1. Field of the Invention
This invention relates generally to devices for supporting cables and, in particular, to hangers for securing cables to support structures.
2. Description of Related Art
Cable hangers are commonly used to secure cables to structural members of, for example, antenna towers and or along tunnel walls. Generally, each cable is attached to a structural member by cable hangers mounted at periodically-spaced attachment points.
Antenna towers and or tunnels may be crowded due to the multiplicity of cables required for signal-carrying. Over time, as systems are added, upgraded and or expanded, installation of additional cables may be required. To conserve space, it is desirable for each set of cable hangers to secure more than a single cable. Certain cable hangers have been constructed to secure multiple cables; other cable hangers have a stackable construction that permits multiple cable hangers to be interlocked extending outwardly from each mounting point/structural member. Stacked and multiple-cable-type cable hangers significantly increase the number of cables mountable to a single attachment point.
Prior vertically stackable multiple cable capable cable hangers, for example as disclosed in US Patent Application Publication US 2004/0061030 by Goodwin et al, required opening of the existing cable hanger to insert an additional cable into an unused cable holding space of the cable hanger. The prior cable hanger incorporated mounting hardware comprising a threaded rod that extended through each additional cable hanger in the vertical stack. Besides a significant materials expense, extending the cable hangers into stacked configurations requires initial installation of longer threaded rod than necessary and or exchange of mounting hardware that momentarily removes support for the existing cables, increasing installation complexity and costs.
The various single and multiple cable hangers of different capacities necessitate manufacturing, distribution and storage costs for a family of different hangers and similarly a range of different mounting hardware of varying lengths for each anticipated hanger stack configuration. Competition within the cable hanger market has focused attention on ease of use, reliability, expandability and overall reductions in manufacturing, distribution and installation costs.
Therefore, it is an object of the invention to provide a device that overcomes deficiencies in the prior art.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with a general description of the invention given above, and the detailed description of the embodiments given below, serve to explain the principles of the invention.
With reference to
The cable 40 may be further retained between the shell halves 12, 14 by a plurality of gripping finger(s) 42 extending into the cable space 44. The gripping finger(s) 42 are adapted to deflect as a cable 40 is inserted into the cable space 44 and the shell halves 12, 14 snap-interlock together, creating a bias against the cable 40 which creates a secure grip upon a desired standard cable 40 outer diameter. The gripping finger(s) 42 operate to extend a range of acceptable cable 40 outer diameter variability resulting from, for example, different production batches of cable and or different cable manufacturers. Retention of the cable 40 within the cable space 44 may be further and or alternatively enhanced by the addition of rib(s) 48 to the respective inner surfaces 20, 22 of the shell halves 12, 14 and or gripping finger(s) 46, if present. The rib(s) 48 may be, for example, spaced apart in a parallel configuration to coincide with the expected spacing of corrugations formed in an outer conductor of the cable 40.
With continued reference to
Multiple cable hanger(s) 10 may be vertically snap-interlocked together as shown in
The outer surfaces 24, 26 of the cable hanger 10 may be reinforced via addition of a reinforcing fin 71 extending from the outer surfaces 24, 26 to their respective vertical mating surface(s) 63. Also, the reinforcing fin 71 may extend laterally to join the cylindrical mounting post(s) 70.
A cable hanger 10 may also be coupled with a cable hanger 10, side to side through the addition of suitable side interlocking means for latching such as at least one side latch 72 that mates with a corresponding side aperture 76 in the second cable hanger 10. As shown in
The various closure flange 28 to closure fin 30 and interlock flange 62 to interlock fin 64 pairs are arranged upon the cable hanger 10 clear of the connection side 74 area to allow each to be engaged and or released without interfering with a side attached cable hanger 10. Further, each of the side by side coupled cable hanger(s) 10 may be stacked vertically as described herein above to form a high density cable hanger 10 assembly, as shown for example in
One skilled in the art will recognize that the interlock flange(s) 62, closure flange(s) 28, side latch(s) 72 and their respective mating fin(s) and or aperture(s) may alternatively be formed in numerous well known alternative configurations having an equivalent effect of securely snap-interlocking the respective components to each other. Therefore, each of the selected labels used for these elements should be recognized as functionally descriptive for clarity rather than as specific structural limitations to the type of snap-interlocking that may be applied when practicing the various embodiments of the invention. The cable hanger 10 may be cost efficiently formed by injection molding as a unitary structure from a suitable polymer resin, such as conventional thermoset or thermoplastic resins. Suitable injection molding materials include polycarobonate, polypropylene, polyoxymethylene (POM), polybutylene terephthalate (PBT) and acetal copolymer or the like. The selected polymer resin may be mixed with glass or mineral materials. Depending upon the material used and the intended application, additives such as carbon black for UV protection may be included. For underground and or tunnel applications, non-halogenated fire retardant plastics may be used. In use, a cable 40 is positioned within one of the inner surfaces 20, 22 and the shell halves 12, 14 folded towards each other along the assembly hinge(s) 16, 18 to surround the cable 40 within the cable area 44. As the shell halves 12, 14 close upon each other, spring finger(s), if present, are deflected against the cable 40, creating a bias against and thereby gripping the cable 40 securely, the various guide surfaces engage to ensure alignment between the shell halves 12, 14 and the closure flange(s) 28 and closure fin(s) 30 snap-interlock with each other. The cable hanger 10 may then be secured by mounting hardware to a desired mounting point, for example via a bolt 52 or the like which is, for example, inserted through the bolt hole(s) 54, 55 and secured with a nut 50 tightened against the recessed nut surface 56.
