Not applicable
Not applicable
Not applicable
Field of Invention
This invention primarily relates to the storage and display of baseball style caps and other headwear, specifically the storage and display of fitted fashionable baseball style caps, hats, turbines, wigs and other headwear and alternatively without a head form for the storage/display of sweaters, shoes or other valuable collectibles etc.
Prior Art
Inexpensive adjustable or elasticized baseball style caps were widely used the last 50 years of the 20th century. Furthermore, because adjustable caps tend to bunch in the rear, wrinkles are an inherent characteristic of this design. For that reason wearers of adjustable caps have, traditionally, made very little effort to maintain a well formed crown and often neglected the bill as well.
In recent years major baseball style cap manufacturers have introduced more expensive highly fashionable fitted baseball style caps in all colors, patterns and materials. Contemporary young urban fashion, now, requires immaculate perfectly shaped fitted baseball style caps that are color coordinated with their attire. The pride and care of these caps is the same as that bestowed on the top hats and Bowler Derbies of yesteryear. When not worn these caps must be stored in a way that keeps them clean and ensures that the integrity of the caps' perfectly shaped crown and bill is not compromised. Furthermore, since these caps are color coordinated with the person's attire he/she, typically, owns numerous caps. Thus creating a strong need for an easy to assemble stackable/wall mountable furniture style storage system that accommodates a plurality of caps, adjustable head forms to promote each cap's immaculate appearance, and affords proper lighting for easy view through a transparent cantilevered door and easy sliding drawer providing quick cap selection when dressing, and does not infringe on closet space as bulky hat boxes and closet pole hanging racks do.
Some headwear storage devices now available to the public such as hat boxes protect the caps from dust and to certain extent promote the protection of the caps shape. But they are bulky and take up a lot of closet space and since the contents are, generally, not visible, quick cap selection when dressing becomes a time consuming chore. Other storage devices use head forms which is a step in the right direction, but the head forms are, usually, not adjustable to the cap size or do not adequately mimic a human head resulting in the inadvertent distortion of the caps crown. The use of inflatable balloon type head forms can be blown to specific hat sizes, but, the shape and size of these devices are not reliable over a long period of time as air leakage and material deterioration can result in the distortion of the device. There are also headwear storage devices available that can accommodate a multitude of caps in the form of a tree, wall mounted rack, or closet hung rack. However, these storage devices, invariably, require that the crown be folded forward or crimp the bill and or the crown as a way of retaining the cap on the rack. Many of these storage devices do not isolate the contents from the environment so the caps are subject to being distorted and or are exposed to accumulation of dust. Some enclosed devices that are designed to accept a plurality of caps do provide protection from dust, but, typically, require that the caps' crowns be folded forward in order to cram the caps into the device, thus distorting the crowns.
In an alternative embodiment without the head forms my invention is also uniquely suitable for the storage and display of sweaters, shoes, valuable collectibles, etc.
The patent search has resulted in over 100 prior art patents which in one way or another touch on one or more aspects of this embodiment. Therefore, the 9 following comparison tables were established to more efficiently demonstrate the novelty and unexpected improvements introduced by this embodiment:
Table 1-1 Prior Art Group A Headwear Storage Units
Table 1-2 Prior Art Group B Head Forms
Table 1-3 Prior Art Group C Modular Units
Table 1-4 Prior Art Group D Wall Mounts
Table 1-5 Prior Art Group E Stackable Guides
Table 1-6 Prior Art Group F Magnetic Coupling
Table 1-7 Prior Art Group G Pressure Electrical Contacts
Table 1-8 Prior Art Group H Insulation Piercing Electrical Contacts
Table 1-9 Prior Art Group I Door Assemblies
Art Group A Headwear Storage Units—This group consists of every conceivable method of storing headwear for various purposes from store displays to closet hanging racks. The following discussion will not make an effort to describe each prior art in detail as the sheer quantity makes that a cumbersome task. I do, however, declare that these prior art patents are indeed all different forms of headwear storage devices that share some features with my embodiment. The subgroups below are arranged in descending order starting with prior art sharing the largest quantity of features with my embodiment and working down to those sharing the least amount of features. Each subgroup briefly indentifies the patents and the related common features. The paragraph following this group is a statistical summarization of the preceding information and includes a briefing of the features that my embodiment has but are not shared by any of the prior art in this category. Table 1-1 following this group is a visual chart supporting this information.
