The present invention relates to stabilizers for silicate paints and dispersion-based silicate paints, these stabilizers reducing the thixotropy and viscosity of the paints.
Silicate paints, including dispersion-based silicate paints, which according to DIN 18363 may contain up to 5 wt % organic fraction, and also organosilicate paints with >5 wt % organic fraction, are enjoying increasing interest because their high pH means that little or no biocides are needed. According to the prior art, aqueous silicate paints and dispersion-based silicate paints use stabilizers which prevent the premature silification of the waterglass in the can, meaning that the coating does not gel during storage, and remains suitable for application.
WO 9418277 describes fumed silica with a surface modified by surfactants, allowing it to be used as a rheological additive and thickener. Surfactants especially suitable for this purpose are tertiary and quaternary alkylamines, including their alkoxylates and dimers.
WO 0073237 and EP 1222234 both describe a silicatic coating stabilized using quaternary bishydroxylammonium salt.
EP 1431354 teaches tertiary diamines as stabilizers for waterglass systems.
DE 102006045853 teaches compositions of silicate-containing formulations consisting of nitrogen-containing compounds and alkyl siliconates, which exhibit improved stabilization of viscosity.
S. Weber (Farbe and Lacke, 2007, vol. 5, pp. 173-174) teaches that technically prized stabilizers or silicate and organosilicate paints are based on quaternary ammonium compounds and amine derivatives. S. Weber emphasizes in particular that a combination of two stabilizers results in reduced thickening during storage.
EP 0614881, U.S. Pat. Nos. 5,449,770 and 2,016,962 describe methods for preparing glucamines starting from glucose.
EP 1676831 gives a general description of the preparation of tertiary dialkylglucamines such as diethylglucamine and the use thereof as surfactant in aqueous coatings, but without reciting any specific example.
The silicatic coatings described according to the prior art have a high thixotropy in practice, which makes handling more difficult to the user, since the coating appears like blancmange. Before being used, therefore, silicate paints, including dispersion-based silicate paints, must be stirred up vigorously in order to disrupt the thixotropy and to make the paints flowable, allowing the paint to be applied uniformly and generating better leveling. Furthermore, silicatic coatings typically exhibit a strong tendency to thicken during storage, a phenomenon resolved only partly by the prior-art solutions.
It was an object of the present invention, therefore, to find stabilizers for silicate paints, including dispersion-based silicate paints, that reduce the viscosity and thixotropy in order to improve operation with and applicability of silicate and dispersion-based silicate paints, and also to improve their shelf life.
Surprisingly it has been found that this is possible with amines based on the renewable raw material glucose.
A subject of the invention is therefore a silicatic coating comprising
Compound (I) is a polyhydroxyamine wherein R1 may be H, C1-C4 alkyl, CH2CH2OH or CH2CH(CH3)OH. With preference R1 is H, methyl or CH2CH2OH.
With preference R1 is H, methyl or CH2CH2OH.
The polyhydroxy unit is a hexose, preferably the epimer glucose.
The process for preparing the alkylglucamines of the formula (I) is well known to the skilled person. For compounds with R═C1 to C4 alkyl, for example, it is accomplished in accordance with the method specified in EP 1676831, by reductive alkylation of N-alkylpolyhydroxylamines with aldehydes or ketones in the presence of hydrogen and a transition metal catalyst. Hydroxyethyl- and hydroxypropyl-N-methyl-glucamine may be prepared by reaction of N-methylglucamine with ethylene oxide and propylene oxide, respectively, in aqueous solution. The compounds of the formula (I) can be used as pure substances or in the form of aqueous solutions. Since the tertiary amines, such as dimethylglucamine, hydroxyethyl- and hydroxypropyl-N-methyl-glucamine, are not very susceptible to the formation of nitrosamines, they are preferred for the silicatic coatings of the invention.
The silicate binder, component (B), preferably comprises precipitated alkali metal silicates, waterglasses or silica sols.
Polymeric binders, component (C), are preferably homo- or copolymers of olefinically unsaturated monomers. Examples of preferred olefinically unsaturated monomers are
Customary additives, component (D), may be as follows: pigments, with the term “pigments” referring both to pigments and to fillers in the wider sense, and auxiliaries. Auxiliaries may among others be wetting and dispersing agents, defoamers, biocides, coalescents, alkali, and rheological additives.
Suitable pigments are finely divided organic or inorganic white or chromatic pigments or a mixture of various such pigments.
