The present disclosure relates generally to fume hoods. More specifically, the present disclosure relates to controlling the position of baffles for fume hoods.
A fume hood, also known as a fume cupboard, is a working environment with localized ventilation that is frequently used in workplaces such as laboratories. The purpose of a fume hood is to contain (or minimize the leakage of) gases, vapors, and other airborne contaminants from the interior of the fume hood into the immediate surrounding environment. A user, such as a laboratory technician, may work with potentially harmful biological or chemical materials that are placed inside a fume hood, and the immediate surrounding environment of the fume hood may be the user's breathing area. Accordingly, fume hood safety is of paramount importance in order to protect deadly harm the users. A ventilation system may draw air from the technician's surrounding environment, such as a laboratory, into a fume hood, and then safely vent the gases into another location.
Some designs of fume hoods feature a sash or sash window in the front opening of the fume hood. The sash can be raised to allow easier access to the materials and laboratory equipment contained within the fume hood. The sash can also be lowered when access is not required to further minimize the potential for materials to leak into the surrounding environment. Typically, the sash does not close fully, but instead maintains a narrow opening. This enables the ventilation system to continue to operate.
Some designs of fume hoods feature one or more baffles within the fume hood to direct airflow through the fume hood.
At least one embodiment relates to a fume hood control system for a fume hood. The fume hood includes a first baffle, a sash and a hood enclosure positioned within an environment. The hood enclosure includes a plurality of sidewalls forming a work chamber, a first aperture configured to permit an airflow between the environment and the work chamber, and a second aperture configured to permit the airflow between the work chamber. The sash is configured to at least partially cover the first aperture. The first baffle is configured to direct a path of the airflow within the work chamber. The first baffle is transitionable between a first number of positions. The fume hood control system includes a controller configured to determine, via a sash sensor, a current position of the sash. The controller is further configured to determine, via a baffle position sensor, a current position of the first baffle. The controller is further configured to control the operation of the first baffle to transition between the current position of the first baffle and an updated position of the first baffle in response to the current position of the sash, the current position of the first baffle, and one or more pressure measurements.
In at least one embodiment, a fume hood system is provided. The fume hood system includes a hood enclosure positioned within an environment. The hood enclosure includes a number of sidewalls forming a work chamber, a first aperture configured to permit airflow between the environment and the work chamber, and a second aperture configured to permit airflow between the work chamber and an exhaust valve. The fume hood system further includes a sash coupled to the first aperture and a baffle configured to direct a path of the airflow within the work chamber. The baffle is transitionable between a number of positions. The fume hood system further includes a sash sensor coupled to one of the number of sidewalls. The sash sensor is configured to measure a current position of the sash. The fume hood system further includes a first pressure sensor and a second pressure sensor. The first pressure sensor is configured to measure a pressure within the work chamber. The second pressure sensor is configured to measure a pressure of the environment. The fume hood system further includes a controller. The controller is coupled to the baffle, the pressure sensor, and the sash sensor. The controller is configured to determine, via the sash sensor, the current position of the sash. The controller is further configured to determine a current position of the baffle. The controller is further configured to receive one or more measurements from the first pressure sensor. The controller is further configured to receive one or more measurements from the second pressure sensor. The controller is further configured to control the operation of the baffle to transition between the current position of baffle and an updated position of the baffle based the current position of the sash, the current position of the baffle, the one or more measurements received from the first pressure sensor, and the one or more measurements received from the second pressure sensor.
In at least one embodiment, a method of controlling a baffle of a fume hood is provided. The method includes providing a sash and providing a first baffle configured to direct a path of an airflow. The baffle is transitionable between a first number of positions. The method further includes determining, via a controller, a current position of the baffle, measuring a current position of the sash with a sash sensor, sending, via the sash sensor, the current position of the sash to the controller, measuring a first pressure measurement within the fume hood with a first pressure sensor, sending, via the first pressure sensor, the first pressure to the controller, measuring a second pressure measurement outside the fume hood with a second pressure sensor, sending, via the second pressure sensor, the second pressure to the controller, and controlling, via the controller, the operation of the baffle to transition between the current position of the baffle and an updated position of the baffle based on the current position of the sash, the current position of the baffle, the first pressure measurement, and the second pressure measurement.