U.S. Pat. No. 1,608,758 to Sylvan Elroy Alexander (1926);. U.S. Pat. No. 4,673,153 and U.S. Pat. No. 5,188,325 to Calvin A. Hilty et al. (1987and 1993 respectively); U.S. Pat. No. 5,038,941 to Jac Bastiaansen (1991); U.S. Pat. No. 5,137,157 to James D. Lawson (1992); U.S. Pat. No. 5,240,123 to Gary D. Hawk (1993); U.S. Pat. No. 5,244,102 to Robert H. Koenig (1993); U.S. Pat. No. 5,295,588 to Thomas R. Neirinckx (1994); U.S. Pat. No. 5,396,994 to Robert C. Fitzgerald (1995); U.S. Pat. No. 5,480,073 to Frank A. LaManna (1996); U.S. Pat. No. 5,758,779 to Charlie C. Atkins (1998); U.S. Pat. No. 5,921,403 to Ronald Coffaro (1999); U.S. Pat. No. 6,422,400 B1 to Brett K. Miller (2001); U.S. Pat. No. 6,422,401 B1 to Randel E. Roten (2002); and U.S. Pat. No. 6,840,411 B2 to Wayne Fritz (2005) all share the following 5 features with my embodiment: easily assembled, contents are visible, easy accessibility of contents, the capacity to store a plurality of caps and wall mountable. In addition to the five common features listed above in this subgroup U.S. Pat. Nos. 1,608,758; 5,038,941; 5,758,779; and 5,921,403 also share the additional feature of having the capability to maximize closet space and U.S. Pat. Nos. 1,608,758 and 5,038,941 share the additional feature of fitting into any decor.
U.S. Pat. Nos. D538,064 S to Richard J. Schector (2007); U.S. Pat. No. 4,993,557 to Bert Davis (1991); U.S. Pat. No. 5,002,190 to Lonnie Moreland (1991); U.S. Pat. No. 5,265,737 to John J. Freeby (1993); U.S. Pat. No. 5,303,829 to Susan B. Kennedy (1994); U.S. Pat. No. 5,411,144 to David W. Deupree (1995); U.S. Pat. No. 5,450,967 to Ralph Mallory (1995); U.S. Pat. No. 5,515,978 to James E. Moran (1996); U.S. Pat. No. 5,601,197 to Dean Baxter (1997); U.S. Pat. No. 5,683,002 to Robert Rayside (1997); U.S. Pat. No. 5,727,1584 to James Duane Larson (1998); U.S. Pat. No. 5,845,778 to John Hickey, Jr. (1998);); U.S. Pat. No. 5,566,837 to Greg Lema (1996); U.S. Pat. No. 6,223,910 B1 to Greg M. Levin, et al. (2001); U.S. Pat. No. 6,311,879B1 to Jerry H. Rigler: Brenda J. Rigler (2001); and U.S. Pat. No. 7,147,112 B2 to Alphonia Penson (2006) share the following 4 features with my embodiment: easily assembled, contents are visible, easy accessibility of contents, and the capacity to store a plurality of caps. In addition to the five common features listed above in this subgroup U.S. Pat. Nos. 4,993,557 and 5,845,778 also share the feature of having the capability to fit into any decor and U.S. Pat. Nos. 5,303,829; 5,683,002; 5,566,837 also share the additional feature of the capability to maximize closet space.
U.S. Pat. Nos. 5,086,931 to Denis Cobb (1992); U.S. Pat. No. 5,137,146 to Patricia G. Stonehouse (1992); U.S. Pat. No. 5,348,166 to Greg Lema (1994); and U.S. Pat. No. 426,723D to Eric Waugh (2000) share the following 3 features with my embodiment: easily assembled, contents are visible, the capacity to store a plurality of caps. In addition to the three common features listed above in this subgroup U.S. Pat. Nos. 5,137,146 and 426,723D also share the feature of providing dust protection for the contents, U.S. Pat. No. 5,137,146 shares the feature of promoting the caps' crown and bill shape Integrity and U.S. Pat. Nos. 5,086,931 and 426,723D also share the additional feature of being wall mountable.
U.S. Pat. No. 2,659,481 to William S. Jones (1953) and U.S. Pat. No. 5,012,531 to Richard L. Schoonoever (1991) share the following three features with my embodiment: contents are easily visible, easy to assemble, and protects contents from dust. In addition to the three common features listed above in this subgroup U.S. Pat. No. 2,659,481 shares the additional feature of having the capability to promote the caps' crown and bill integrity.
U.S. Pat. No. 2,049,026 to Henry Savard (1936); U.S. Pat. No. 5,092,472 to Kevin C. Jones (1992); and U.S. Pat. No. 5,538,144 to Scott W. Reed (1996 (1998) all share the following three features with my embodiment: easily assembled, contents are easily visible and contents easily accessible. In addition to the three common features listed above in this subgroup, U.S. Pat. No. 5,538,144 shares the following two additional features with my embodiment: wall mountable and uniformly adjustable head forms to hat sizes.
