec 2006 B2
7164968 Treat et al. Jan 2007 B2
7167738 Schweikard et al. Jan 2007 B2
7169141 Brock et al. Jan 2007 B2
7172627 Fiere et al. Feb 2007 B2
7194120 Wicker et al. Mar 2007 B2
7197107 Arai et al. Mar 2007 B2
7231014 Levy Jun 2007 B2
7231063 Naimark et al. Jun 2007 B2
7239940 Wang et al. Jul 2007 B2
7248914 Hastings et al. Jul 2007 B2
7301648 Foxlin Nov 2007 B2
7302288 Schellenberg Nov 2007 B1
7313430 Urquhart et al. Dec 2007 B2
7318805 Schweikard et al. Jan 2008 B2
7318827 Leitner et al. Jan 2008 B2
7319897 Leitner et al. Jan 2008 B2
7324623 Heuscher et al. Jan 2008 B2
7327865 Fu et al. Feb 2008 B2
7331967 Lee et al. Feb 2008 B2
7333642 Green Feb 2008 B2
7339341 Oleynikov et al. Mar 2008 B2
7366562 Dukesherer et al. Apr 2008 B2
7379790 Toth et al. May 2008 B2
7386365 Nixon Jun 2008 B2
7422592 Morley et al. Sep 2008 B2
7435216 Kwon et al. Oct 2008 B2
7440793 Chauhan et al. Oct 2008 B2
7460637 Clinthorne et al. Dec 2008 B2
7466303 Yi et al. Dec 2008 B2
7493153 Ahmed et al. Feb 2009 B2
7505617 Fu et al. Mar 2009 B2
7533892 Schena et al. May 2009 B2
7542791 Mire et al. Jun 2009 B2
7555331 Viswanathan Jun 2009 B2
7567834 Clayton et al. Jul 2009 B2
7594912 Cooper et al. Sep 2009 B2
7606613 Simon et al. Oct 2009 B2
7607440 Coste-Maniere et al. Oct 2009 B2
7623902 Pacheco Nov 2009 B2
7630752 Viswanathan Dec 2009 B2
7630753 Simon et al. Dec 2009 B2
7643862 Schoenefeld Jan 2010 B2
7660623 Hunter et al. Feb 2010 B2
7661881 Gregerson et al. Feb 2010 B2
7683331 Chang Mar 2010 B2
7683332 Chang Mar 2010 B2
7689320 Prisco et al. Mar 2010 B2
7691098 Wallace et al. Apr 2010 B2
7702379 Avinash et al. Apr 2010 B2
7702477 Tuemmler et al. Apr 2010 B2
7711083 Heigl et al. May 2010 B2
7711406 Kuhn et al. May 2010 B2
7720523 Omernick et al. May 2010 B2
7725253 Foxlin May 2010 B2
7726171 Langlotz et al. Jun 2010 B2
7742801 Neubauer et al. Jun 2010 B2
7751865 Jascob et al. Jul 2010 B2
7760849 Zhang Jul 2010 B2
7762825 Burbank et al. Jul 2010 B2
7763015 Cooper et al. Jul 2010 B2
7787699 Mahesh et al. Aug 2010 B2
7796728 Bergfjord Sep 2010 B2
7813838 Sommer Oct 2010 B2
7818044 Dukesherer et al. Oct 2010 B2
7819859 Prisco et al. Oct 2010 B2
7824401 Manzo et al. Nov 2010 B2
7831294 Viswanathan Nov 2010 B2
7834484 Sartor Nov 2010 B2
7835557 Kendrick et al. Nov 2010 B2
7835778 Foley et al. Nov 2010 B2
7835784 Mire et al. Nov 2010 B2
7840253 Tremblay et al. Nov 2010 B2
7840256 Lakin et al. Nov 2010 B2
7843158 Prisco Nov 2010 B2
7844320 Shahidi Nov 2010 B2
7853305 Simon et al. Dec 2010 B2
7853313 Thompson Dec 2010 B2
7865269 Prisco et al. Jan 2011 B2
D631966 Perloff et al. Feb 2011 S