An exemplary selection of particularly preferred organic pigments here includes carbon black pigments, such as gas blacks or furnace blacks, for example; monoazo and disazo pigments, more particularly the Color Index pigments Pigment Yellow 1, Pigment Yellow 3, Pigment Yellow 12, Pigment Yellow 13, Pigment Yellow 14, Pigment Yellow 16, Pigment Yellow 17, Pigment Yellow 73, Pigment Yellow 74, Pigment Yellow 81, Pigment Yellow 83, Pigment Yellow 87, Pigment Yellow 97, Pigment Yellow 111, Pigment Yellow 126, Pigment Yellow 127, Pigment Yellow 128, Pigment Yellow 155, Pigment Yellow 174, Pigment Yellow 176, Pigment Yellow 191, Pigment Yellow 213, Pigment Yellow 214, Pigment Red 38, Pigment Red 144, Pigment Red 214, Pigment Red 242, Pigment Red 262, Pigment Red 266, Pigment Red 269, Pigment Red 274, Pigment Orange 13, Pigment Orange 34 or Pigment Brown 41; β-naphthol and Naphthol AS pigments, more particularly the Colour Index pigments Pigment Red 2, Pigment Red 3, Pigment Red 4, Pigment Red 5, Pigment Red 9, Pigment Red 12, Pigment Red 14, Pigment Red 53:1, Pigment Red 112, Pigment Red 146, Pigment Red 147, Pigment Red 170, Pigment Red 184, Pigment Red 187, Pigment Red 188, Pigment Red 210, Pigment Red 247, Pigment Red 253, Pigment Red 254, Pigment Red 256, Pigment Orange 5, Pigment Orange 38 or Pigment Brown 1; laked azo and metal complex pigments, more particularly the Colour Index pigments Pigment Red 48:2, Pigment Red 48:3, Pigment Red 48:4, Pigment Red 57:1, Pigment Red257, Pigment Orange 68 or Pigment Orange 70; benzimidazoline pigments, more particularly the Colour Index pigments Pigment Yellow 120, Pigment Yellow 151, Pigment Yellow 154, Pigment Yellow 175 Pigment Yellow 180, Pigment Yellow 181, Pigment Yellow 194, Pigment Red 175, Pigment Red 176, Pigment Red 185, Pigment Red 208, Pigment Violet 32, Pigment Orange 36, Pigment Orange 62, Pigment Orange 72 or Pigment Brown 25; isoindolinone and isoindoline pigments, more particularly the Colour Index pigments Pigment Yellow 139 or Pigment Yellow 173; phthalocyanine pigments, more particularly the Colour Index pigments Pigment Blue 15, Pigment Blue 15:1, Pigment Blue 15:2, Pigment Blue 15:3, Pigment Blue 15:4, Pigment Blue 15:6, Pigment Blue 16, Pigment Green 7 or Pigment Green 36; anthanthrone, anthraquinone, quinacridone, dioxazine, indanthrone, perylene, perinone, and thioindigo pigments, more particularly the Colour Index pigments Pigment Yellow 196, Pigment Red 122, Pigment Red 149, Pigment Red 168, Pigment Red 177, Pigment Red 179, Pigment Red 181, Pigment Red 207, Pigment Red 209, Pigment Red 263, Pigment Blue 60, Pigment Violet 19, Pigment Violet 23 or Pigment Orange 43; triarylcarbonium pigments, more particularly the Colour Index pigments Pigment Red 169, Pigment Blue 56 or Pigment Blue 61.
Examples of suitable inorganic pigments are titanium dioxides, zinc sulfides, zinc oxides, iron oxides, magnetites, manganese iron oxides, chromium oxides, ultramarine, nickel or chromium antimony titanium oxides, manganese titanium rutiles, cobalt oxides, mixed oxides of cobalt and aluminum, rutile mixed phase pigments, sulfides of the rare earths, spinels of cobalt with nickel and zinc, spinels based on iron and chromium with copper zinc and also manganese, bismuth vanadates, and also extender pigments, use being made more particularly of the Color Index pigments Pigment Yellow 184, Pigment Yellow 53, Pigment Yellow 42, Pigment Yellow Brown 24, Pigment Red 101, Pigment Blue 28, Pigment Blue 36, Pigment Green 50, Pigment Green 17, Pigment Black 11, Pigment Black 33, and Pigment White 6; also, calcium carbonates referred to as fillers, such as naturally occurring chalk and precipitated calcium carbonate, dolomite, natural silicon dioxide (finely ground quartz), fumed and precipitated silicas, kieselguhr, aluminum oxides, aluminum hydroxides, talc, kaolin, mica (potassium aluminum silicate hydrate), barium sulfates such as naturally occurring barytes, and precipitated blanc Fixe. Preference is also given frequently to using mixtures of inorganic pigments. Mixtures of organic with inorganic pigments are likewise frequently used.
Suitable wetting agents and dispersants are preferably polyacrylate salts, acrylate copolymers and MAA copolymers, alkylphenol ethoxylates and alkylphenol ethoxylates substituents, such as Guerbet derivatives, fatty acid and fatty alcohol derivatives, especially their alkoxylates, and also EO/PO homopolymers and block copolymers, and polysiloxane ethers.
Suitable defoamers are preferably mineral oil defoamers and emulsions thereof, silicone oil defoamers and silicone oil emulsions, polyalkylene glycols, polyalkylene glycol fatty acid esters, fatty acids, alcohols of relatively high hydricity, phosphoric esters, hydrophobically modified silica, aluminum tristearate, polyethylene waxes, and amide waxes.
Suitable biocides for preventing the uncontrolled multiplication of bacteria, algae, and fungi are formaldehyde, formaldehyde donor compounds, methylisothiazolinone, chloromethylisothiazolinone, benzisothiazolinone, bronopol, dibromodicyanonebutane, and titanium dioxide coated with silver chloride.
Suitable coalescents are esters and ketones such as benzoates and butyrates, and also ether alcohols and glycols. In particular, 2,2,4-trimethylpentane-1,3-diol monoisobutyrate, butyl glycol, butyl diglycol, butyl dipropylene glycol, propylene glycol butyl ether, and dipropylene glycol butyl ether are noteworthy coalescents.
Suitable alkalis are metal hydroxides of mono-, di- or trivalent metal ions. Preferred alkalis are sodium hydroxide or potassium hydroxide and also their aqueous solutions.
Suitable rheological additives, as agents for regulating the viscosity, are, for example, starch derivatives and cellulose derivatives and hydrophobically modified ethoxylated urethane (HEUR) thickeners, alkali-swellable acrylate thickeners, hydrophobically modified acrylate thickeners, xanthans, phyllosilicates, polymers of acrylamidomethylpropanesulfonic acid, or fumed silica.
An overview of common auxiliaries is given by Wernfried Heilen et al. in “Additive für wässrige Lacksysteme”, published by Vincentz Network, 2009.
Water, component (E), used for preparing the silicatic coating of the invention, is used preferably in the form of distilled or demineralized water. Drinking water (mains water) and/or water of natural origin can also be used.
In one preferred embodiment of the invention, component (A) is included in an amount from 0.01 to 10 wt %, more particularly 0.02 to 5.0 wt %, in the composition of the invention.