U.S. Pat. Nos. 5,022,515 to Anthony Agostine (1991) and U.S. Pat. No. 5,823,328 to Kenneth A. Fomby (1998) share the following feature with my embodiment: Ease of assembly. In addition to the common feature listed above in this subgroup, U.S. Pat. No. 5,022,515 shares the additional features: stores a plurality of caps; wall mountable; and protects the contents from dust and U.S. Pat. No. 5,823,328 shares the additional features of protection from dust and promotion of the caps' crown and bill shape integrity.
To summarize, there are 42 prior art patents categorized as headwear storage. The entire prior art patents in this category are fairly easy to assemble. Of the 42 prior art patents in this category forty afford easy view of contents, thirty six have the capability to hold a plurality of headwear, thirty four afford easy accessibility of contents, nineteen are wall mountable, eight provide dust protection for the contents, seven result in additional closet space when used, four promote the headwear's crown, brim or bill shape integrity, four are designed to fit into some decor, one is designed to be used as furniture, one contains variably adjustable head forms. None of the 42 prior art patents in this category have any of the following features: stackable, a sliding drawer to afford easier access of contents, dimmable cabinet lighting to aid in the selection of contents, a cantilevered transparent door to provide easy access and view of contents, stacking magnetic guides that simplify the stacking of the cabinets and allows the cabinets to adhere to one another vertically and horizontally with minimal use of hardware or tools, pressure and insulation piercing electrical contact technology that simplifies the cabinet construction so that a user with minimal electrical technical knowledge can assemble and install the units, expandable wall mounting tracks that allow the modules to slide on for easy installation, quick disconnect technology that simplifies assembly, and designed to be used as furniture.
Table 1-1 compares the features of the prior art discussed above with the features of my embodiment. As the table clearly shows all of the listed prior art patents in the chart have at least 3 features in common with my embodiment. However, none of the prior art in the table share all the features with my embodiment. The features incorporated in my embodiment are necessary to provide an attractive easily assembled furniture type headwear cabinet which protects the contents from dust and fits into any modern decor with built-in dimmable lighting, a transparent cantilevered door that opens and closes on door tracks, and a sliding drawer for quick and easy accessibility of contents in any ambient lighting conditions; adjustable head forms that variably adjust to the exact hat sizes to promote the shape integrity of the headwear's crowns, brims, or bills which is so important in today's youth oriented fashion; magnetic guides allowing the user to easily bind stacked or horizontally wall mounted units; pressure and insulation piercing electrical contact technology making it possible for the least technical user to easily assemble the units; and quick connect/disconnect technology to aid the user in quick and simple construction of the units with minimal use of tools. This embodiment makes it possible for today's fashion conscious individuals to easily store and retrieve their expensive headwear in a way befitting its value without encroaching on often precious limited closet space in a revolutionary new furniture style headwear cabinet that can be quickly assembled, stacked or wall mounted.
Art Group B Head Forms—Prior art in this category includes various devices from hat trees to wig stands that are used for headwear shipping, hat boxes, hat drying, wig styling, transporting, displaying and reshaping. Some of these devices are stand alone items and others are incorporated into shipping containers. In most cases these devices do promote the integrity of the caps' crown and or bill. A handful of these prior art patents have some type of head form adjustment such as screw worm mechanisms, inflatable balloons, and oversized flexible head forms that require the user to force the caps' crowns on.
As in the preceding category the subgroups below are arranged in descending order starting with prior art sharing the largest quantity of features with my embodiment and working down to those sharing the least amount of features. Each subgroup briefly indentifies the patents and the related common features. The paragraph following this category is a statistical summarization of the preceding information and includes a briefing of the features that my embodiment has but are not shared by any of the prior art in this category. Table 1-2 following this category is a visual chart supporting this information.
U.S. Pat. No. 39,299 to Jason H. Masker (1863); U.S. Pat. No. 2,536,913 to Sumner C. Cox (1951); U.S. Pat. No. 2,803,350 to Reginald D. Osgoodby (1957); U.S. Pat. No. 3,300,108 to Louis Schumer (1967); U.S. Pat. No. 3,465,927 to Paul Belokin, Jr. (19158); U.S. Pat. No. 3,465,926 to Natalie Pels Schwartz et al. (19158); U.S. Pat. No. 3,606,108 to Ronald K. Baugh and Susan L. Baugh (1971); U.S. Pat. No. 4,858,247 to Donald L. Hooser (1989); U.S. Pat. No. 4,998,992 to Milton Richlin and Aloysis Dubeck (1991); U.S. Pat. No. 5,148,954 to Clifford J. Myers (1992); U.S. Pat. No. 5,503,312 to Gary Kassner (1996); U.S. Pat. No. 5,725,134 to Brian Richard Weltge (1998); U.S. Pat. No. 6,578,716 B1 to Chang-Min Wei (2003); and U.S. Pat. No. 6,523,728 B2 to Razgo Lee (2003) all share the following 4 features with my embodiment: contents are easily accessible, easily assembled, contents are visible, and promotes caps crown and bill integrity. In addition to the four common features listed above in this subgroup U.S. Pat. Nos. 2,536,913; 3,465,926; 3,465,927; 4,858,247 and; 5,148,954 also share the additional feature of being adjustable and U.S. Pat. No. 6,578,716 B1 shares the additional feature of being wall mountable. In addition to the 4 common features listed above in this subgroup U.S. Pat. No. 7,380,1581 B2 shares the additional feature of promoting caps crown and bill shape integrity.