Once a single cable hanger 10 has been secured, additional cable hanger(s) 10 may be vertically or connection side 74 to connection side 74 snap interlocked as described herein. Because the base cable hanger 10 is secured using a single set of mounting hardware coupled only to the base cable hanger 10, further cable hanger(s) 10 may be added without disassembly or changing out of the mounting hardware. Therefore, to install a single cable hanger, a multiple cable hanger assembly, or to add additional cable 40 carrying capacity to an existing cable hanger 10 installation over time only a single type of cable hanger 10 is required. Further, only a single type of mounting hardware needs to be distributed with the cable hangers independent of the number of cable hangers that may be installed originally and over time as the number of required cables changes. Still further, installation of additional cable hanger(s) 10 to an existing installation is simplified because the existing cable hanger(s) 10 need not be released even momentarily.
A second embodiment of the invention is shown in
Instead of stacking additional cable hanger(s) 10 vertically via a vertical motion engaged snap attachment, the second embodiment demonstrates a means for interlocking where stacking of additional front and rear shell half 12, 14 pairs one upon another is via a key 78 into slot 80 sliding connection, for example as shown in
Once applied, the key(s) 78 into slot(s) 80 sliding connection is retained, for example, by an end stop 86 of the slot(s) 80 at a closed end 88 and by interlocks such as locking wedge(s) 90, for example as shown in
Cable hangers are frequently installed supporting vertical cable runs, for example up radio towers. To improve the overall strength of the stacked hanger key into slot sliding connection, the key(s) and slot(s) are preferably aligned normal to a longitudinal axis of the front and rear shell half inner mounting surface(s) 20, 26. Thereby, the load upon the key into slot interconnection is normal to the key into slot insertion direction.
Side to side hanger snap connection of the front and rear shell halves 12, 14 of the second embodiment is strengthened by a means for latching including a plurality of fin(s) 36 that mate with a corresponding plurality of shoulder(s) 38 formed in the connection side 74. Also, the means for latching uses side latch 72 and corresponding side aperture 76 pairs. The side latch 72 is demonstrated as a mushroom head formed by multiple prongs arranged in a circle. The circular mushroom head into corresponding circular aperture configuration combines ease of insertion with improved retention characteristics. An alignment pin 82 and corresponding alignment hole 84 may be applied to initially guide the two connection side(s) 74 toward one another.
The first embodiment demonstrates a mounting bolt passing through both the front and rear shell halves 12, 14. In the second embodiment, the front shell half bolt hole 54 is configured with a recessed nut surface 56 in the top side 75, enabling connection of a cable hanger 10 stack of any desired number of cables, for example as shown in
From the foregoing, it will be apparent that the present invention brings to the art an expandable cable mounting solution having improved performance, ease of installation and significant manufacturing and installation cost efficiencies.
Table of Parts
Where in the foregoing description reference has been made to ratios, integers, components or modules having known equivalents then such equivalents are herein incorporated as if individually set forth.
While the present invention has been illustrated by the description of the embodiments thereof, and while the embodiments have been described in considerable detail, it is not the intention of the applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details, representative apparatus, methods, and illustrative examples shown and described. Accordingly, departures may be made from such details without departure from the spirit or scope of applicant's general inventive concept. Further, it is to be appreciated that improvements and/or modifications may be made thereto without departing from the scope or spirit of the present invention as defined by the following claims.
This application is a Continuation-In-Part of U.S. Utility patent application Ser. No. 10/709,489 by David Low et al, filed May 10, 2004 and hereby incorporated by reference in the entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 10709489 | May 2004 | US |
Child | 11618124 | Dec 2006 | US |