This application relates to stackable containers. An example embodiment provides a body that may be used in a dispenser to hold flowable materials such as sauces. Such dispensers have application, for example, in the food preparation industry.
Containers are widely used for storing and dispensing fluids. For example, restaurants may use dispensing containers to dispense sauces and the like. Some such dispensers are portion-control dispensers that may be set to repeatably dispense set quantities of flowable materials.
As trade becomes more international, manufacturers are increasingly supplying worldwide markets from manufacturing facilities that may be located anywhere in the world. Shipping costs are becoming an important factor in the cost of supplying and obtaining products.
Most means of transporting cargo (e.g.: planes, trains, trucks, ships, etc.) have limitations on both the volume and the weight of the cargo they can transport in one load. For products that are relatively light in weight, such as empty containers, the shipping cost is determined primarily by the packed volume of the containers since empty containers typically have a high volume to weight ratio.
There is a need to reduce the cost of supplying containers.
This invention provides container bodies that have a configuration that facilitates densely packing the container bodies together for shipping. Shipping costs can be significantly reduced by fitting more container bodies into shipping containers of the same size and/or shipping the same number of container bodies in smaller shipping containers. Embodiments provide container bodies of the type that have openings at first and second opposed ends. Such container bodies may be used in dispensers of the type in which a flowable material is dispensed from an opening at one end of the container body while the container body can be refilled through an opening at the other end of the container body.
One aspect of the invention provides a fluid dispensing apparatus comprising a container body with a first opening at a first end of the container body and a second opening at a second end of the container body. The container body is dimensioned such that the second end of the container body can be at least partially inserted into the first opening of another identical container body.
In some embodiments, the container body is dimensioned such that the second end of the container body can be inserted a distance of at least half the length of the container body into the first opening of another identical container body.
In some embodiments, the container body is dimensioned such that the second end of a second identical container body can be inserted a distance of at least half of the length of the container body into the first opening of the container body.
In some embodiments, the radial cross sections of a first portion of the container body near the first end are generally rectangular in shape and the radial cross sections of a second portion of the container body near the second end are generally circular in shape.
In some embodiments, the radial cross sections of the first portion of the container body near the first end are generally square in shape. In some embodiments, the radial cross sections of the first portion of the container body near the first end have the shape of a square with cut off corners.
In some embodiments, the a fluid dispensing apparatus further comprises a first cap, the first cap operable to seal the first opening and a second cap, the second cap operable to seal the second opening.
In some embodiments, the second cap comprises a fluid dispensing cap.
In some embodiments, the second cap comprises a screw cap and a region of the container body adjacent to the second opening comprises threading wherein the screw cap is operable to interface with the threading to seal the second opening.
In some embodiments, the container body is made of one or more flexibly deformable materials.
Some embodiments comprise a shipping container in which a plurality of container bodies are packed. The container bodies are packed in a plurality of rows of stacked together container bodies. Each of the rows is adjacent to at least one other row. In some such embodiments the radial cross-section of the container bodies in their portions near the first end have flat faces and the flat faces of the container bodies in one of the rows are against the flat faces of the container bodies in the at least one adjoining row.
Another aspect of the invention provides a fluid dispenser comprising a chamber defined in part by a container body comprising a first part connected to and in fluid communication with a second part. The chamber has a first end and a second end. The second part of the chamber is sized to be received inside the first part of the chamber.
In another embodiment, the radial cross section of the first part of the chamber is square shaped and the second part is tubular.
In another embodiment, the second end of the chamber is narrower than the second part of the chamber.
In another embodiment, the first part is tapered away from the first end of the chamber.
In another embodiment, a bore of the chamber comprises one or more longitudinal grooves at the second end of the chamber.
In another related embodiment, the bore of the chamber comprises one or more longitudinal grooves at the first end of the chamber.
In another embodiment, the dispenser further comprises a nozzle coupled to and in fluid communication with the second end of the chamber.
In another related embodiment, the nozzle is supported on a cap at the second end of the chamber.
In a further related embodiment, the cap comprises a support surface extending past the nozzle in an axial direction.
In a further related embodiment, the dispenser further comprises a cover coupled to the first end.
In a further related embodiment, the cover comprises at least one aperture.
In a further related embodiment, a fluid dispensing mechanism is coupled to the cover.
Another embodiment of the invention provides a fluid dispenser comprising a chamber defined in part by a container body comprising a first part connected to and in fluid communication with a second part. The second part has substantially the same length as the first part. The chamber has a first end and a second end. The first end is bigger than the second end. The second part of the chamber is sized to be substantially received inside the first part of the chamber through the first opening. The first part is shaped to have a radial cross section of a square and the second part is tubular. The second part is narrower than the first part and the first part is tapered away from the first opening to meet the second part.