In at least one embodiment, a controller for controlling a position of a baffle in a fume hood system is provided. The controller includes one or more processors and a memory. The one or more processors are configured to determine, via a position sensor coupled to the controller, a current position of a sash coupled to the fume hood, determine, via a first actuator coupled to the controller, a current position of a first baffle coupled to the fume hood, the first baffle coupled to the first actuator and configured to direct a path of airflow within the fume hood, determine, via a differential pressure sensor coupled to the controller, a difference in pressure between a first pressure outside the fume hood and a second pressure within the fume hood, and control the operation of the first baffle to transition between the current position of the first baffle and an updated position of the first baffle based on the current position of the first baffle and the difference in pressure.
This summary is illustrative only and should not be regarded as limiting. Other aspects, inventive features, and advantages of the devices or processes described herein will become apparent in the detailed description set forth herein, taken in conjunction with the accompanying figures, wherein like reference numerals refer to like elements.
The disclosure will become more fully understood from the following detailed description, taken in conjunction with the accompanying figures, wherein like reference numerals refer to like elements, in which:
Before turning to the figures, which illustrate certain exemplary embodiments in detail, it should be understood that the present disclosure is not limited to the details or methodology set forth in the description or illustrated in the figures. It should also be understood that the terminology used herein is for the purpose of description only and should not be regarded as limiting.
The present disclosure relates to fume hoods, including, but not limited to, dynamically maintaining a stable vortex formed by airflow within a fume hood. In order to contain airborne contaminants within the interior of the fume hood, many systems use a ventilation system to draw air from a surrounding environment of the fume hood, through an interior of the fume hood, and to another location. In this way, contaminants produced within the fume hood are directed by an airflow within the fume hood to remain in the interior of the fume hood and ultimately be drawn out of the interior of the fume hood into the other location.
In a constant air volume (CAV) fume hood, the volume of air that is drawn through the fume hood remains constant. When the sash is lowered, the size of the opening into the fume hood (e.g., the sash opening) is reduced. If the volumetric flow rate of air remains constant, then the velocity of the air must increase as the size of the opening reduces. This increase in air velocity is often not necessary to maintain the efficacy of the fume hood, and so may lead to inefficiency and wasted energy. In some systems using a variable air volume (VAV) fume hood, the position of the sash is monitored, and the volumetric flow rate of air being drawn through the fume hood is adjusted in response. The volumetric flow rate of air being drawn through the fume hood may be adjusted by a variable exhaust valve, while fans drawing air through the fume hood remain operating at a constant speed. When the sash is lowered, the exhaust valve may partially close to lower the volumetric flow rate of air being drawn through the fume hood. This maintains the velocity of air at the sash opening and increases efficiency.
Previously, one of the measures used to verify operations within the fume hood was the feet per minute (FPM or “face velocity”) of air moving through the sash opening where the where the user interacts with the fume hood and performs various operations within the fume hood. It has since been documented in the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) code that face velocity is no longer a measure of fume hood safety. Rather, containment of air particles within the fume hood has been documented as the proper measure for verifying operations within the fume hood. Accordingly, many systems verify containment via face velocity. For example, many systems verify containment by measuring a face velocity of 100 FPM. However, face velocity in general does not account for dynamic changes occurring within the fume hood. For instance, the activation of a burner (e.g., a “Bunsen Burner”) may provide a significant change in pressure within the fume hood that jeopardizes the safe containment of air particles, even though the measured FPM remains at 100. Further, the placement of various equipment in the fume hood may invoke turbulence in the air moving through the fume hood, thereby disrupting safe containment while, again, the measured FPM remains at 100. Therefore, there is a need for a system that actively measures changing conditions within the fume hood and dynamically adjusts the airflow through the fume hood such that containment is properly maintained.
