1. Field of the Invention
The present invention relates to a stackable, open-top crate for holding and transporting objects.
2. Background Art
Generally, crates for carrying objects such as milk containers are molded from plastic to form an open-top box having four side walls integrated with a bottom surface. A partial cross section representative of a conventional crate is shown in
In addition, crates have been molded or formed so that the interior side walls possess a taper or draft (denoted by an outwardly curved or angled inner surface 18 in
However, such increased dimensioning of the upper edge also increases the clearance between the outside of the drag rail of a stacked crate and the upper edge and retaining face of the lower crate. As a consequence, the lateral tolerance between stacked crates is too great, thereby potentially compromising the stability and alignment of a stack of crates.
In addition, the drag rail of known crate designs is spaced away from the outer edge of the crate to facilitate nesting within another crate when stacked thereon. This spacing is denoted by reference number 20 in
Therefore, a need exists for a crate that cost effectively improves stability and stacking fit while still providing an enlarged opening for ease of product loading and unloading.
In accordance with one aspect of the present invention, a crate and method of making the same are provided so that a portion of an upper surface area of an inner side wall is contoured to provide a tighter tolerance for stacking of another crate thereon.
In accordance with another aspect of the present invention, a crate and method of making the same are provided so that a lower portion of the inner side walls is contoured so as to position at least a portion of the inner surface of a side wall over a drag rail.
In accordance with these and other aspects, the present invention provides a stackable crate including a side wall integrally formed with a bottom surface so that at least a portion of an opening in the crate has a larger dimension than the bottom surface, and a drag rail formed on an underside portion of the bottom surface. A portion of an inner surface of the side wall is formed to reduce the dimension of the crate opening in at least one selected area so as to provide a tighter fit with a drag rail of a crate stacked thereon.
In further accordance with the present invention, a crate is provided including a side wall integrally formed with a bottom surface. A drag rail is formed on an underside portion of the bottom surface, and an inner surface of the side wall is formed to position at least a portion of the side wall over the drag rail.
In accordance with another aspect of the present invention, a method is provided for forming a stackable crate for holding and transporting products including forming a side wall with a bottom surface so that at least a portion of an opening in the crate has a larger dimension than the bottom surface, forming a drag rail on an underside portion of the bottom surface, and contouring the inner surface of the side wall to reduce the dimension of the crate opening in at least one selected area so as to provide a tighter fit with a drag rail when a crate is stacked thereon.
In accordance with still another aspect of the present invention, a method is provided for forming a crate for holding and transporting products including integrally forming a side wall with a bottom surface, forming a drag rail on an underside portion of the bottom surface, and forming an inner corner geometry of the side wall that position at least a portion of the side wall over the drag rail to transfer vertical forces into the top of the drag rail instead of cantilevering the forces on a high-stress fulcrum.
The above aspects and other aspects, features, and advantages of the present invention are readily apparent from the following detailed description of the preferred embodiment(s) when taken in connection with the accompanying drawings.
Referring to
As further shown, each side wall 102 includes a handle or opening 106 formed therein. Each wall 102 can include a middle section 108 having a portion thereof formed as a lattice pattern. Walls 102 also include end sections that are integrally formed with end sections of adjoining side walls to form corners 110. Bottom surface 104 can also include a lattice pattern (as best seen in
As best seen in
In accordance with a first aspect of the present invention, the inner surface of a section of each side wall is contoured at or near the upper inner edge of the crate so as to reduce the dimension of the crate opening in at least one selected area to provide a tighter fit with a drag rail of a crate stacked thereon. In the exemplary embodiment, this is provided by contouring an inner surface of at least a portion of a side wall to remove or reduce the taper formed in the remaining portion of the wall. The removed or reduced taper produces a smaller inner diameter crate opening in the affected area, i.e., the corners of the crate in the exemplary embodiment, which in turn produces a tighter lateral tolerance or fit in the upper corners of the crate. In accordance with the present invention, this contouring does not involve adding any extra material or thickness to the inner surface of side walls. Rather, the shape of the inner surface is molded to transition from the taper to the non-tapering portion. The non-tapering portion is illustrated as surface 118 in the partial cross-section representation of
As seen in
In accordance with another aspect of the present invention, a portion of the inner surface of each wall 102 is contoured so as to extend inwardly into vertical positioning over the drag rail 112. More specifically, as shown in FIG. 5, a portion of each side wall 102 is molded with a variable radius blend 120 into the bottom surface 104. The amount or degree of varying radius is selected so that the affected portion of the side wall inner surface is positioned over the drag rail.
In the exemplary embodiment, the variable radius blend portion 120 is formed at each bottom corner of the crate. However, it will be understood that the variable radius blend portion could be located at other locations. For example, the portion with the variable blend 120 could be located somewhere at the bottom of middle section 108, or extend along the entire inner circumference of the crate. By extending over the drag rail 112, the variable radius blend portion 120 allows loading forces (designated as “F” in
While embodiments of the invention have been illustrated and described, it is not intended that these embodiments illustrate and describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
4848580 | Wise | Jul 1989 | A |
4932532 | Apps | Jun 1990 | A |
5439113 | Elvin-Jensen | Aug 1995 | A |
5445273 | Apps | Aug 1995 | A |
Number | Date | Country |
---|---|---|
1 181 119 | Nov 1964 | DE |
199 16 730 | Oct 2000 | DE |
1 320 916 | Mar 1963 | FR |
964930 | Jul 1964 | GB |
Number | Date | Country | |
---|---|---|---|
20030024845 A1 | Feb 2003 | US |