Another aspect of the current disclosure provides a method of stacking in a container a plurality of container bodies for use in fluid dispensers, each one of the plurality of container bodies having a first end and a second end. The first end is larger in size than the second end. The container bodies each comprise a first part connected to a second part. The first part includes the first end and the second part includes the second end. The second part of the container body is sized to be received inside the first part of the container body. The method comprises: nesting multiple ones of the plurality of chambers into each other such that for each two of the plurality of container bodies nested together, the second part of one of the two container bodies is received inside the first part of the other one of the two container bodies; and tightly stacking the coupled container bodies inside the shipping container to reduce unused space inside the shipping container.
Another aspect of the current disclosure provides a method of stacking in a shipping container a plurality of container bodies for use in fluid dispensers, each one of the plurality of container bodies having a first end and a second end. The first end is larger in size than the second end. The container body comprising a first part connected to a second part. The first part is coupled to the first end and the second part is coupled to the second end, wherein the second part of the container body is sized to fit substantially inside the first part of the container body. The method comprising: coupling multiple ones of the plurality of container bodies to each other such that for each two of the plurality of container bodies coupled to each other, the second part of one of the two container bodies substantially fits inside the first part of the other one of the two container bodies; and tightly stacking the coupled container bodies inside the shipping container to reduce unused space inside the shipping container.
Further aspects of the invention and features of example embodiments are illustrated in the accompanying drawings and/or described in the following description.
The accompanying drawings illustrate non-limiting example embodiments of the invention.
Throughout the following description specific details are set forth in order to provide a more thorough understanding to persons skilled in the art. However, well known elements may not have been shown or described in detail to avoid unnecessarily obscuring the disclosure. The following description of examples of the technology is not intended to be exhaustive or to limit the system to the precise forms of any example embodiment. Accordingly, the description and drawings are to be regarded in an illustrative, rather than a restrictive, sense.
Container body 12 has a first opening 14A and a second opening 14B. Openings 14A and 14B are at terminal ends of container body 12. Opening 14A is formed at an end of first part 12A. Opening 14B is formed at an end of second part 12B. In the illustrated embodiment, opening 14A is at an upper end of container body 12 and opening 14B is at a lower end of container body 12. In this embodiment when dispenser 10 is oriented for normal use, opening 14A is above opening 14B.
Upper opening 14A is closed by an upper closure 16A. In the illustrated embodiment upper closure 16A is removably coupled to container body 12 at upper opening 14A by screw threading. In other embodiments, upper closure 16A is removably coupled by other means. In some embodiments, when upper closure 16A is coupled to container body 12, it prevents a substance from exiting container body 12 via upper opening 14A. In some embodiments, upper closure 16A has a member which can be manipulated to either allow or prevent substances from exiting container body 12 via an aperture (not shown) in upper opening 14A (e.g.: an air release valve).
Lower opening 14B is closed by a lower closure 16B. In the illustrated embodiment lower closure 16B is removably coupled to container body 12 at lower opening 14B by screw threading. In other embodiments, lower closure 16B is removably coupled by other means. In some embodiments, when lower closure 16B is coupled to container body 12, it prevents a substance from exiting container body 12 via lower opening 14B. In some embodiments, lower closure 16B has a member which can be manipulated to either allow or prevent substances from exiting container body 12 via lower opening 14B.
In some embodiments, lower closure 16B includes a valve (not shown) which can allow or prevent a substance from exiting container body 12 depending on the difference between the pressure inside container body 12 and the pressure outside container body 12. In some embodiments, container body 12 is made of a flexibly deformable material, and container body 12 may be “squeezed” in order to increase the pressure therein and thereby force the contents of container body 12 to exit through lower opening 14B via the valve (not shown). In some embodiments, lower closure 16B incorporates a portion control dispensing mechanism.
First part 12A may be configured to have a cross-sectional shape that is same or different from the cross-sectional shape of second part 12B. By way of non-limiting example, either or both of first part 12A and second part 12B may be cylindrical having circular cross section taken on a planet perpendicular to direction D, or may have one or more defined edges forming cross sectional shapes such as squares, rectangles, triangles or other shapes taken on the same plane. In a preferred embodiment, first part 12A has flattened faces so that it is square with rounded or cut off corners in cross-section.
In some embodiments, the cross sections of container body 12, taken in the plane perpendicular to direction D, are circles. The diameters of the circular cross sections of upper portion 12A are larger than the diameters of the circular cross sections of the lower portion 12B. Thus a lower portion 12B of a first container body 12 can be inserted into an upper portion 12A of a second container body 12 through upper opening 14A. In some embodiments, such insertion requires removal of upper closure 16A and/or lower closure 16B.
Each of first and second parts 12A and 12B may also have a cross-sectional profile that is uniform or non-uniform. For example, first part 12A may have the same cross sectional area taken in a plane perpendicular to direction D at different points along its length. Alternatively, first part 12A may be tapered away from opening 14A such that the cross sectional area taken near second part 12B is smaller than the cross sectional area taken near opening 14A. First part 12A and second part 12B may also have a non-cylindrical shape with rounded edges. Independent of the shape of first part 12A and second part 12B, first part 12A is sized to be larger than second part 12B such that second part 12B may fit through opening 14A to be received entirely or substantially within first part 12A.
