Claims
- 1. Stable plurilamellar vesicles comprising a plurality of lipid bilayers enclosing aqueous compartments containing at least one entrapped solute, the concentration of such solute in each compartment being substantially equal to the concentration of solute used to prepare the lipid vesicle, in which at least one antimicrobial agent is entrapped within the vesicles.
- 2. The stable plurilamellar vesicles of claim 1 wherein said antimicrobial agent is selected from the group consisting of beta-lactam antibiotics, tetracycline antibiotics, aminoglycoside antibiotics, macrolide antibiotics, and polymyxin antibiotics.
- 3. The stable plurilamellar vesicles of claim 2 wherein said antimicrobial agent is a beta-lactam antibiotic selected from the group consisting of penicillins and cephalosporins.
- 4. The stable plurilamellar vesicles of claim 2 wherein said antimicrobial agent is an aminoglycoside antibiotic selected from the group consisting of dihydrostreptomycin, streptomycin, gentamicin, kanamycin, and neomycin.
- 5. The stable plurilamellar vesicles of claim 4 wherein said aminoglycoside antibiotic is streptomycin.
- 6. The stable plurilamellar vesicles of claim 4 wherein said aminoglycoside antibiotic is gentamicin.
- 7. A method of treating infection in an animal, said method comprising administering a therapeutically effective amount of an antimicrobial agent contained in stable plurilamellar vesicles comprising a plurality of lipid bilayers enclosing aqueous compartments containing at least one entrapped solute, the concentration of such solute in each compartment being substantially equal to the concentration of solute used to prepared the lipid vesicle.
- 8. The method of claim 7 wherein the infection is intracellular.
- 9. The method of claim 7 wherein the infection is Brucella spp., Mycobacterium spp., Salmonella spp., Listeria spp., Francisella spp., Histoplasma spp., Corynebacterium spp., Coccidioides spp., Pseudomonas spp., or lymphocytic choriomeningitis virus.
- 10. The method of claim 7 wherein said antimicrobial agent is selected from the group consisting of beta-lactam antibiotics, tetracycline antibiotics, aminoglycoside antibiotics, macrolide antibiotics, and polymyxin antibiotics.
- 11. The method of claim 10 wherein said antimicrobial agent is an aminoglycoside antibiotic selected from the group consisting of dihydrostreptomycin, streptomycin, gentamicin, kanamycin, and neomycin.
- 12. The method of claim 11 wherein the infection is Brucella spp., Mycobacterium spp., Salmonella spp., Listeria spp., Francisella spp., Histoplasma spp., Corynebacterium spp., Coccidioides spp., Pseudomonas spp., or lymphocytic choriomeningitis virus.
- 13. The method of claim 12 wherein the infection is intracellular.
- 14. The method of claim 13 wherein the aminoglycoside antibiotic is gentamicin.
- 15. The method of claim 14 wherein the infection is Mycobacterium spp.
- 16. The method of claim 13 wherein the aminoglycoside antibiotic is streptomycin.
- 17. The method of claim 16 wherein the infection is Brucella spp.
Parent Case Info
This is a division of application Ser. No. 660,573, filed Oct. 12, 1984, now U.S. Pat. No. 5,030,453, which is a continuation-in-part of a copending application Ser. No. 633,481, filed Jul. 26, 1984 now U.S. Pat. No. 5,000,958 and a continuation-in-part of copending application Ser. No. 476,496, filed Mar. 24, 1983 now U.S. Pat. No. 4,522,803 and a continuation-in-part of copending application Ser. No. 521,176, filed Aug. 8, 1983 now U.S. Pat. No. 4,588,578.
US Referenced Citations (1)
Number |
Name |
Date |
Kind |
4522803 |
Lenk et al. |
Jun 1985 |
|
Divisions (1)
|
Number |
Date |
Country |
Parent |
660573 |
Oct 1984 |
|
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
633481 |
Jul 1984 |
|