Various embodiment disclosed herein relate to a mechanism that monitors conditions pertaining to maintaining a stable vortex of air and dynamically controls the position of one or more aerodynamic baffles in a fume hood, thereby maintaining the stable vortex of air inside the working area of the fume hood which continuously absorbs and ejects vapors while simultaneously pulling in fresh air. The one or more baffles may be controlled to change position in order to respond to changes in conditions regarding the fume food, such as raising or lowering the sash. The monitoring and dynamic control of the stable vortex within the fume hood is a significantly more effective method to ensure containment in fume hoods as opposed to face velocity. Moreover, maintaining a stable vortex within the fume hood may achieve containment without the need for a face velocity of 100 FPM, thereby allowing for reductions in energy consumption and improved efficiency. In some embodiments disclosed herein, the dynamic control system further leverages control over an exhaust valve to maintain the stable vortex of air.
Various embodiments disclosed herein relate to a mechanism for dynamically controlling the position of one or more baffles in a fume hood, thereby maintaining a stable vortex optimized for safe containment.
Turning now to
Referring now to
In some embodiments, the fume hood 101 further includes a controller 260 coupled to the upper housing 103 and a first pressure sensor 220 coupled to the upper housing 103. The first (e.g., interior) pressure sensor 220 may measure an air pressure within the upper housing 103. For example, the first pressure sensor 220 may measure the air pressure in the main chamber region 106 described above in regards to
In some embodiments, the fume hood 101 further includes a sash position sensor 230. The sash position sensor 230 may measure the position of the sash 104. The sash position sensor 230 may be configured to sense condition data (e.g. position, movement, speed, etc.) associated with a sash and/or the surrounding environment, such as the sash 104 depicted in
In some embodiments, the controller 260 uses information provided by the sash position sensor 230 to determine the current position of the sash 104. This information is transmitted to a variable air volume (VAV) controller to adjust the flow rate in response to the position of the sash 104. In other embodiments, the controller 260 may use information provided by a VAV controller, or other sensors in the fume hood 101, to determine the position of the sash 104. In some embodiments, the controller 260 is configured to communicate using a wireless communication protocol, including but not limited to, Wi-Fi (e.g. 802.11x), Wi-Max, cellular (e.g. 3G, 4G, LTE, CDMA, etc.), LoRa, Zigbee, Zigbee Pro, Bluetooth, Bluetooth Low Energy (BLE), Near Field Communication (NFC), Z-Wave, 6LoWPAN, Thread, RFID, and other applicable wireless protocols
In some embodiments, the handles 209 feature force switches that determine when a handle is being pulled upwards or pushed downwards. The state of these switches may indicate to the controller 260 if a person is attempting to raise or lower the sash 104, and be used as an alternative to, or in conjunction with the sash position sensor 230 to determine the position of the sash 104. The measured position of the sash 104 may be used to determine a size of the opening 109 described above in regards to
Referring now to
As shown, air flowing through the fume hood 101 is distributed on a path that creates a vortex 320. As suggested above, the vortex 320 may be necessary for optimal safety conditions within the upper housing 103. Generally, the vortex 320 is shaped as a result of the interior shape of the upper housing 103 and the positions of the baffle assembly 105.
In some embodiments, the pressure sensor 220 is located as shown, within the main chamber region 106. However, it should be appreciated to one skilled in the art that the pressure sensor 220 may be located in any number of locations on and/or within the upper housing 103 to detect a pressure measurement within the work chamber, including, but not limited to, the lower chamber region 107, the main chamber region 106, and the upper chamber region 108.