7879045 Gielen et al. Feb 2011 B2
7881767 Strommer et al. Feb 2011 B2
7881770 Melkent et al. Feb 2011 B2
7886743 Cooper et al. Feb 2011 B2
RE42194 Foley et al. Mar 2011 E
RE42226 Foley et al. Mar 2011 E
7900524 Calloway et al. Mar 2011 B2
7907166 Lamprecht et al. Mar 2011 B2
7909122 Schena et al. Mar 2011 B2
7925653 Saptharishi Apr 2011 B2
7930065 Larkin et al. Apr 2011 B2
7935130 Williams May 2011 B2
7940999 Liao et al. May 2011 B2
7945012 Ye et al. May 2011 B2
7945021 Shapiro et al. May 2011 B2
7953470 Vetter et al. May 2011 B2
7954397 Choi et al. Jun 2011 B2
7971341 Dukesherer et al. Jul 2011 B2
7974674 Hauck et al. Jul 2011 B2
7974677 Mire et al. Jul 2011 B2
7974681 Wallace et al. Jul 2011 B2
7979157 Anvari Jul 2011 B2
7983733 Viswanathan Jul 2011 B2
7988215 Seibold Aug 2011 B2
7996110 Lipow et al. Aug 2011 B2
8004121 Sartor Aug 2011 B2
8004229 Nowlin et al. Aug 2011 B2
8010177 Csavoy et al. Aug 2011 B2
8019045 Kato Sep 2011 B2
8021310 Sanborn et al. Sep 2011 B2
8035685 Jensen Oct 2011 B2
8046054 Kim et al. Oct 2011 B2
8046057 Clarke Oct 2011 B2
8052688 Wolf, II Nov 2011 B2
8054184 Cline et al. Nov 2011 B2
8054752 Druke et al. Nov 2011 B2
8057397 Li et al. Nov 2011 B2
8057407 Martinelli et al. Nov 2011 B2
8062288 Cooper et al. Nov 2011 B2
8062375 Glerum et al. Nov 2011 B2
8066524 Burbank et al. Nov 2011 B2
8073335 Labonville et al. Dec 2011 B2
8079950 Stern et al. Dec 2011 B2
8086299 Adler et al. Dec 2011 B2
8092370 Roberts et al. Jan 2012 B2
8098914 Liao et al. Jan 2012 B2
8100950 St. Clair et al. Jan 2012 B2
8105320 Manzo Jan 2012 B2
8108025 Csavoy et al. Jan 2012 B2
8109877 Moctezuma De La Barrera et al. Feb 2012 B2
8112292 Simon Feb 2012 B2
8116430 Shapiro et al. Feb 2012 B1
8120301 Goldberg et al. Feb 2012 B2
8121249 Wang et al. Feb 2012 B2
8123675 Funda et al. Feb 2012 B2
8133229 Bonutti Mar 2012 B1
8142420 Schena Mar 2012 B2
8147494 Leitner et al. Apr 2012 B2
8150494 Simon et al. Apr 2012 B2
8150497 Gielen et al. Apr 2012 B2
8150498 Gielen et al. Apr 2012 B2
8165658 Waynik et al. Apr 2012 B2
8170313 Kendrick et al. May 2012 B2
8179073 Farritor et al. May 2012 B2
8182476 Julian et al. May 2012 B2
8184880 Zhao et al. May 2012 B2
8202278 Orban, III et al. Jun 2012 B2
8208708 Homan et al. Jun 2012 B2
8208988 Jensen Jun 2012 B2
8219177 Smith et al. Jul 2012 B2
8219178 Smith et al. Jul 2012 B2
8220468 Cooper et al. Jul 2012 B2
8224024 Foxlin et al. Jul 2012 B2
8224484 Swarup et al. Jul 2012 B2
8225798 Baldwin et al. Jul 2012 B2
8228368 Zhao et al. Jul 2012 B2
8231610 Jo et al. Jul 2012 B2
8263933 Hartmann et al. Jul 2012 B2