In one preferred embodiment of the invention, component (B) is included in an amount from 0.01 to 40 wt %, more particularly 0.5 to 25 wt %, in the composition of the invention.
In one preferred embodiment of the invention, component (C) is included in an amount from 0.01 to 70 wt %, more particularly 0.5 to 50 wt %, in the composition of the invention.
Where the composition of the invention comprises one or more constituents which can be subsumed under component (D), the following are preferred amounts of such constituents:
In one preferred embodiment of the invention, component (E) is included in an amount from 1 to 80 wt %, more particularly ad 100 wt %, in the composition of the invention.
Data in weight percentages are based on the total weight of the coating composition.
In a further preferred form, component (A), compound of the formula (I), is combined with a quaternary ammonium compound. In one preferred form, the quaternary ammonium compound is a compound of the formula (II a) or (II b),
In one particularly preferred form, the compounds of the formulae (I) and (II) are used in a ratio of 0.5:1 to 1:0.5. In one particularly preferred form, the ratio of compounds of the formulae (I) and (II) is between 0.75:1 to 1:0.75.
The silicatic coatings of the invention are suitable for producing coatings of all kinds. In particular the silicatic coatings of the invention are suitable for producing silicate, dispersion-based silicate, and organosilicate paints and renders for interior and exterior, and also molding compounds, adhesives, and filling compounds.
A further subject of the invention is the use of the compound of the formula (I) as a stabilizer for silicate, dispersion-based silicate, and organosilicate paints and renders for interior and exterior, and also molding compounds, adhesives, and filling compounds.
Percentages in this description are weight percentages based on the weight of the overall composition, unless otherwise specified.
In a comparison series, the nitrogen-containing compounds of table 1 were investigated in silicatic coatings for their effects on the rheology. The viscosity and change in viscosity over the storage time show the extent of the thickening. The yield point and the thixotropy area show the force required to render the silicatic coating flowable, in order to allow uniform application of the paint. The change over the storage time shows how quickly the thixotropy is reestablished and so prevents uniform leveling.
The rheological measurements were conducted on a HAAKE MARS III rheometer (Thermo Scientific). A solvent trap filled with water and sample-space cover were used for each measurement.
The viscosity was measured using a cone/plate geometry (1° 60 mm) at 20° C. A rotation ramp with shear rate specification between 1 and 200 s−1 was measured, and the viscosity value was read off at a shear rate of 60 s−1.
The thixotropy was determined via the evaluation of the hysteresis area between upward and downward rotation ramps with shear rate specification between 0.1 and 1000 s−1. The measurements were carried out with a cone/plate geometry (1° 60 mm) at 23° C.
Before the determination of the yield point, the sample was applied to the measuring plate, sheared at 0.1 s−1 for 5 minutes, and left to stand for 5 minutes (structure recovery phase). Then a rotation ramp with shear stress specification between 0.01 and 80 Pa was carried out. The yield point was determined by the tangent method in a double-logarithmic plot of the measurement curve. The measurements were carried out with a plate/plate geometry (35 mm-gap 1 mm) at 23° C.
A silicate paint was formulated in accordance with table 2. For this purpose, components 1-5 were homogenized at room temperature by successive addition at 100 to 300 rpm by means of a Getzmann dissolver with sawtooth stirrer. Components 6-10 were subsequently dispersed at a high shear rate (1000-1300 rpm). Finally, components 11 to 19 were added in succession and homogenized at 1300 rpm.
The properties of the silicate paint of table 2, when additized with a stabilizer as per table 1, are shown in table 3.
Table 3, example 1 (C) shows a higher viscosity and a greater rise in viscosity relative to the invention (examples 2 & 3). The smaller thixotropy area and yield point of examples 2 and 3 points to easier working with the silicate paints.
An organosilicate paint was formulated in accordance with table 4. For this purpose, components 1-7 were homogenized at room temperature by successive addition at 100 to 300 rpm by means of a Getzmann dissolver with sawtooth stirrer. Components 8-13 were subsequently dispersed at a high shear rate (1000-1300 rpm). Finally, components 14 to 22 were added in succession and homogenized at 1300 rpm.
The properties of the organosilicate paint of table 4, when additized with a stabilizer as per table 1, are shown in table 5.
Table 5, example 4 (C) shows a higher viscosity and a greater rise in viscosity relative to the invention (examples 5 & 6). The smaller thixotropy area and yield point of examples 5 and 6 points to easier working with the organosilicate paints.