U.S. Pat. No. 2,577,167 to George Vlasis (1951); U.S. Pat. No. 6,253,973 B1 to Roger Jones (2001); U.S. Pat. No. 6,648,189 B1 to Thomas Minton (2003); and U.S. Pat. No. 6,968,985B1 to Salvatore S. Caccavallo (2005) all share the following 4 features with my embodiment: contents are easily accessible, contents are visible, promotes caps crown and bill shape integrity, and is adjustable.
U.S. Pat. Nos. 1,891,334 to George Overton (1932); U.S. Pat. No. 3,289,823 to Simon Weiser and Maurice D. Gottlieb (1966); U.S. Pat. No. 3,327,842 to Gary E. Meredith and Phillip C. Lende (1967); and U.S. Pat. No. 3,438,480 to Paul L. Chabrelot (19158) all share the following 4 features with my embodiment: contents are easily accessible, easy assembly, promotes caps crown and bill shape integrity, and is adjustable.
U.S. Pat. Nos. D508,086 S to Arla A. Probnow (2005); U.S. Pat. No. 961,418 to Herbert D. Lloyd (1910); U.S. Pat. No. 4,805,782 to Everett D. Hale (1989); U.S. Pat. No. 401,079 D to Lillian E. Clarke (1998); 390,046 D to Robert Rheinish and Shirley Rhenish (1998); and U.S. Pat. No. 7,380,1581 B2 to Gregory Arthur Kroll, et al. (2008) all share the following 3 features with my embodiment: contents are easily accessible, easily assembled, and contents are visible.
To summarize, there are 28 prior art patents in the head form category. The entire prior art patents in this category give easy accessibility of contents. Of the 28 prior art patents in this category twenty four afford easy view of contents, twenty four are easy to assemble, one is wall mountable, twenty three promote the caps' crown and bill shape integrity, four protect the contents from dust, and eleven are adjustable. None of the 28 prior art patents in this category have any of the following features: the ability to store or hold a plurality of caps, the potential to increase available closet space for the user, an attractive stackable/wall mountable easily assembled dust proof furniture style cabinet with a cantilevered transparent door and sliding drawer to provide easy access and view of contents, and dimmable cabinet lighting to aid in the selection of contents.
Table 1-2 compares the features of the prior art discussed above with the features of my embodiment. As the table clearly shows all of the listed prior art patents in the chart has at least 3 features in common with my embodiment. However, none of the prior art in the table share all the features with my embodiment. The features incorporated in my embodiment are necessary to provide an attractive easily assembled furniture type headwear cabinet that can be built in any size and or shape based on consumers' specifications, protects the contents from dust and fits into any modern decor with built-in dimmable lighting, a transparent cantilevered door that opens and closes on door tracks, and a sliding drawer for quick and easy accessibility of contents in any ambient lighting conditions; adjustable head forms that variably adjust to the exact hat sizes to promote the shape integrity of the headwear's crowns, brims, or bills which is so important in today's youth oriented fashion; magnetic guides allowing the user to easily bind stacked or horizontally wall mounted units with minimal use of tools. This embodiment makes it possible for today's fashion conscious individuals to easily store and retrieve their expensive headwear in a way befitting its value without encroaching on often precious limited closet space in a revolutionary new furniture style headwear cabinet that can be quickly assembled, stacked or wall mounted.