8239001 Verard et al. Aug 2012 B2
8241271 Millman et al. Aug 2012 B2
8248413 Gattani et al. Aug 2012 B2
8256319 Cooper et al. Sep 2012 B2
8271069 Jascob et al. Sep 2012 B2
8271130 Hourtash Sep 2012 B2
8281670 Larkin et al. Oct 2012 B2
8282653 Nelson et al. Oct 2012 B2
8301226 Csavoy et al. Oct 2012 B2
8311611 Csavoy et al. Nov 2012 B2
8320991 Jascob et al. Nov 2012 B2
8332012 Kienzle, III Dec 2012 B2
8333755 Cooper et al. Dec 2012 B2
8335552 Stiles Dec 2012 B2
8335557 Maschke Dec 2012 B2
8348931 Cooper et al. Jan 2013 B2
8353963 Glerum Jan 2013 B2
8358818 Miga et al. Jan 2013 B2
8359730 Burg et al. Jan 2013 B2
8365353 Block Feb 2013 B2
8374673 Adcox et al. Feb 2013 B2
8374723 Zhao et al. Feb 2013 B2
8379791 Forthmann et al. Feb 2013 B2
8386019 Camus et al. Feb 2013 B2
8392022 Ortmaier et al. Mar 2013 B2
8394099 Patwardhan Mar 2013 B2
8395342 Prisco Mar 2013 B2
8398634 Manzo et al. Mar 2013 B2
8400094 Schena Mar 2013 B2
8414957 Enzerink et al. Apr 2013 B2
8418073 Mohr et al. Apr 2013 B2
8450694 Baviera et al. May 2013 B2
8452447 Nixon May 2013 B2
RE44305 Foley et al. Jun 2013 E
8462911 Vesel et al. Jun 2013 B2
8465476 Rogers et al. Jun 2013 B2
8465771 Wan et al. Jun 2013 B2
8467851 Mire et al. Jun 2013 B2
8467852 Csavoy et al. Jun 2013 B2
8469947 Devengenzo et al. Jun 2013 B2
RE44392 Hynes Jul 2013 E
8483434 Buehner et al. Jul 2013 B2
8483800 Jensen et al. Jul 2013 B2
8486532 Enzerink et al. Jul 2013 B2
8489235 Moll et al. Jul 2013 B2
8500722 Cooper Aug 2013 B2
8500728 Newton et al. Aug 2013 B2
8504201 Moll et al. Aug 2013 B2
8506555 Ruiz Morales Aug 2013 B2
8506556 Schena Aug 2013 B2
8508173 Goldberg et al. Aug 2013 B2
8512318 Tovey et al. Aug 2013 B2
8515576 Lipow et al. Aug 2013 B2
8518120 Glerum et al. Aug 2013 B2
8521331 Itkowitz Aug 2013 B2
8526688 Groszmann et al. Sep 2013 B2
8526700 Issacs Sep 2013 B2
8527094 Kumar et al. Sep 2013 B2
8528440 Morley et al. Sep 2013 B2
8532741 Heruth et al. Sep 2013 B2
8541970 Nowlin et al. Sep 2013 B2
8548563 Simon et al. Oct 2013 B2
8549732 Burg et al. Oct 2013 B2
8551114 Ramos de la Pena Oct 2013 B2
8551116 Julian et al. Oct 2013 B2
8556807 Scott et al. Oct 2013 B2
8556979 Glerum et al. Oct 2013 B2
8560118 Green et al. Oct 2013 B2
8561473 Blumenkranz Oct 2013 B2
8562594 Cooper et al. Oct 2013 B2
8571638 Shoham Oct 2013 B2
8571710 Coste-Maniere et al. Oct 2013 B2
8573465 Shelton, IV Nov 2013 B2
8574303 Sharkey et al. Nov 2013 B2
8585420 Burbank et al. Nov 2013 B2
8594841 Zhao et al. Nov 2013 B2
8597198 Sanborn et al. Dec 2013 B2
8600478 Verard et al. Dec 2013 B2
8603077 Cooper et al. Dec 2013 B2