Number | Date | Country | Kind |
---|---|---|---|
102016207877.1 | May 2016 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/059115 | 4/18/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/194270 | 11/16/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2016962 | Flint | Oct 1935 | A |
2667478 | Schwartz | Jan 1954 | A |
2703798 | Schwartz | Mar 1955 | A |
2891052 | Boettner | Jun 1959 | A |
2982737 | Boettner | May 1961 | A |
2993887 | Zech | Jul 1961 | A |
3002923 | Barker | Oct 1961 | A |
3272795 | Heywood | Sep 1966 | A |
4079078 | Collins | Mar 1978 | A |
4341559 | Friedemann | Jul 1982 | A |
4400196 | Albrecht | Aug 1983 | A |
4413087 | Bernot | Nov 1983 | A |
4481186 | Deckner | Nov 1984 | A |
4505827 | Rose | Mar 1985 | A |
4565647 | Llenado | Jan 1986 | A |
4654207 | Preston | Mar 1987 | A |
4681946 | Baur | Jul 1987 | A |
4981684 | MacKenzie | Jan 1991 | A |
5009814 | Kelkenberg | Apr 1991 | A |
5194639 | Connor | Mar 1993 | A |
5254281 | Pichardo | Oct 1993 | A |
5298195 | Brumbaugh | Mar 1994 | A |
5317047 | Sabate | May 1994 | A |
5354425 | Mackey | Oct 1994 | A |
5449770 | Shumate | Sep 1995 | A |
5454982 | Murch | Oct 1995 | A |
5500155 | Weuthen | Mar 1996 | A |
5539134 | Strecker | Jul 1996 | A |
5559078 | Garst | Sep 1996 | A |
5560873 | Chen | Oct 1996 | A |
5625098 | Kao | Apr 1997 | A |
5691299 | Fabry | Nov 1997 | A |
5711899 | Kawa | Jan 1998 | A |
5712235 | Nieendick | Jan 1998 | A |
5716922 | Curry | Feb 1998 | A |
5725470 | Lazarowitz | Mar 1998 | A |
5750748 | Boutique | May 1998 | A |
5766267 | Schumacher | Jun 1998 | A |
5777165 | Kao | Jul 1998 | A |
5789372 | Fabry | Aug 1998 | A |
5874096 | Hazen | Feb 1999 | A |
5945389 | Richard | Aug 1999 | A |
6147045 | Lappas | Nov 2000 | A |
6147124 | Ansmann | Nov 2000 | A |
6165955 | Chen | Dec 2000 | A |
6264961 | Ansmann | Jul 2001 | B1 |
6274126 | Newell | Aug 2001 | B1 |
6288023 | Honda | Sep 2001 | B1 |
6329331 | Aronson | Dec 2001 | B1 |
6350788 | Herold | Feb 2002 | B1 |
6391962 | Zerrer | May 2002 | B2 |
6455001 | Knappe | Sep 2002 | B1 |
6635708 | Papenfuhs | Oct 2003 | B1 |
6727217 | Nieendick | Apr 2004 | B1 |
6887838 | Dykstra | May 2005 | B2 |
6903057 | Tsaur | Jun 2005 | B1 |
7056379 | Nieendick | Jun 2006 | B2 |
7217752 | Schmucker-Castner | May 2007 | B2 |
7250392 | Leonard | Jul 2007 | B1 |
7297666 | Kuepper | Nov 2007 | B2 |
7380606 | Pursley | Jun 2008 | B2 |
7407667 | Zerrer | Aug 2008 | B2 |
7578995 | Frantz | Aug 2009 | B2 |
7776318 | Bissey-Beugras | Aug 2010 | B2 |
7820771 | Lapra | Oct 2010 | B2 |
7872036 | Toriyabe | Jan 2011 | B2 |
7897543 | Bretschneider | Mar 2011 | B2 |
7998911 | Berger | Aug 2011 | B1 |
8084452 | Jeschke | Dec 2011 | B2 |
8178481 | Sans | May 2012 | B2 |
8220564 | Runquist | Jul 2012 | B2 |
8263538 | Tsaur | Sep 2012 | B2 |
8324390 | Fischer | Dec 2012 | B2 |
8404855 | Jeschke | Mar 2013 | B2 |
8536340 | Hamamoto | Sep 2013 | B2 |
8637432 | Baur | Jan 2014 | B2 |
8729323 | Kothandaraman | May 2014 | B2 |
8759255 | Wacker | Jun 2014 | B2 |
8809547 | Bretschneider | Aug 2014 | B2 |
8901041 | Frisch | Dec 2014 | B2 |
9187407 | Koshti | Nov 2015 | B2 |
9504636 | Klug | Nov 2016 | B2 |
9949909 | Klug | Apr 2018 | B2 |
10172774 | Klug | Jan 2019 | B2 |
10265253 | Klug | Apr 2019 | B2 |
20010023298 | Weinelt | Sep 2001 | A1 |
20010056048 | Bertolosso | Dec 2001 | A1 |
20020004476 | Pancheri | Jan 2002 | A1 |
20020040662 | Dietz | Apr 2002 | A1 |
20020065198 | Highsmith | May 2002 | A1 |
20020168417 | Blease | Nov 2002 | A1 |
20030004929 | Julian | Jan 2003 | A1 |
20030049292 | Turowski-Wanke | Mar 2003 | A1 |
20030069153 | Jordan | Apr 2003 | A1 |
20030199403 | Wells | Oct 2003 | A1 |
20040086470 | Nieendick | May 2004 | A1 |
20050037926 | Zerrer | Feb 2005 | A1 |
20050037942 | Otterson | Feb 2005 | A1 |
20050084466 | Mullay | Apr 2005 | A1 |
20050172859 | Nieendick | Aug 2005 | A1 |
20050233935 | Gunn | Oct 2005 | A1 |
20060058205 | Ainger | Mar 2006 | A1 |
20060079414 | Nieendick | Apr 2006 | A1 |
20060089294 | Depoot | Apr 2006 | A1 |
20060100127 | Meier | May 2006 | A1 |
20060110415 | Gupta | May 2006 | A1 |
20060110432 | Luu | May 2006 | A1 |
20060135382 | Molenda | Jun 2006 | A1 |
20060142291 | Beilfuss | Jun 2006 | A1 |
20060166826 | Zerrer | Jul 2006 | A1 |