Prior Art Group C Modular Units—This group of prior art consists of modular systems that can be expanded by stacking additional units. The compelling characteristics of my embodiment are that it is an easily assembled attractive stackable furniture style cabinet with dimmable lighting, a transparent cantilevered door, sliding drawer, and adjustable head forms. These combined characteristics result in a quick and easy to assemble expandable headwear storage system that takes the headwear storage out of the closets and makes headwear storage and retrieval more convenient while providing maximum protection for the headwear. U.S. Pat. No. 1,252,816 to Ludwig T. Huehl (1918) is an expandable filing cabinet system with an interlocking framework that allows the addition of filing cabinets in a vertical and horizontal direction. This system is not designed for the storage of headwear nor to fit in any decor this system can be expanded by stacking additional units on it, it protects the contents from dust and it has a sliding drawer. However, it is difficult to assemble, does not have dimmable lighting, adjustable head forms, and a transparent cantilevered door, and is not made easy to assemble through the use of magnetic stacking guides, pressure/insulation piercing electrical contact technology, and quick disconnect technology. U.S. Pat. No. 2,612,590 to Stanley F. Lachowicz (1952) is sectional range that allows the addition or removal of modular units and some of the units do have sliding drawers. However, it is difficult to assemble. Furthermore, it does not share any of the features with my embodiment necessary to provide a headwear storage system that is easy to assemble, fits into any modern decor, and provides maximum protection and accessibility of contents. U.S. Pat. No. 3,791,528 to Thomas Brendgord (1974) is a transportable enclosed modular system with bins that interlock into an upright column. The bins have clear plastic covers so that the contents are protected from the environment and easily visible and the bins can be easily removed and reinstalled. It, however, does not have any of the features required for a headwear storage system that is easy to assemble, fits into any modern decor, has dimmable lighting, transparent door, and sliding drawer. U.S. Pat. No. 4,896,926 to Johannes M. Verholt (1990) is a general purpose stackable system that can be used as a filing cabinet or storage cabinet. The individual units interconnect by use of quick disconnect technology, has sliding drawers and do protect the contents from dust. This prior art, however, requires that the units be preassembled so that they have to be shipped in bulky containers. Furthermore, it does not have dimmable lighting, adjustable head forms, a transparent cantilevered door, and is not wall mountable, or use magnetic stacking guides. U.S. Pat. No. 5,147,120 to Frank J. Ray (1992) is, basically, stackable modular furniture that can be configured into any type of desired furniture with drawers. It uses recesses on top of each unit and corresponding protrusions at the underside to align and secure the units to one another, it fits into any decor, has sliding drawers that protect the contents from dust and using it would certainly free up closet space. This prior art, however, requires that the units be preassembled so that they have to be shipped in bulky containers. Furthermore, it does not have dimmable lighting, adjustable head forms, a transparent cantilevered door, and is not wall mountable, or use magnetic stacking guides. U.S. Pat. No. 5,193,683 to Luther L. Key (1993) is designed as stackable containers for food service and as a toy. The stackable units are aligned by use of tabs on external walls and held together by elastic bands around the interconnected tabs. The units provide dust protection of contents. This prior art, however, requires that the units be preassembled so that they have to be shipped in bulky containers. Furthermore, it does not have dimmable lighting, adjustable head forms, a transparent cantilevered door, sliding drawer, is not wall mountable, use magnetic stacking guides, nor fit into any decor. U.S. Pat. No. 6,508,021 B2 to Bon S. Ong (2003) a stackable desk top storage device with rotatable stand at the bottom of each unit that fits snuggly into a recess at the tops of the units. This prior art is not designed to hold larger objects and except for the fact that it is a stackable modular unit, it is not capable of performing the functions of my embodiment. U.S. Pat. No. 6,1585,418 B2 to Erik L. Skov (2004) is a modular shelving system which can be purchased in a compact flat box as it comes in the form of rods and panels that are attached to the rods to form the shelving. It fits into any decor and protects the contents from dust. This prior art, however, does not have dimmable lighting, adjustable head forms, a transparent cantilevered door, sliding drawer and is not wall mountable, nor use magnetic stacking guides.
Table 1-3 compares the modular features of the prior art discussed above with the features of my embodiment. As is clearly depicted in the table, all eight prior art patents can be stacked. Four of the prior art can be easily assembled, four of the prior art provide easy accessibility of the contents, three provide dust protection for the contents, two could store a plurality of caps, two are designed with sliding drawers, one is designed as furniture, and only one would result in additional closet space if utilized. However, none of the prior art in the table share all of the features with my embodiment. Furthermore, none of the prior art in this category shared any of the other features with my embodiment which are necessary to provide storage with built-in dimmable lighting, a transparent cantilevered door that opens and closes on door tracks for quick accessibility of contents in any ambient lighting conditions, adjustable head forms that variably adjust to the exact hat sizes to promote the shape integrity of the headwear's crowns, brims, or bills that are so important in today's youth oriented fashion, magnetic stacking guides to simplify assembly and later assure stacked/wall mounted units' adherence, and the potential to free up precious limited closet space in a revolutionary new furniture style headwear cabinet that can be quickly assembled with minimal technical expertise or tools.