8611985 Lavallee et al. Dec 2013 B2
8613230 Blumenkranz et al. Dec 2013 B2
8621939 Blumenkranz et al. Jan 2014 B2
8624537 Nowlin et al. Jan 2014 B2
8630389 Kato Jan 2014 B2
8634897 Simon et al. Jan 2014 B2
8634957 Toth et al. Jan 2014 B2
8638056 Goldberg et al. Jan 2014 B2
8638057 Goldberg et al. Jan 2014 B2
8639000 Zhao et al. Jan 2014 B2
8641726 Bonutti Feb 2014 B2
8644907 Hartmann et al. Feb 2014 B2
8657809 Schoepp Feb 2014 B2
8660635 Simon et al. Feb 2014 B2
8666544 Moll et al. Mar 2014 B2
8675939 Moctezuma de la Barrera Mar 2014 B2
8678647 Gregerson et al. Mar 2014 B2
8679125 Smith et al. Mar 2014 B2
8679183 Glerum et al. Mar 2014 B2
8682413 Lloyd Mar 2014 B2
8684253 Giordano et al. Apr 2014 B2
8685098 Glerum et al. Apr 2014 B2
8693730 Umasuthan et al. Apr 2014 B2
8694075 Groszmann et al. Apr 2014 B2
8696458 Foxlin et al. Apr 2014 B2
8700123 Okamura et al. Apr 2014 B2
8706086 Glerum Apr 2014 B2
8706185 Foley et al. Apr 2014 B2
8706301 Zhao et al. Apr 2014 B2
8717430 Simon et al. May 2014 B2
8727618 Maschke et al. May 2014 B2
8734432 Tuma et al. May 2014 B2
8738115 Amberg et al. May 2014 B2
8738181 Greer et al. May 2014 B2
8740882 Jun et al. Jun 2014 B2
8746252 McGrogan et al. Jun 2014 B2
8749189 Nowlin et al. Jun 2014 B2
8749190 Nowlin et al. Jun 2014 B2
8761930 Nixon Jun 2014 B2
8764448 Yang et al. Jul 2014 B2
8771170 Mesallum et al. Jul 2014 B2
8781186 Clements et al. Jul 2014 B2
8781630 Banks et al. Jul 2014 B2
8784385 Boyden et al. Jul 2014 B2
8786241 Nowlin et al. Jul 2014 B2
8787520 Baba Jul 2014 B2
8792704 Isaacs Jul 2014 B2
8798231 Notohara et al. Aug 2014 B2
8800838 Shelton, IV Aug 2014 B2
8808164 Hoffman et al. Aug 2014 B2
8812077 Dempsey Aug 2014 B2
8814793 Brabrand Aug 2014 B2
8816628 Nowlin et al. Aug 2014 B2
8818105 Myronenko et al. Aug 2014 B2
8820605 Shelton, IV Sep 2014 B2
8821511 von Jako et al. Sep 2014 B2
8823308 Nowlin et al. Sep 2014 B2
8827996 Scott et al. Sep 2014 B2
8828024 Farritor et al. Sep 2014 B2
8830224 Zhao et al. Sep 2014 B2
8834489 Cooper et al. Sep 2014 B2
8834490 Bonutti Sep 2014 B2
8838270 Druke et al. Sep 2014 B2
8844789 Shelton, IV et al. Sep 2014 B2
8855822 Bartol et al. Oct 2014 B2
8858598 Seifert et al. Oct 2014 B2
8860753 Bhandarkar et al. Oct 2014 B2
8864751 Prisco et al. Oct 2014 B2
8864798 Weiman et al. Oct 2014 B2
8864833 Glerum et al. Oct 2014 B2
8867703 Shapiro et al. Oct 2014 B2
8870880 Himmelberger et al. Oct 2014 B2
8876866 Zappacosta et al. Nov 2014 B2
8880223 Raj et al. Nov 2014 B2
8882803 Iott et al. Nov 2014 B2
8883210 Truncale et al. Nov 2014 B1
8888821 Rezach et al. Nov 2014 B2
8888853 Glerum et al. Nov 2014 B2