20060171979 | Calvo | Aug 2006 | A1 |
20070054820 | Harichian | Mar 2007 | A1 |
20070060489 | Sun | Mar 2007 | A1 |
20070110700 | Wells | May 2007 | A1 |
20070128144 | Bonastre Gilabert | Jun 2007 | A1 |
20070190004 | Bockmuhl | Aug 2007 | A1 |
20070213226 | Sieverding | Sep 2007 | A1 |
20080057014 | Masuda | Mar 2008 | A1 |
20080317960 | Pitt | Dec 2008 | A1 |
20090023622 | Leidreiter | Jan 2009 | A1 |
20090042749 | Meier | Feb 2009 | A1 |
20090111847 | Li | Apr 2009 | A1 |
20090118152 | Lam | May 2009 | A1 |
20090124498 | Von Deyn | May 2009 | A1 |
20090253612 | Mushock | Oct 2009 | A1 |
20090257972 | Dieker | Oct 2009 | A1 |
20100051200 | Mueller | Mar 2010 | A1 |
20100285077 | Lintner | Nov 2010 | A1 |
20100326320 | Swedo | Dec 2010 | A1 |
20110002865 | Fournial | Jan 2011 | A1 |
20110146536 | Tomlinson | Jun 2011 | A1 |
20110150786 | Desenne | Jun 2011 | A1 |
20110152150 | Bernard | Jun 2011 | A1 |
20110177945 | Klingelhoefer | Jul 2011 | A1 |
20110251116 | Aehle | Oct 2011 | A1 |
20110263471 | Barnhart | Oct 2011 | A1 |
20120009127 | Dasgupta | Jan 2012 | A1 |
20120010113 | Hee | Jan 2012 | A1 |
20120070388 | Man | Mar 2012 | A1 |
20120073817 | Van Zanten | Mar 2012 | A1 |
20120094890 | Anantaneni | Apr 2012 | A1 |
20120172223 | Wacker | Jul 2012 | A1 |
20120244092 | Moser | Sep 2012 | A1 |
20130030197 | Harichian | Jan 2013 | A1 |
20130189212 | Jawale | Jul 2013 | A1 |
20130216491 | Ogihara | Aug 2013 | A1 |
20140096969 | Ali | Apr 2014 | A1 |
20140121285 | Baur | May 2014 | A1 |
20140135245 | Annaheim | May 2014 | A1 |
20140230841 | Mathonneau | Aug 2014 | A1 |
20140255330 | Cron | Sep 2014 | A1 |
20140303389 | Crosby | Oct 2014 | A1 |
20140335049 | Morein | Nov 2014 | A1 |
20150032003 | Cho | Jan 2015 | A1 |
20150125415 | Klug | May 2015 | A1 |
20150126424 | Klug | May 2015 | A1 |
20150126616 | Klug | May 2015 | A1 |
20150133560 | Klug | May 2015 | A1 |
20150140048 | Klug | May 2015 | A1 |
20150141466 | Klug | May 2015 | A1 |
20150141508 | Klug | May 2015 | A1 |
20150150767 | Klug | Jun 2015 | A1 |
20150164755 | Klug | Jun 2015 | A1 |
20150164756 | Klug | Jun 2015 | A1 |
20150282478 | Baur | Oct 2015 | A1 |
20150320037 | Wacker | Nov 2015 | A1 |
20150335550 | Koshti | Nov 2015 | A1 |
20160074310 | Klug | Mar 2016 | A1 |
20160136072 | Klug | May 2016 | A1 |
20160143828 | Klug | May 2016 | A1 |
20160243014 | Dahms | Aug 2016 | A1 |
20160272666 | Klug | Sep 2016 | A1 |
20160361243 | Klug | Dec 2016 | A1 |
20170000710 | Klug | Jan 2017 | A1 |
20170002297 | Klug | Jan 2017 | A1 |
20170044434 | Baur | Feb 2017 | A1 |
20170055524 | Baur | Mar 2017 | A1 |
20170071199 | Baur | Mar 2017 | A1 |
20170101606 | Klug | Apr 2017 | A1 |
20170218293 | Klug | Aug 2017 | A1 |
20170226349 | Kupfer | Aug 2017 | A1 |
20170265477 | Baur | Sep 2017 | A1 |
20170292062 | Wylde | Oct 2017 | A1 |
20170305838 | Appel | Oct 2017 | A1 |
20180215879 | Kupfer | Aug 2018 | A1 |
20180291208 | Kupfer | Oct 2018 | A1 |
20190076344 | Klug | Mar 2019 | A1 |
Number | Date | Country |
---|---|---|
112015009806 | Jul 2017 | BR |
2117007 | Sep 1994 | CA |
1333226 | Nov 1994 | CA |
2127644 | Jan 1995 | CA |
1061960 | Jun 1992 | CN |
1077489 | Oct 1993 | CN |
1078746 | Nov 1993 | CN |
1088258 | Jun 1994 | CN |
1140987 | Jan 1997 | CN |
1141653 | Jan 1997 | CN |
1155239 | Jul 1997 | CN |
1184417 | Jun 1998 | CN |
1292641 | Apr 2001 | CN |
1296524 | May 2001 | CN |
1501772 | Jun 2004 | CN |
1518408 | Aug 2004 | CN |
1594518 | Mar 2005 | CN |
1997341 | Jul 2007 | CN |
101056959 | Oct 2007 | CN |
100528887 | Aug 2009 | CN |
102186340 | Sep 2011 | CN |
102595882 | Jul 2012 | CN |
103468362 | Dec 2013 | CN |
103468382 | Dec 2013 | CN |
104918490 | Sep 2015 | CN |
1956509 | May 1971 | DE |
2226872 | Dec 1973 | DE |
4238211 | Jan 1994 | DE |
4235783 | Apr 1994 | DE |
4435383 | Nov 1995 | DE |
19507531 | Sep 1996 | DE |
19701127 | Jul 1998 | DE |
19808824 | Oct 1999 | DE |
19846429 | Apr 2000 | DE |
19916090 | Oct 2000 | DE |
10117993 | Oct 2002 | DE |
10130357 | Jan 2003 | DE |
102007034438 | Jan 2009 | DE |
202013011412 | Jan 2014 | DE |
202013011413 | Jan 2014 | DE |
102012021647 | May 2014 | DE |
202014008415 | Nov 2014 | DE |
202014008418 | Nov 2014 | DE |
202014008420 | Dec 2014 | DE |
102014017368 | May 2015 | DE |
0039860 | Nov 1981 | EP |
0048436 | Mar 1982 | EP |