In cases where closure 16A and/or closure 16B attach to container body 12 by a connection means such as snapping on that do not require them to be round then opening 14A and/or 14B may have non-round shapes. Opening 14A and 14B may have the same shapes or different shapes. For example, opening 14A may be square and opening 14B may be round. All that is required is that opening 14A is sized to have large enough inner dimensions that opening 14B and second part 12B can pass through opening 14A to be entirely or substantially received in part 12A.
Openings 14A may bear screw threads for attaching removable cover 16A (see
Similarly, opening 14B may bear screw threads for attaching removable cover 16B (see
Covers 16A and 16B may be made from the same material as container body 12 or may be made from other materials.
The features of container body 12, specifically the relationship between first part 12A, second part 12B and openings 14A and 14B may allow for stacking a plurality of container bodies 10 and loading them into a shipping container such that the total volume occupied by the stacked container bodies is significantly less than the total volume of the container bodies packed individually in the same container. This may allow loading more container bodies inside one shipping container and reducing the overall associated shipping costs in cases where the shipping costs for such container bodies is determined primarily by the dimensions of the shipping container in which the container bodies are shipped.
Stacks 200 may be formed while cover 16B is coupled to opening 14B for each container body 12 in the stack 200. Stacks 200 may also be formed where covers 16A and 16B for each container body 12 are removed. Covers 16A and 16 B as well as other components of dispenser 10 may be packaged and shipped independently from stackable container bodies 12.
The straight sides of the squared off portion of container body 12 may enhance packing efficiency. The straight sides may lie flush with the walls of a shipping container and with the straight sides of other container bodies, thereby reducing the amount of “dead space” within the shipping container.
The straight sides of the squared off portion of container body 12 may also prevent container body 12 (or a stack of such container bodies) from rolling about its longitudinal axis.
In other embodiments, container body 12 has other shapes. In some embodiments, the relationship between the dimensions of upper portion 12A and the dimensions of lower portion 12B are such that only some of lower portion 12B of a first container body 12 can be inserted into upper portion 12A of a second container body 12. In some embodiments, container body 12 is made out of a flexibly deformable material, and insertion of lower portion 12B into upper portion 12A causes container body 12 to deform. In some embodiments, the flexibly deformable material is medium-density polyethylene (MDPE).
A plurality of container bodies 12 may be combined to form a plurality of stacks.
More container bodies 12 may be added to stack 300 to increase the size of the stack. Stacks 300 may be transported relatively efficiently compared to unstacked container bodies. The total volume of N container bodies, each of volume V, is N×V. The volume of the N container bodies in a stacked configuration is less than N×V. This reduced volume permits a greater number of container bodies to fit within a given shipping container (or any other means of transporting container bodies).
While a number of exemplary aspects and embodiments have been discussed above, those of skill in the art will recognize certain modifications, permutations, additions and sub-combinations thereof. It is therefore intended that the following appended claims and claims hereafter introduced are interpreted to include all such modifications, permutations, additions and sub-combinations as are within their true spirit and scope.
Unless the context clearly requires otherwise, throughout the description and the claims:
Words that indicate directions such as “vertical,” “transverse,” “horizontal,” “upward,” “downward,” “forward,” “backward,” “inward,” “outward,” “vertical,” “transverse,” “left,” “right,” “front,” “back” ,” “top,” “bottom,” “below,” “above,” “under,” and the like, used in this description and any accompanying claims (where present) depend on the specific orientation of the apparatus described and illustrated. The subject matter described herein may assume various alternative orientations. Accordingly, these directional terms are not strictly defined and should not be interpreted narrowly.
Where a component (e.g. an upper closure, lower closure, valve, container body, etc.) is referred to above, unless otherwise indicated, reference to that component (including a reference to a “means”) should be interpreted as including as equivalents of that component any component which performs the function of the described component (i.e., that is functionally equivalent), including components which are not structurally equivalent to the disclosed structure which performs the function in the illustrated exemplary embodiments of the invention.
Specific examples of systems, methods and apparatus have been described herein for purposes of illustration. These are only examples. The technology provided herein can be applied to systems other than the example systems described above. Many alterations, modifications, additions, omissions and permutations are possible within the practice of this invention. This invention includes variations on described embodiments that would be apparent to the skilled addressee, including variations obtained by: replacing features, elements and/or acts with equivalent features, elements and/or acts; mixing and matching of features, elements and/or acts from different embodiments; combining features, elements and/or acts from embodiments as described herein with features, elements and/or acts of other technology; and/or omitting combining features, elements and/or acts from described embodiments.
It is therefore intended that the following appended claims and claims hereafter introduced are interpreted to include all such modifications, permutations, additions, omissions and sub-combinations as may reasonably be inferred. The scope of the claims should not be limited by the preferred embodiments set forth in the examples, but should be given the broadest interpretation consistent with the description as a whole.