8888854 Glerum et al. Nov 2014 B2
8894652 Seifert et al. Nov 2014 B2
8894688 Suh Nov 2014 B2
8894691 Iott et al. Nov 2014 B2
8906069 Hansell et al. Dec 2014 B2
8964934 Ein-Gal Feb 2015 B2
8992580 Bar et al. Mar 2015 B2
8996169 Lightcap et al. Mar 2015 B2
9001963 Sowards-Emmerd et al. Apr 2015 B2
9002076 Khadem et al. Apr 2015 B2
9044190 Rubner et al. Jun 2015 B2
9107683 Hourtash et al. Aug 2015 B2
9125556 Zehavi et al. Sep 2015 B2
9131986 Greer et al. Sep 2015 B2
9215968 Schostek et al. Dec 2015 B2
9308050 Kostrzewski et al. Apr 2016 B2
9380984 Li et al. Jul 2016 B2
9393039 Lechner et al. Jul 2016 B2
9398886 Gregerson et al. Jul 2016 B2
9398890 Dong et al. Jul 2016 B2
9414859 Ballard et al. Aug 2016 B2
9420975 Gutfleisch et al. Aug 2016 B2
9492235 Hourtash et al. Nov 2016 B2
9592096 Maillet et al. Mar 2017 B2
9750465 Engel et al. Sep 2017 B2
9757203 Hourtash et al. Sep 2017 B2
9795354 Menegaz et al. Oct 2017 B2
9814535 Bar et al. Nov 2017 B2
9820783 Donner et al. Nov 2017 B2
9833265 Donner et al. Nov 2017 B2
9848922 Tohmeh et al. Dec 2017 B2
9925011 Gombert et al. Mar 2018 B2
9931025 Graetzel et al. Apr 2018 B1
10034717 Miller et al. Jul 2018 B2
20010036302 Miller Nov 2001 A1
20020035321 Bucholz et al. Mar 2002 A1
20040068172 Nowinski et al. Apr 2004 A1
20040076259 Jensen et al. Apr 2004 A1
20050096502 Khalili May 2005 A1
20050143651 Verard et al. Jun 2005 A1
20050171558 Abovitz et al. Aug 2005 A1
20060100610 Wallace et al. May 2006 A1
20060173329 Marquart et al. Aug 2006 A1
20060184396 Dennis et al. Aug 2006 A1
20060241416 Marquart et al. Oct 2006 A1
20060291612 Nishide et al. Dec 2006 A1
20070015987 Benlloch Baviera et al. Jan 2007 A1
20070021738 Nasser et al. Jan 2007 A1
20070038059 Sheffer et al. Feb 2007 A1
20070073133 Schoenefeld Mar 2007 A1
20070114079 Chao May 2007 A1
20070156121 Millman et al. Jul 2007 A1
20070156157 Nahum et al. Jul 2007 A1
20070167712 Keglovich et al. Jul 2007 A1
20070233238 Huynh et al. Oct 2007 A1
20080004523 Jensen Jan 2008 A1
20080013809 Zhu et al. Jan 2008 A1
20080033283 Dellaca et al. Feb 2008 A1
20080046122 Manzo et al. Feb 2008 A1
20080082109 Moll et al. Apr 2008 A1
20080108912 Node-Langlois May 2008 A1
20080108991 von Jako May 2008 A1
20080109012 Falco et al. May 2008 A1
20080144906 Allred et al. Jun 2008 A1
20080161680 von Jako et al. Jul 2008 A1
20080161682 Kendrick et al. Jul 2008 A1
20080177203 von Jako Jul 2008 A1
20080214922 Hartmann et al. Sep 2008 A1
20080228068 Viswanathan et al. Sep 2008 A1
20080228196 Wang et al. Sep 2008 A1
20080235052 Node-Langlois et al. Sep 2008 A1