0285768 | Oct 1988 | EP |
0285786 | Oct 1988 | EP |
0336151 | Oct 1989 | EP |
0378985 | Jul 1990 | EP |
0407874 | Jan 1991 | EP |
0412849 | Feb 1991 | EP |
0539588 | May 1993 | EP |
0550637 | Jul 1993 | EP |
0572723 | Dec 1993 | EP |
0614881 | Sep 1994 | EP |
0633244 | Jan 1995 | EP |
0709449 | May 1996 | EP |
0745719 | Dec 1996 | EP |
0769548 | Apr 1997 | EP |
0774503 | May 1997 | EP |
0995994 | Apr 2000 | EP |
1043017 | Oct 2000 | EP |
1078978 | Feb 2001 | EP |
1093722 | Apr 2001 | EP |
1110944 | Jun 2001 | EP |
1177223 | Feb 2002 | EP |
1379129 | Jan 2004 | EP |
1422288 | May 2004 | EP |
1529832 | May 2005 | EP |
1676831 | Jul 2006 | EP |
1716842 | Nov 2006 | EP |
1869978 | Dec 2007 | EP |
S4810053 | Feb 1973 | JP |
S63270534 | Nov 1988 | JP |
H06501731 | Feb 1994 | JP |
H06501733 | Feb 1994 | JP |
H06240599 | Aug 1994 | JP |
H07507341 | Aug 1995 | JP |
H0812993 | Jan 1996 | JP |
H0848618 | Feb 1996 | JP |
H09502476 | Mar 1997 | JP |
H09506683 | Jun 1997 | JP |
H09510956 | Nov 1997 | JP |
H10501279 | Feb 1998 | JP |
H10508043 | Aug 1998 | JP |
H11505839 | May 1999 | JP |
H11246890 | Sep 1999 | JP |
H11512334 | Oct 1999 | JP |
2000512286 | Sep 2000 | JP |
2000297028 | Oct 2000 | JP |
2001501635 | Feb 2001 | JP |
2001131579 | May 2001 | JP |
2001247528 | Sep 2001 | JP |
2002542344 | Dec 2002 | JP |
2006183030 | Jul 2006 | JP |
2006183039 | Jul 2006 | JP |
2007538023 | Dec 2007 | JP |
2008110953 | May 2008 | JP |
2010018586 | Jan 2010 | JP |
2010037252 | Feb 2010 | JP |
2013534232 | Sep 2013 | JP |
2014532815 | Dec 2014 | JP |
2015518026 | Jun 2015 | JP |
2017526776 | Sep 2017 | JP |
100862502 | Oct 2008 | KR |
9205764 | Apr 1992 | WO |
9206073 | Apr 1992 | WO |
9206154 | Apr 1992 | WO |
9206158 | Apr 1992 | WO |
9206161 | Apr 1992 | WO |
9206162 | Apr 1992 | WO |
9318125 | Sep 1993 | WO |
9319149 | Sep 1993 | WO |
9410130 | May 1994 | WO |
9412608 | Jun 1994 | WO |
9412609 | Jun 1994 | WO |
9419941 | Sep 1994 | WO |
9516824 | Jun 1995 | WO |
9517880 | Jul 1995 | WO |
9519415 | Jul 1995 | WO |
9523840 | Sep 1995 | WO |
9533033 | Dec 1995 | WO |
9533035 | Dec 1995 | WO |
9603974 | Feb 1996 | WO |
9610386 | Apr 1996 | WO |
9614374 | May 1996 | WO |
9616540 | Jun 1996 | WO |
9616540 | Jun 1996 | WO |
9628023 | Sep 1996 | WO |
9637589 | Nov 1996 | WO |
9637592 | Nov 1996 | WO |
9747284 | Dec 1997 | WO |
9800496 | Jan 1998 | WO |
9841601 | Sep 1998 | WO |
9856496 | Dec 1998 | WO |
9951716 | Oct 1999 | WO |
0065014 | Nov 2000 | WO |
0137658 | May 2001 | WO |
0160877 | Aug 2001 | WO |
02089575 | Nov 2002 | WO |
2002096882 | Dec 2002 | WO |
03000055 | Jan 2003 | WO |
2003106457 | Dec 2003 | WO |
2004056358 | Jul 2004 | WO |
2004099150 | Nov 2004 | WO |
2004099160 | Nov 2004 | WO |
2005035486 | Apr 2005 | WO |
2005063094 | Jul 2005 | WO |
2005077934 | Aug 2005 | WO |
2005117580 | Dec 2005 | WO |
2006043635 | Apr 2006 | WO |
2006056433 | Jun 2006 | WO |
2006089633 | Aug 2006 | WO |
2006100288 | Sep 2006 | WO |
2007040280 | Apr 2007 | WO |
2007057407 | May 2007 | WO |
2007075459 | Jul 2007 | WO |
2007101369 | Sep 2007 | WO |
2007115643 | Oct 2007 | WO |
2007115644 | Oct 2007 | WO |
2007115646 | Oct 2007 | WO |
2007141066 | Dec 2007 | WO |
2007147500 | Dec 2007 | WO |
2007149134 | Dec 2007 | WO |
2005085216 | Jan 2008 | WO |
2008009360 | Jan 2008 | WO |
2008066153 | Jun 2008 | WO |
2008067911 | Jun 2008 | WO |
2008104503 | Sep 2008 | WO |
2009002956 | Dec 2008 | WO |
2009029561 | Mar 2009 | WO |
2009049851 | Apr 2009 | WO |
2009158478 | Dec 2009 | WO |
2010005692 | Jan 2010 | WO |
2010006713 | Jan 2010 | WO |
2010069502 | Jun 2010 | WO |
2010074747 | Jul 2010 | WO |
2010074751 | Jul 2010 | WO |
2010126657 | Nov 2010 | WO |
2010138661 | Dec 2010 | WO |
2011138450 | Nov 2011 | WO |
2012061991 | May 2012 | WO |
2012116939 | Sep 2012 | WO |
2013016270 | Jan 2013 | WO |
2013178668 | Dec 2013 | WO |
2013178670 | Dec 2013 | WO |
2013178670 | Dec 2013 | WO |
2013178671 | Dec 2013 | WO |
2013178679 | Dec 2013 | WO |
2013178697 | Dec 2013 | WO |
2013178700 | Dec 2013 | WO |
2013178701 | Dec 2013 | WO |
2014056561 | Apr 2014 | WO |
2014067663 | May 2014 | WO |
2014067663 | May 2014 | WO |
2014170025 | Oct 2014 | WO |
2015082062 | Jun 2015 | WO |
2015124302 | Aug 2015 | WO |
2016023693 | Feb 2016 | WO |
2016041823 | Mar 2016 | WO |