Prior Art Group D—Wall Mounts. This group of prior art consists of wall suspension devices. This feature is necessary to provide an easy way of mounting the storage units on walls as an alternative or additional configuration to the basic stacking feature. The entire prior art in this category, although utilizing various and differing devices, share this feature with my embodiment. U.S. Pat. No. 3,532,317 to Benjamin H. Adler (1970) is a suspension system to mount lighter objects such as letters to a wall. U.S. Pat. No. 3,669,035 to Milton J. Grossman (1972) is an easily assembled extruded shelving system. This prior art is sufficiently strong to support objects such as a storage system. However, this prior art also does not share any other features with my embodiment as it is specifically presented as a shelving system. U.S. Pat. No. 4,008,872 to Richard W. Thompson (1977) is a universal wall mounting system. This system utilizes a metal track that is embedded in a mount block which in turn mounts on the wall. This results in a wide gap between wall and the mounted module. My embodiment which does not use a mounting block allows the modules to hang closer to the wall and is less costly to produce. U.S. Pat. No. 5,050,832 to E. Desmond Lee (1991) is also a universal wall mounting system. It uses a mounting track and a c shaped bracket on each vertical side corner of the module facing the wall. This configuration requires that the modules have a cut out channel the length of the module to accommodate the mounting and the installation of the c shaped brackets on each module. This is complicated and labor intensive, driving up the manufacturing cost.
Table 1-4 compares the modular features of the prior art discussed above with the features of my embodiment. As is clearly depicted in the table, all 4 prior art patents are wall mounting devices and two can be easily assembled. However, none of the prior art in the table share all of the features with my embodiment. Furthermore, none of the prior art in this category shared any of the other features with my embodiment which are necessary to provide storage with built-in dimmable lighting, a transparent cantilevered door that opens and closes on door tracks for quick accessibility of contents in any ambient lighting conditions, adjustable head forms that variably adjust to the exact hat sizes to promote the shape integrity of the headwear's crowns, brims, or bills so important in today's youth oriented fashion, magnetic stacking guides to simplify assembly and later assure stacked units' adherence, and the potential to free up precious limited closet space in a revolutionary new furniture style headwear cabinet that can be quickly assembled with minimal technical expertise or tools.
Prior Art Group E—Stackable Guides. This group of prior art consists of guide mechanisms for stackable modules or containers. This feature is necessary to provide an easy way of stacking or mounting storage modules. The entire prior art in this category, although utilizing various and differing devices, share this feature with my embodiment. U.S. Pat. No. 2,561,561 to Joseph F. Cella (1951) is a stackable guide device that is installed at the four bottom corners of stackable crates which retract when the crate is on a flat surface and extend from the crate when the crate is lifted from the floor surface. It requires that the bottom of the crate have an open space and relies purely on gravity and the weight of the crates to keep the stack together. Therefore, this stacking system would not be possible with my embodiment. Furthermore, the magnetic stacking guides utilized in my embodiment simplify the assembly process and keep the stacked/wall mounted units firmly joined vertically and horizontally to insure structural stability and electrical-mechanical contact between units via the pressure electrical contacts for the low voltage lighting system. U.S. Pat. No. 4,757,910 to Thomas Box (1988) makes use of tapered top and bottom edges on beverage cases as a stacking guide system. This system also relies on gravity and the weight of the beverage crates to keep the stack together. The magnetic stacking guide system utilized in my embodiment is superior to this prior art primarily because it keeps the stacked units attached thus maintaining electrical connectivity for the dimmable lighting system throughout the module stacks both in a vertical stack and horizontally when the units are placed side by side or wall mounted.
Table 1-5 compares the stackable features of the prior art discussed above with the features of my embodiment. As is clearly depicted in the table, both prior art patents are stackable guiding devices that rely on gravity to keep the stacked crates together and do not have the capability of keeping the modules together horizontally as my embodiment does to ensure electrical continuity throughout the entire stack. Furthermore, neither of the prior art in this category shared any of the other features with my embodiment which are necessary to provide storage with built-in dimmable lighting, a transparent cantilevered door that opens and closes on door tracks for quick accessibility of contents in any ambient lighting conditions, adjustable head forms that variably adjust to the exact hat sizes to promote the shape integrity of the headwear's crowns, brims, or bills so important in today's youth oriented fashion, magnetic stacking guides to simplify assembly and later assure stacked units' adherence, and the potential to free up precious limited closet space in a revolutionary new furniture style headwear cabinet that can be quickly assembled with minimal technical expertise or tools.