Referring now to
In some embodiments, the first actuator 301 and/or the second actuator 302 are stepper motors. In other embodiments, the first actuator 301 and the second actuator 302 are another type of motor. The first actuator 301 and/or the second actuator 302 may use electricity supplied by mains power. The mains power may be converted through use of a transformer and/or AC to DC converter to achieve the electrical supply that the first actuator 301 and/or the second actuator 302 require. The first actuator 301 and/or the second actuator 302 may be powered by a battery, or a supplemental battery may be used in addition to mains power. Where either or both of the first actuator 301 and the second actuator 302 are powered by a battery, the first actuator 301 and/or the second actuator 302 are able to control the rotational position the first baffle 311 and/or the second baffle 312 of a sash in the event of a power failure (the mains power, for example). Where the supplemental battery is rechargeable, it may be recharged by mains power.
Referring now to
Referring specifically to
In some embodiments, the sash position sensor 230 measures a sash position 504, as described above in regards to
In some embodiments, the first pressure sensor 220 determines the air pressure within the upper housing 103 and provides an interior pressure measurement 506. Similarly, the second pressure sensor 250 determines the air pressure in the room 102 and provides an exterior pressure measurement 507. A pressure differential 508 may be determined by comparing \the interior pressure measurement 506 and the exterior pressure measurement 507. Thus, the pressure differential 508 may be determined by, or provided to, the controller 260. In other embodiments, and as described above in regards to
In some embodiments, the controller 260 determines the updated baffle geometry 513 by receiving and interpreting the upper baffle position 501 and the lower baffle position 502. From the current baffle geometry 503, the controller 260 may determine a number of aerodynamic properties regarding airflow through the upper housing 103. For example, the controller 260 may be configured to predict various results that may occur in regards to a vortex formed by air flowing though the upper chamber 103, such as the vortex 320 depicted in
In some embodiments, once the controller 260 has received or determined the current baffle geometry 503, the sash position 504, and the pressure differential 508, the controller 260 may apply one or more processing circuits and memories to determine the updated baffle geometry 513, the exhaust valve position 505, and a status and/or warning message 514. Additionally, or as part of the determining the aforementioned outputs, the controller 260 may determine an overall state of containment within the upper housing 103. The second baffle geometry 513 and the exhaust valve position 505 may be determined to optimize the various properties of the airflow within the upper chamber 103. For example, the updated baffle geometry 513 and the exhaust valve position 505 may be calculated to ensure that the vortex 320 is articulated in a robust manner that is unlikely to be interrupted by dynamic changes to the operating environment within the upper housing 103. In some embodiments, the updated baffle geometry 513 is partitioned into an updated upper baffle position 511 to be provided to the upper baffle actuator 311 and a lower baffle position 512 to be provided to the lower baffle actuator 312. In other embodiments, and as suggested above, a generalized updated baffle geometry 513 may not be determined and the two separate determinations of updated baffle positions are immediately passed to the respective actuators. The status and/or warning message 514 may be displayed to a user via the user display 240 to indicate various operating parameters of the fume hood 101 including, but not limited, to, the interior pressure 506, the exterior pressure 507 and a face velocity. Further, the status and/or warning message 514 may communicate to the user a warning message identifying that containment is nearing unsafe conditions or an alert that containment is in an unsafe condition. In some embodiments, the user display 260 may provide a warning message or alert message until the various dynamic updates described herein result in safer conditions.