20080269596 Revie et al. Oct 2008 A1
20080287771 Anderson Nov 2008 A1
20080287781 Revie et al. Nov 2008 A1
20080300477 Lloyd et al. Dec 2008 A1
20080300478 Zuhars et al. Dec 2008 A1
20080302950 Park et al. Dec 2008 A1
20080306490 Lakin et al. Dec 2008 A1
20080319311 Hamadeh Dec 2008 A1
20090012509 Csavoy et al. Jan 2009 A1
20090030428 Omori et al. Jan 2009 A1
20090080737 Battle et al. Mar 2009 A1
20090185655 Koken et al. Jul 2009 A1
20090198121 Hoheisel Aug 2009 A1
20090216113 Meier et al. Aug 2009 A1
20090228019 Gross et al. Sep 2009 A1
20090259123 Navab et al. Oct 2009 A1
20090259230 Khadem et al. Oct 2009 A1
20090264899 Appenrodt et al. Oct 2009 A1
20090281417 Hartmann et al. Nov 2009 A1
20100022874 Wang et al. Jan 2010 A1
20100039506 Sarvestani et al. Feb 2010 A1
20100125286 Wang et al. May 2010 A1
20100130986 Mailloux et al. May 2010 A1
20100228117 Hartmann Sep 2010 A1
20100228265 Prisco Sep 2010 A1
20100249571 Jensen et al. Sep 2010 A1
20100274120 Heuscher Oct 2010 A1
20100280363 Skarda et al. Nov 2010 A1
20100331858 Simaan et al. Dec 2010 A1
20110022229 Jang et al. Jan 2011 A1
20110077504 Fischer et al. Mar 2011 A1
20110098553 Robbins et al. Apr 2011 A1
20110137152 Li Jun 2011 A1
20110213384 Jeong Sep 2011 A1
20110224684 Larkin et al. Sep 2011 A1
20110224685 Larkin et al. Sep 2011 A1
20110224686 Larkin et al. Sep 2011 A1
20110224687 Larkin et al. Sep 2011 A1
20110224688 Larkin et al. Sep 2011 A1
20110224689 Larkin et al. Sep 2011 A1
20110224825 Larkin et al. Sep 2011 A1
20110230967 O'Halloran et al. Sep 2011 A1
20110238080 Ranjit et al. Sep 2011 A1
20110276058 Choi et al. Nov 2011 A1
20110282189 Graumann Nov 2011 A1
20110286573 Schretter et al. Nov 2011 A1
20110295062 Gratacos Solsona et al. Dec 2011 A1
20110295370 Suh et al. Dec 2011 A1
20110306986 Lee et al. Dec 2011 A1
20120035507 George et al. Feb 2012 A1
20120046668 Gantes Feb 2012 A1
20120051498 Koishi Mar 2012 A1
20120053597 Anvari et al. Mar 2012 A1
20120059248 Holsing et al. Mar 2012 A1
20120071753 Hunter et al. Mar 2012 A1
20120108954 Schulhauser et al. May 2012 A1
20120136372 Amat Girbau et al. May 2012 A1
20120143084 Shoham Jun 2012 A1
20120184839 Woerlein Jul 2012 A1
20120197182 Millman et al. Aug 2012 A1
20120226145 Chang et al. Sep 2012 A1
20120235909 Birkenbach et al. Sep 2012 A1
20120245596 Meenink Sep 2012 A1
20120253332 Moll Oct 2012 A1
20120253360 White et al. Oct 2012 A1
20120256092 Zingerman Oct 2012 A1
20120294498 Popovic Nov 2012 A1
20120296203 Hartmann et al. Nov 2012 A1
20130006267 Odermatt et al. Jan 2013 A1
20130016889 Myronenko et al. Jan 2013 A1
20130030571 Ruiz Morales et al. Jan 2013 A1