2016050782 | Apr 2016 | WO |
Entry |
---|
Plante et al. Castor Oil [online] retrieved on Jan. 13, 2016 from: http://www.dionex.com/en-us/webdocs/110518-PO-UHPLC-Castor-Oil-31May2011-LPN2822-01.pdf; 5 pages. |
Bezard (Lipids 1971;6:630-634), (Year:1971). |
Hardcopy of http://igf-bingen.de/Croda_produkte.pdf, Dec. 1, 2016. 3 pages. |
International Search Report for PCT/EP2013/061075, dated May 15, 2014. 2 pages. |
Tan et al. (Appl Microbiol Biotechnol. 47:207-211) (Year: 1997). |
Dale et al. (J. Sci. Food. Agric. 1955;6:166-170) (Year: 1955). |
Palm fatty acid distillate (PFAD) [online] retrieved on May 21, 2018 from: https://www.neste.com/corporate-info/sustainability/sustainable-supply-chain/pfad-residue-palm-oil-refining-process; 1 page (Year: 2018). |
Quack, et al., Fette-Seifen-Anstrichmittel 78, 200(1976). 7 pages. |
International Search Report for PCT/EP2013/061076, dated May 15, 2014, 20 pages. |
English Translation of Cited Excerpts of CN103468382A, Dec. 25, 2013. 2 pages. |
Friedrich Vogel: “Kosmetik aus der Sicht des Chemikers”, Chemie in Unserer Zeit, No. 5, Jan. 1, 1986, pp. 156-164, XP055109030, DOI: 10.1002/ciuz.19860200504, p. 160. |
International Preliminary Report on Patentability for PCT/EP2013/061044, dated Feb. 12, 2014. 7 pages. |
International Preliminary Report on Patentability for PCT/EP2014/001723, dated Jun. 8, 2015. 16 pages. |
International Preliminary Report on Patentability for PCT/EP2015/000443, dated Jan. 22, 2016. 6 pages. |
International Preliminary Report on Patentability for PCT/EP2015/076072, dated May 16, 2017. 5 pages. |
International Search Report for PCT/EP2013/061044, dated May 15, 2014. 2 pages. |
International Search Report for PCT/EP2013/061047, dated May 22, 2014. 3 pages. |
International Search Report for PCT/EP2013/061100, dated Jul. 16, 2014. 4 pages. |
International Search Report for PCT/EP2013/061100, dated Jul. 15, 2014. 4 pages. |
International Search Report for PCT/EP2014/001723, dated Jan. 5, 2015. 3 pages. |
International Search Report for PCT/EP2015/000443, dated Jun. 2, 2015. 2 pages. |
International Search Report for PCT/EP2015/000871 dated Jul. 15, 2015. 3 pages. |
International Search Report for PCT/EP2015/076072, dated Feb. 29, 2016. 2 pages. |
Lichtenthaler, F.W., “Carbohydrates as Organic Raw Materials,” in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag, 2010. (34 pages). |
PubChem, Methylmeglumine, 2006. (Year: 2006) 9 pages. |
R. Mohammadi, J. Wassink, A. Amirfazli, “Effect of Surfactants on Wetting of Super-Hydrophobic Surfaces”, Langmuir, American Chemical Society, (Oct. 1, 2004), vol. 20, No. 22, doi:10.1021/la049268k, ISSN 07437463, pp. 9657-9662, XP055098502, (Year: 2004). |
Smith, J.T. et al., “Micellar Electrokinetic Capillary Chromatography with in Situ Charged Micelles. 1. Evaluation of N-D-Gluco-N-methylalkanamide Surfactants as Anionic Borate Complexes,” Anal. Chem. 1994, 66, 1119-1133. |
Söderlind, E. et al., “The usefulness of sugar surfactants as solubilizing agents in parenteral formulations,” Elsevier, I nternational IJournal of Pharmaceutics 252 (2003) pp. 61-71, Aug. 19, 2002. |
Study on Synthesis and Properties of “Green” Surfactants—Glucamine derivates, Zhao Handong, Master Thesis, Southern Yangtze University, pp. 5-6, Jul. 25, 2007. |
Tegeler, T. et al., Special Guest Editor Section: Electrically Driven Microseparation Methods for Pesticides and Metabolites: I. Micellar Electrokinetic Capillary Chromatography of Carbamate Insecticides with MEGA-Borate and SDS Surfactants, Journal of AOAC International, vol. 82, No. 6, pp. 1542-1549, Nov. 6, 1999. |
The Chemistry of Coconut Oil, accessed online Jul. 12, 2018 (Year: 2018) 5 pages. |
V. Bergeron, P. Cooper, C. Fischer. J. Giermanska-Kahn, D. Langevin, and A. Pouchelon, “Polydimethylsiloxane (PDMS)-based antifoams” Colloids and Surfaces A: Physicochemical and Engineering Aspects 122 (1997) 103-120. 18 pages. |
Walter, A. ; Suchy, S.E. ; Vinson, P.K., “Solubility properties of the alkylmethylglucamide surfactants”, Biochimica et Biophysica Acta (BBA)—Biomembranes, Elsevier, Amsterdam, NL, Amsterdam, NL, (Nov. 2, 1990), vol. 1029, No. 1, doi:10.1016/0005-2736(90)90437-S, ISSN 0005-2736, pp. 67-74, XP023354648, (Year: 1990). |
