This invention relates to radio-controlled toy vehicles and, more particularly, to moving each toy vehicle individually in a single vehicle configuration, or jointly moving the toy vehicles together in a stacked vehicle configuration.
Many radio-controlled or remote-controlled (RC) toys, such as toy vehicles, e.g., cars, boats and planes, are known in the art and are popular with children and other enthusiasts, because they allow the user to directly control and effect the action and movement of the toys. Such toys are typically controlled by the use of a dedicated, handheld, wireless controller having manually operated controls, e.g., movable joysticks, and a radio frequency (RF) transmitter that broadcasts RF signals corresponding to user movement of the joysticks, to an RF receiver in the toy. Battery-driven electrical motors and servos typically provide propulsion to move and steer the toy, as well as to carry out other commands dictated by user movement of the joysticks.
One drawback of the known RC toy vehicles is that the design or configuration of the toy vehicle is fixed and does not change. For example, a toy vehicle having four wheels on the ground remains a toy vehicle having its four wheels on the ground during its forward or backward, and/or rightward or leftward, movement. This heightens the possibility that a user, particularly a child, will eventually lose interest in playing with the toy vehicle.
Accordingly, it is desirable to provide an RC toy that extends a child's playtime activity, and to transform the toy from one configuration to another in order to enhance the playtime activity, it is further desirable to provide such a toy that is simple in construction, inexpensive to manufacture, compact, ornamental in appearance, and durable and safe in use.
The accompanying figures, where like reference numerals refer to identical or functionally similar components throughout the separate views, together with the detailed description below, are incorporated in and form part of the specification, and serve to further illustrate embodiments of concepts that include the claimed invention, and explain various principles and advantages of those embodiments.
Referring now to the drawings, reference numeral 10 identifies an RC toy having at least one handheld, wireless, RF controller 12, and a pair of identical toy vehicles 14 convertible or transformable, as described below, between a first single vehicle configuration (see
Each toy vehicle 14 has a toy body 16 with a top portion 18, a generally planar base portion 20, and a plurality of wheels 22, preferably four in number, rotatably mounted thereon. The toy body 16 is elongated and extends between a front end and a rear end. The top portion 18 is situated opposite to, and spaced away from, its corresponding base portion 20 by a height dimension. As illustrated, each toy vehicle 14 resembles a racing car whose wheels 22 are oversized, with each wheel 22 having a diameter greater than said height dimension.
It will be understood that this invention is not intended to be limited to the illustrated racing car, because many other types of toy vehicles are contemplated by this disclosure. For example, rather than a simulated racing car, other toy cars, such as an automobile, a taxi, or a police car (non-illustrated graphics and/or text may be applied over the toy body 16 to complete the simulation), the toy vehicle could be configured as a construction machine, such as a bulldozer, a forklift truck, a front loader, etc. The toy could also be configured as other types of vehicles, such as a train car, an airplane, a truck, a bus, a wagon, etc.
As shown in the single vehicle configuration of
In accordance with this disclosure, a coupling arrangement is configured to stack the toy vehicles 14 along a vertical stacking axis that is generally perpendicular to the generally planar base portions 20 that lie along horizontal planes. The coupling arrangement connects the toy vehicles 14 together, one on top of the other, in the stacked vehicle configuration in which the base portions 20 face each other in a close, confronting, adjacent relationship and in mutual parallelism with each other.
As best shown in
As shown in
An actuatable lock is provided on each base portion 20 for locking each coupling member 30 in the stored position, and for releasing each coupling member 30 from the stored position when the lock is actuated. Advantageously, each lock includes a manually actuatable push button 32, and a resilient latch 34 for latching the corresponding coupling member 30 in the stored position, and for unlatching the corresponding coupling member 30 when the push button 32 is manually actuated, e.g., pushed.
The coupling arrangement further includes a coupling recess 36 on each base portion 20. The coupling recess 36 on one of the toy vehicles 14 is configured to receive the coupling member 30 of the other of the toy vehicles 14 in the stacked vehicle configuration. Preferably, each coupling member 30 overlies and covers its corresponding coupling recess 36 in the stored position, and exposes its corresponding coupling recess 36 in the coupled position.
As best seen in
In operation, the RC controller 12 is operative to control joint movement of the toy vehicles 14 in the stacked vehicle configuration over the support surface. In addition to forward or backward, and/or leftward or rightward, movement, the stacked vehicles 14 can flip over so that the vehicle 14 on the top of the stack is now situated at the bottom of the stack, Thus, a four-wheeled toy has been converted into an eight-wheeled toy, thereby enhancing the child's playtime activity.
In one variation, a single set consisting of one toy vehicle 14 and one remote controller 12 may be sold in one retail package, in which case, a user may purchase two sets, e.g., for two children, and then both sets can be operated independently. When the user wants to combine the sets together, the user can take both toy vehicles 14 and stack them together with the built-in coupling arrangement, in which case, either remote controller 22 will be able to operate the eight-wheel combined vehicle toy. This is of special benefit when each controller has a radio frequency that is dedicated to a particular toy vehicle 14.
In another variation, two toy vehicles 14 and two remote controllers 12 may be sold in one retail package, in which case, each toy vehicle 14 can be operated separately with its own remote controller 22, and both toy vehicles 14 may be stacked, and then operated by either remote controller 22.
It will be understood that each of the components described above, or two or more together, also may find a useful application in other types of constructions differing from the types described above.
While the invention has been illustrated and described as embodied in a stackable RC toy, it is not intended to be limited to the details shown, since various modifications and structural changes may be made without departing in any way from the spirit of the present invention.
Without further analysis, the foregoing will so fully reveal the gist of the present invention that others can, by applying current knowledge, readily adapt it for various applications without omitting features that, from the standpoint of prior art, fairly constitute essential characteristics of the generic or specific aspects of this invention and, therefore, such adaptations should and are intended to be comprehended within the meaning and range of equivalence of the following claims.
What is claimed as new and desired to be protected by Letters Patent is set forth in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2357179 | Ebeling | Aug 1944 | A |
2577102 | Bolger | Dec 1951 | A |
3496670 | Ryan | Feb 1970 | A |
3670449 | Lemkin | Jun 1972 | A |
4446649 | Moe | May 1984 | A |
4940442 | Matsuda | Jul 1990 | A |
5813894 | Tohyama | Sep 1998 | A |
6679750 | Nielsen | Jan 2004 | B1 |
6786795 | Mullaney | Sep 2004 | B1 |
7789728 | Friedman | Sep 2010 | B2 |
8939812 | Chan | Jan 2015 | B2 |
9415319 | Jarrett | Aug 2016 | B1 |
9931580 | Rehkemper | Apr 2018 | B2 |
20040023593 | Needham | Feb 2004 | A1 |
20120015583 | Chen | Jan 2012 | A1 |
20130078888 | Mayer | Mar 2013 | A1 |
20150258463 | Park | Sep 2015 | A1 |
20180147501 | Sorensen | May 2018 | A1 |