20130035583 Park et al. Feb 2013 A1
20130060146 Yang et al. Mar 2013 A1
20130060337 Petersheim et al. Mar 2013 A1
20130094742 Feilkas Apr 2013 A1
20130096574 Kang et al. Apr 2013 A1
20130113791 Isaacs et al. May 2013 A1
20130116706 Lee et al. May 2013 A1
20130131695 Scarfogliero et al. May 2013 A1
20130144307 Jeong et al. Jun 2013 A1
20130158542 Manzo et al. Jun 2013 A1
20130165937 Patwardhan Jun 2013 A1
20130178867 Farritor et al. Jul 2013 A1
20130178868 Roh Jul 2013 A1
20130178870 Schena Jul 2013 A1
20130204271 Brisson et al. Aug 2013 A1
20130211419 Jensen Aug 2013 A1
20130211420 Jensen Aug 2013 A1
20130218142 Tuma et al. Aug 2013 A1
20130223702 Holsing et al. Aug 2013 A1
20130225942 Holsing et al. Aug 2013 A1
20130225943 Holsing et al. Aug 2013 A1
20130231556 Holsing et al. Sep 2013 A1
20130237995 Lee et al. Sep 2013 A1
20130245375 DiMaio et al. Sep 2013 A1
20130261640 Kim et al. Oct 2013 A1
20130272488 Bailey et al. Oct 2013 A1
20130272489 Dickman et al. Oct 2013 A1
20130274761 Devengenzo et al. Oct 2013 A1
20130281821 Liu et al. Oct 2013 A1
20130296884 Taylor et al. Nov 2013 A1
20130303887 Holsing et al. Nov 2013 A1
20130307955 Deitz et al. Nov 2013 A1
20130317521 Choi et al. Nov 2013 A1
20130325033 Schena et al. Dec 2013 A1
20130325035 Hauck et al. Dec 2013 A1
20130331686 Freysinger et al. Dec 2013 A1
20130331858 Devengenzo et al. Dec 2013 A1
20130331861 Yoon Dec 2013 A1
20130342578 Isaacs Dec 2013 A1
20130345717 Markvicka et al. Dec 2013 A1
20130345757 Stad Dec 2013 A1
20140001235 Shelton, IV Jan 2014 A1
20140012131 Heruth et al. Jan 2014 A1
20140031664 Kang et al. Jan 2014 A1
20140046128 Lee et al. Feb 2014 A1
20140046132 Hoeg et al. Feb 2014 A1
20140046340 Wilson et al. Feb 2014 A1
20140049629 Siewerdsen et al. Feb 2014 A1
20140058406 Tsekos Feb 2014 A1
20140059768 Lemire et al. Mar 2014 A1
20140073914 Lavallee et al. Mar 2014 A1
20140080086 Chen Mar 2014 A1
20140081128 Verard et al. Mar 2014 A1
20140088612 Bartol et al. Mar 2014 A1
20140094694 Moctezuma de la Barrera Apr 2014 A1
20140094851 Gordon Apr 2014 A1
20140096369 Matsumoto et al. Apr 2014 A1
20140100587 Farritor et al. Apr 2014 A1
20140121676 Kostrzewski et al. May 2014 A1
20140128882 Kwak et al. May 2014 A1
20140135796 Simon et al. May 2014 A1
20140142591 Alvarez et al. May 2014 A1
20140142592 Moon et al. May 2014 A1
20140148692 Hartmann et al. May 2014 A1
20140163581 Devengenzo et al. Jun 2014 A1
20140171781 Stiles Jun 2014 A1
20140171900 Stiles Jun 2014 A1
20140171965 Loh et al. Jun 2014 A1
20140180308 von Grunberg Jun 2014 A1
20140180309 Seeber et al. Jun 2014 A1