Prior Art Group F—Magnetic Coupling. This group of prior art consists of magnetic coupling or retention methods for everything from dental retainers to diagnostic tool connectors. U.S. Pat. No. 2,678,228 to Robert F. Gerhardt (1954) diagnostic instrument magnetic device that connects the instrument to a handle. This is a very specific use for a magnetic coupling device. It is very small and has little in common with my embodiment. U.S. Pat. No. 4,824,371 to Allan S. Deutsch and Barry L. Musikant (1989), U.S. Pat. No. 4,997,372 to James R. Shiner and Roger E. Rule (1991), and U.S. Pat. No. 4,431,419 to Leonard L. Portnoy (1984) are magnetic dental retaining devices. These three prior art inventions share no other common features with my embodiment. U.S. Pat. No. 5,425,763 to Hartmut Steinmann (1995) is a magnetic fastening system for use with small prostheses such as ears or noses. This prior art also has a very specific feature and shares no other features with my embodiment. U.S. Pat. No. 7,423,506 B2 to Atushi Terasaki (2008) is a special annular device consisting of 3 identical magnetic arcs that adhere to one another to form a circle for special purposes. This device has no other features in common with my embodiment. The magnetic stacking guide feature in my embodiment incorporates the stacking guide feature to simplify assembly with the magnetic coupling characteristic that occurs when opposite poled magnets come together to keep the modules together after assembly. This ensures good electrical connections between modules via the pressure electrical contacts for the dimmable lighting system. The entire prior art in this category, although utilizing various and differing methods and for unrelated purposes, do share the magnetic coupling feature with my embodiment.
Table 1-6 compares the magnetic coupling features of the prior art discussed above with the features of my embodiment. As the table clearly shows all prior art patents utilize the magnetic feature. They use the coupling force created when opposing magnetic poles come together to keep instrument heads on handles, dentures and prostheses in place and for other very specialized uses. None of the prior art, however, incorporates the module stacking guides with the magnetic feature to make assembly easier and to ensure a strong connection between units after assembly, which is required for the dimmable lighting system's pressure contacts to maintain proper electrical connection. Furthermore, none of the prior art in this category shared any of the other features with my embodiment which are necessary to provide storage with built-in dimmable lighting, a transparent cantilevered door that opens and closes on door tracks for quick identification and accessibility of contents in any ambient lighting conditions, adjustable head forms that variably adjust to the exact hat sizes to promote the shape integrity of the headwear's crowns, brims, or bills so important in today's youth oriented fashion, and the potential to free up precious limited closet space in a revolutionary new furniture style headwear cabinet that can be quickly assembled with minimal technical expertise or tools.
Prior Art Group G—Pressure Contacts. This group of prior art consists of pressure contacts or self wiping electrical connecting devices primarily used for circuit boards. U.S. Pat. No. 4,548,451 to Garry M. Benarr, Terry A. Burns, and William J. Walker (1985) is a pinless self wiping connector for the manufacture of densely populated circuit boards. This is a push pull connector with a very specific use. It is very small and has little in common with my embodiment. U.S. Pat. No. 4,813,129 to Marcos Karnezos (1989) and U.S. Pat. No. 5,147,208 to Gary A. Bachler (1992) are both systems of compressed electrical contacts for use on PC boards and integrated circuit boards. Like the prior art these two patents are extremely small and designed with a specific purpose. These two prior art inventions share no other common features with my embodiment. U.S. Pat. No. 5,855,063 to Chris M. Schreiber (1999) is a contact system consisting of metallic depressions and corresponding protrusions for use on circuit boards. This patent is designed for a very specific purpose and basically has very little in common with my embodiment. The pressure contacts feature in my embodiment works hand in hand with the magnetic stacking guide feature to simplify assembly when the magnetic coupling characteristic that occurs when opposite poled magnets come together to keep the modules together after assembly. This ensures good electrical connections between modules via the pressure electrical contacts for the dimmable lighting system. The entire prior art in this category, although utilizing various and differing methods and for unrelated purposes, do share some form of self wiping electrical contacts system with my embodiment. However, all prior art in this category is extremely small and specifically designed for integrated circuit boards.
Table 1-7 compares the pressure contacts features of the prior art discussed above with the features of my embodiment. As the table clearly shows all prior art patents utilize the self wiping contact (pressure contacts) feature. They use the self wiping contacts for PC and integrated circuits where space is at premium. Therefore, the primary purpose for this design is that the contacts can be made very small. However, none of the prior art incorporates the pressure contacts to automatically connect the dimmable lighting system during assembly. In conclusion, none of the prior art in this category shared any of the other features with my embodiment which are necessary to provide storage with built-in dimmable lighting, a transparent cantilevered door that opens and closes on door tracks for quick identification and accessibility of contents in any ambient lighting conditions, adjustable head forms that variably adjust to the exact hat sizes to promote the shape integrity of the headwear's crowns, brims, or bills so important in today's youth oriented fashion, and the potential to free up precious limited closet space in a revolutionary new furniture style headwear cabinet that can be quickly assembled with minimal technical expertise or tools.