Referring specifically to
In some embodiments, the sash position sensor 230 may be coupled to an exhaust valve actuator 550, and the exhaust valve actuator 550 may be coupled to the exhaust valve 111. The exhaust valve actuator 550 may operate to move the exhaust valve 111 between various rotational positions between open and closed (e.g., between a position where air is freely traveling through the exhaust valve 111 and a position where air is completely blocked by the exhaust valve 111) to an exhaust valve position 505, and may further operate to determine a current rotational position of the exhaust valve 111. The exhaust valve actuator 550 may operate similar to the upper baffle actuator 311 as described above in regards to
In some arrangements, and as shown, the exhaust valve actuator 550 receives the sash position 504 from the sash position sensor 230 and controls the exhaust valve 111 independently of the controller 260. As suggested above, in a VAV system, the position of the sash is monitored, and the volumetric flow rate of air being drawn through the fume hood is adjusted in response. In cases where it is desirable ensure that the fume hood achieves safe containment primarily through achieving a target face velocity (e.g., 100 FPM), such an arrangement may be beneficial, as the exhaust valve 111 may be open or closed directly responsive to opening or closing of the sash 104. Thus, by calibrating the fan 113 to operate at a sufficient speed, the exhaust valve actuator may operate in direct communication with the sash position sensor 230 to move towards an open position in response to the sash 104 being raised (in order to increase face velocity through the opening 109) and move towards a closed position in response to the sash 104 being lowered (in order to decrease face velocity through the opening 109), thereby maintaining a consistent face velocity that meets safety requirements. However, in other arrangements, the exhaust valve actuator 550 is controlled by the controller 260 as described in regards to
It should be noted that the flow 500 shown in
The construction and arrangement of the systems and methods as shown in the various exemplary embodiments are illustrative only. Although only a few embodiments have been described in detail in this disclosure, many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.). For example, the position of elements can be reversed or otherwise varied and the nature or number of discrete elements or positions can be altered or varied. Accordingly, all such modifications are intended to be included within the scope of the present disclosure. The order or sequence of any process or method steps can be varied or re-sequenced according to alternative embodiments. Other substitutions, modifications, changes, and omissions can be made in the design, operating conditions and arrangement of the exemplary embodiments without departing from the scope of the present disclosure.
As utilized herein with respect to numerical ranges, the terms “approximately,” “about,” “substantially,” and similar terms generally mean +/−10% of the disclosed values, unless specified otherwise. As utilized herein with respect to structural features (e.g., to describe shape, size, orientation, direction, relative position, etc.), the terms “approximately,” “about,” “substantially,” and similar terms are meant to cover minor variations in structure that may result from, for example, the manufacturing or assembly process and are intended to have a broad meaning in harmony with the common and accepted usage by those of ordinary skill in the art to which the subject matter of this disclosure pertains. Accordingly, these terms should be interpreted as indicating that insubstantial or inconsequential modifications or alterations of the subject matter described and claimed are considered to be within the scope of the disclosure as recited in the appended claims.
It should be noted that the term “exemplary” and variations thereof, as used herein to describe various embodiments, are intended to indicate that such embodiments are possible examples, representations, or illustrations of possible embodiments (and such terms are not intended to connote that such embodiments are necessarily extraordinary or superlative examples).
The term “coupled” and variations thereof, as used herein, means the joining of two members directly or indirectly to one another. Such joining may be stationary (e.g., permanent or fixed) or moveable (e.g., removable or releasable). Such joining may be achieved with the two members coupled directly to each other, with the two members coupled to each other using a separate intervening member and any additional intermediate members coupled with one another, or with the two members coupled to each other using an intervening member that is integrally formed as a single unitary body with one of the two members. If “coupled” or variations thereof are modified by an additional term (e.g., directly coupled), the generic definition of “coupled” provided above is modified by the plain language meaning of the additional term (e.g., “directly coupled” means the joining of two members without any separate intervening member), resulting in a narrower definition than the generic definition of “coupled” provided above. Such coupling may be mechanical, electrical, or fluidic.
References herein to the positions of elements (e.g., “top,” “bottom,” “above,” “below”) are merely used to describe the orientation of various elements in the FIGURES. It should be noted that the orientation of various elements may differ according to other exemplary embodiments, and that such variations are intended to be encompassed by the present disclosure.
The hardware and data processing components used to implement the various processes, operations, illustrative logics, logical blocks, modules and circuits described in connection with the embodiments disclosed herein may be implemented or performed with a general purpose single- or multi-chip processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, or, any conventional processor, controller, microcontroller, or state machine. A processor also may be implemented as a combination of computing devices, such as a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. In some embodiments, particular processes and methods may be performed by circuitry that is specific to a given function. The memory (e.g., memory, memory unit, storage device) may include one or more devices (e.g., RAM, ROM, Flash memory, hard disk storage) for storing data and/or computer code for completing or facilitating the various processes, layers and modules described in the present disclosure. The memory may be or include volatile memory or non-volatile memory, and may include database components, object code components, script components, or any other type of information structure for supporting the various activities and information structures described in the present disclosure. According to an exemplary embodiment, the memory is communicably connected to the processor via a processing circuit and includes computer code for executing (e.g., by the processing circuit or the processor) the one or more processes described herein.