20140187915 Yaroshenko et al. Jul 2014 A1
20140188132 Kang Jul 2014 A1
20140194699 Roh et al. Jul 2014 A1
20140130810 Azizian et al. Aug 2014 A1
20140221819 Sarment Aug 2014 A1
20140222023 Kim et al. Aug 2014 A1
20140228631 Kwak et al. Aug 2014 A1
20140234804 Huang et al. Aug 2014 A1
20140243849 Saglam Aug 2014 A1
20140257328 Kim et al. Sep 2014 A1
20140257329 Jang et al. Sep 2014 A1
20140257330 Choi et al. Sep 2014 A1
20140275760 Lee et al. Sep 2014 A1
20140275955 Crawford et al. Sep 2014 A1
20140275985 Walker et al. Sep 2014 A1
20140276931 Parihar et al. Sep 2014 A1
20140276940 Seo Sep 2014 A1
20140276944 Farritor et al. Sep 2014 A1
20140288413 Hwang et al. Sep 2014 A1
20140299648 Shelton, IV et al. Oct 2014 A1
20140303434 Farritor et al. Oct 2014 A1
20140303643 Ha et al. Oct 2014 A1
20140305995 Shelton, IV et al. Oct 2014 A1
20140309659 Roh et al. Oct 2014 A1
20140316436 Bar et al. Oct 2014 A1
20140323803 Hoffman et al. Oct 2014 A1
20140324070 Min et al. Oct 2014 A1
20140330288 Date et al. Nov 2014 A1
20140364720 Darrow et al. Dec 2014 A1
20140371577 Maillet et al. Dec 2014 A1
20150039034 Frankel et al. Feb 2015 A1
20150085970 Bouhnik et al. Mar 2015 A1
20150146847 Liu May 2015 A1
20150150524 Yorkston et al. Jun 2015 A1
20150196261 Funk Jul 2015 A1
20150213633 Chang et al. Jul 2015 A1
20150335480 Alvarez et al. Nov 2015 A1
20150342647 Frankel et al. Dec 2015 A1
20160005194 Schretter et al. Jan 2016 A1
20160166329 Langan et al. Jun 2016 A1
20160235480 Scholl et al. Aug 2016 A1
20160249990 Glozman et al. Sep 2016 A1
20160302871 Gregerson et al. Oct 2016 A1
20160320322 Suzuki Nov 2016 A1
20160331335 Gregerson et al. Nov 2016 A1
20170135770 Scholl et al. May 2017 A1
20170143284 Sehnert et al. May 2017 A1
20170143426 Isaacs et al. May 2017 A1
20170156816 Ibrahim Jun 2017 A1
20170202629 Maillet et al. Jul 2017 A1
20170212723 Atarot et al. Jul 2017 A1
20170215825 Johnson et al. Aug 2017 A1
20170215826 Johnson et al. Aug 2017 A1
20170215827 Johnson et al. Aug 2017 A1
20170231710 Scholl et al. Aug 2017 A1
20170258426 Risher-Kelly et al. Sep 2017 A1
20170273748 Hourtash et al. Sep 2017 A1
20170296277 Hourtash et al. Oct 2017 A1
20170360493 Zucher et al. Dec 2017 A1
Foreign Referenced Citations (2)
Number Date Country
4321739 Jan 1995 DE
2438897 Apr 2012 EP
Non-Patent Literature Citations (1)
Entry
US 8,231,638 B2, 07/2012, Swarup et al. (withdrawn)
Related Publications (1)
Number Date Country
20190016359 A1 Jan 2019 US
Continuations (2)
Number Date Country
Parent 15681836 Aug 2017 US
Child 16136815 US
Parent 14881291 Oct 2015 US
Child 15681836 US