Zhu, Y-P, et al., “Surface Properties of N-Alkanoyl-N-Methy Glucamines and Related Materials”, J. of Surfactants and Detergents, vol. 2, No. 3, Jul. 1, 1999. 6 pages. |
International Search Report for PCT/EP2013/003290, dated Feb. 10, 2014. 5 pages. |
“Product Specification: N-octanoyl-N-methylglucamine”,Jun. 29, 2000 (Jun. 29, 2000), pp. 1-1, XP055098500, Retrieved from the Internet: URL:http://www.sigmaaldrich.com/Graphics/COfAInfo/SigmaSAPQM/SPEC/03/03129/03129-BULKSIGMA.pdf. |
International Search Report for PCT/EP2014/001722, dated Jan. 5, 2015. 3 pages. |
Synergen OS Innovation Spotlight, Sep. 1, 2013, 5 pages. |
International Search Report for PCT/EP2015/072453, dated Oct. 23, 2015. 2 pages. |
International Search Report for PCT/EP2016/063433, dated Aug. 24, 2016. 2 pages. |
International Preliminary Report on Patentability for PCT/EP2016/071750, Apr. 10, 2018, 5 pages. |
European Coatings Journal in 2009, vol. 07, pp. 26-28. |
International Search Report for PCT/EP2016/071750, dated Jan. 28, 2017, 3 pages. |
International Search Report for PCT/EP2016/074085, dated Jan. 3, 2017, 3 pages. |
“Phase behavior studies of quaternary systems containing N-lauroyl-N-methylglucamide/alcohol/alkane/water”, Yang et. al., Journal of Colloid and Interface Science, Academic Press, New York, NY, US, vol. 320, No. 1, Feb. 19, 2008, pp. 283-289 (Year: 2008). |
Anan Yaghmur et al., Langmuir, vol. 19, No. 4, pa 1063-1068, Feb. 1, 2003. |
Bouton et al, Langmuir, vol. 26, No. 11, pp. 7962-7966, Jun. 1, 2010. |
Eliana Areanas et al: Langmuir, vol. 12, No. 2, pp. 588-590, Jan. 1, 1996. |
Gregory J. McFann et al, Langmuir, vol. 9, No. 11, pp. 2942-2948, Nov. 1, 1993. |
Howard, et al., “Comparison of Flowback Aids: Understanding Their Capillary Pressure and Wetting Properties”, SPE Paper 122307, 2009, 16 pages. |
International Preliminary Report on Patentability for PCT/EP2015/070567, dated Dec. 23, 2016, 12 pages. |
International Search Report for PCT/EP2015/070567, dated Mar. 22, 2016, 5 pages. |
Panga, et al., “Wettability Alteration for Water-Block Prevention in High-Prevention in High-Temperature Gas Wells”, SPE Paper 100182, 2006, 13 pages. |
Penny, et al., “Field Studies of Drilling and Completion Fluids to Minimize Damage and Enhance Gas Production in Unconventional Reservoirs”, SPE Paper 107844, 2007, 11 pages. |
Pursley, et al., “Microemulsion Additive Enable Optimized Formation Damage Repair and Prevention” Paper 86556, 2004, SPE, 7 pages. |
Quintero, et al., “Proper Design Criteria of Microemulsion Treatment fluids for Enhancing Well Production”, SPE 144451, 2012, 10 pages. |
Rickman, et al., “Optimizing Microemulsion/surfactant Packages for Shale and Tight-Gas Reservoirs”, Paper 131107, 2010, SPE, 7 pages. |
S. Ray et al., Langmuir, vol. 10, No. 8, pp. 2511-2515, Aug. 1, 1994. |
S.Ezrahi et al., Journal of Colloid and Interface Science, vol. 191, No. 2, pp. 277-290, Jul. 1, 1997. |
Harada, Shigeharu, and Hideko Sahara. “Volumetric behavior of micellization of acyl-N-methylglucamide surfactants in water.” Langmuir 10.11 (1994): 4073-4076. (Year: 1994). |
English abstract for WO 01/37658, May 31, 2001, 1 page. |
International Preliminary Report on Patentability for App. No. PCT/EP2015/000370, dated Sep. 1, 2016, 12 pages. |
International Preliminary Report on Patentability for App. No. PCT/EP2015/000838, dated Oct. 27, 2016, 8 pages. |
International Preliminary Report on Patentability for App. No. PCT/EP2017/059115, dated Apr. 16, 2018, 6 pages. |
International Search Report for App. No. PCT/EP2019/050825, dated Feb. 25, 2019, 4 pages. |
The Pesticide Manual from the British Crop Protection Council, 16th Edition 2012, editor: C. MacBean, 2 pages. |
“Compendium of Herbicide Adjuvants” (www.herbicide-adjuvants.com, 2014) PPP-115, WS-54, 76 pages. |
Bayer CropScience, Material Safety Data Sheet, nonionic surfactants that are used in commercial formulations (e.g. Liberty®, from Bayer, EPA Reg. No. 264-829) 2011, 9 pages. |
Teske et al., 2004, The Role of Small Droplets in Classifying Drop Size Distributions, ILASS Americas 17th Annual Conference, Arlington VA, 8 pages. |
Vermeer et al., “The use of adjvanted formulations fordrift control”, Proc. ISAA 2013, pp. 323-329, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20190177558 A1 | Jun 2019 | US |