The present disclosure contemplates methods, systems and program products on any machine-readable media for accomplishing various operations. The embodiments of the present disclosure may be implemented using existing computer processors, or by a special purpose computer processor for an appropriate system, incorporated for this or another purpose, or by a hardwired system. Embodiments within the scope of the present disclosure include program products comprising machine-readable media for carrying or having machine-executable instructions or data structures stored thereon. Such machine-readable media can be any available media that can be accessed by a general purpose or special purpose computer or other machine with a processor. By way of example, such machine-readable media can comprise RAM, ROM, EPROM, EEPROM, or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to carry or store desired program code in the form of machine-executable instructions or data structures and which can be accessed by a general purpose or special purpose computer or other machine with a processor. Combinations of the above are also included within the scope of machine-readable media. Machine-executable instructions include, for example, instructions and data which cause a general purpose computer, special purpose computer, or special purpose processing machines to perform a certain function or group of functions.
Although the figures and description may illustrate a specific order of method steps, the order of such steps may differ from what is depicted and described, unless specified differently above. Also, two or more steps may be performed concurrently or with partial concurrence, unless specified differently above.
It is important to note that any element disclosed in one embodiment may be incorporated or utilized with any other embodiment disclosed herein. For example, the upper baffle 301, shown as positioned in
Number | Name | Date | Kind |
---|---|---|---|
4177718 | Grow | Dec 1979 | A |
4377969 | Nelson | Mar 1983 | A |
4706553 | Sharp et al. | Nov 1987 | A |
4741257 | Wiggin et al. | May 1988 | A |
4773311 | Sharp | Sep 1988 | A |
4934256 | Moss | Jun 1990 | A |
5115728 | Ahmed et al. | May 1992 | A |
5205783 | Dieckert | Apr 1993 | A |
5385505 | Sharp et al. | Jan 1995 | A |
5415583 | Brandt | May 1995 | A |
5545086 | Sharp et al. | Aug 1996 | A |
5810657 | Pariseau | Sep 1998 | A |
5946221 | Fish, Jr. | Aug 1999 | A |
5988860 | Hefferen et al. | Nov 1999 | A |
6154686 | Hefferen | Nov 2000 | A |
6272399 | Fish, Jr. | Aug 2001 | B1 |
6692346 | Bastian | Feb 2004 | B2 |
6914532 | Crooks | Jul 2005 | B2 |
6923715 | Kreuzer et al. | Aug 2005 | B2 |
7470176 | Morris | Dec 2008 | B2 |
9541378 | Charles | Jan 2017 | B2 |
9945571 | Omura et al. | Apr 2018 | B2 |
10109071 | Charles | Oct 2018 | B2 |
RE48081 | Donohue | Jul 2020 | E |
10755555 | Norton et al. | Aug 2020 | B2 |
10917740 | Scott et al. | Feb 2021 | B1 |
11801538 | Desrochers | Oct 2023 | B2 |
20040014417 | Katz | Jan 2004 | A1 |
20130233411 | Donohue | Sep 2013 | A1 |
20140094106 | Mcllhany | Apr 2014 | A1 |
20140120819 | Stakutis | May 2014 | A1 |
20230278082 | Aniulis | Sep 2023 | A1 |
Number | Date | Country |
---|---|---|
69814036 | Jan 1997 | DE |
0954390 | Jan 1998 | EP |
2007061750 | Mar 2007 | JP |
Number | Date | Country | |
---|---|---|---|
20230278081 A1 | Sep 2023 | US |