Prior Art Group H—Insulation piercing Contacts. This group of prior art consists of insulation piercing contacts which are designed to pierce through the insulation of a wire to secure an electrical contact. U.S. Pat. No. 1,956,018 to Charles E. Gilbert (1934) and U.S. Pat. No. 4,243,287 to Donald F. Smith and Michael J. Ostrelich (1981) are electrical plugs designed to accept an insulated two conductor electrical cord which is in turn penetrated by sharp projections making proper electrical connections when the plugs are reassembled. These are very specific patents for the repair of common A.C. plugs and bear very little in common with my embodiment. U.S. Pat. No. 2,678,429 to Charles W. Abbott (1954) is also an electrical plug repair method. This patent however requires that the insulated wires be individually penetrated by crimping before the plug is reassembled. Like the prior art, this patent has a very specific design and has very little in common with my embodiment. U.S. Pat. No. 2,873,434 to Raymond F. Dunn (1959) and U.S. Pat. No. 4,288,918 are both universal methods of crimping an insulated wire onto an electrical conductor. They both require a special crimping tool to form the connector around the wire and penetrate the wire. These patents are designed for a very specific purpose and basically have very little in common with my embodiment. U.S. Pat. No. 4,231,632 to Jean-Marie Badoz and Daniel Merceron (1980) is a specially designed connector that uses insulation piercing technology to make the electrical connection and secure the wire to the connector in the manufacturing process. This patent has very little in common with my embodiment. U.S. Pat. No. 4,715,825 to Bob Mousissie and Hubertus B. Libregts (1987) is a special purpose connector that uses insulation piercing technology to make contact inside the housing and a rounded contact outside of the housing to make contact with a matching contact. This patent is very specific and has very little in common with my embodiment. The insulation piercing contact technology feature in my embodiment is designed to automatically establish electrical connections throughout each unit as it is being assembled by the end user. The entire prior art in this category, although utilizing various and differing methods and for unrelated purposes, do share some form of insulation piercing electrical technology with my embodiment. However, all prior art in this category is specifically designed for AC plugs or special manufacturing purposes.
Table 1-8 compares the insulation piercing contact feature of the prior art discussed above with the features of my embodiment. As the table clearly shows all prior art patents utilize insulation piercing techniques to establish electrical connections. They use the insulation piercing contact technology to repair AC plugs and in the manufacturing of special purpose connectors. However, none of the prior art incorporates the insulation piercing contact technology to automatically make electrical connections throughout each unit as it is assembled by the end user. In conclusion, none of the prior art in this category shared any of the other features with my embodiment which are necessary to provide storage with built-in dimmable lighting, a transparent cantilevered door that opens and closes on door tracks for quick identification and accessibility of contents in any ambient lighting conditions, adjustable head forms that variably adjust to the exact hat sizes to promote the shape integrity of the headwear's crowns, brims, or bills so important in today's youth oriented fashion, and the potential to free up precious limited closet space in a revolutionary new furniture style headwear cabinet that can be quickly assembled with minimal technical expertise or tools.
Prior Art Group I—Door Tracks. This group of prior art consists of various types of overhead sectional and cantilevered door systems on door tracks. U.S. Pat. Nos. 2,686,926 to Clifford A. Schacht and Flay Downs Crosswell (1954); U.S. Pat. No. 2,991,496 to Cecil R. Wolf et al. (1961); U.S. Pat. No. 2,534,641 to Clarence J. Veigel (1950); U.S. Pat. No. 5,718,533 to Willis Mullet et al. (1998); and U.S. Pat. No. 5,235,724 to Donald E. Perrin (1993) are all overhead garage door systems or enhancements for these doors. The cantilevered door in my embodiment is made of transparent material or glass and is considerably smaller than the prior art. Although, the entire prior art in this category utilizes various and differing methods of overhead door systems, it does share cantilevered and sectional door operational fundamentals with my embodiment. However, all prior art in this category is specifically designed for overhead garage doors.
Table 1-9 compares the door track features of the prior art discussed above with the features of my embodiment. As the table clearly shows all prior art patents utilize door tracks for overhead or cantilevered garage doors. However, none of the prior art in this category shared any of the other features with my embodiment which are necessary to provide storage with built-in dimmable lighting, a transparent cantilevered door that opens and closes on door tracks for quick identification and accessibility of contents in any ambient lighting conditions, adjustable head forms that variably adjust to the exact hat sizes to promote the shape integrity of the headwear's crowns, brims, or bills so important in today's youth oriented fashion, and the potential to free up precious limited closet space in a revolutionary new furniture style headwear cabinet that can be quickly assembled with minimal technical expertise or tools.
In accordance with one embodiment the CapPalace is a storage enclosure for baseball style caps and other headwear designed to fit into any modern interior design thus freeing up closet space. For easy viewing and accessibility of contents this system has built-in low voltage dimmable lighting operated manually, by remote control, Blue Tooth technology or cell phone applications, a transparent cantilevered door located at the front of the CapPalace that can be operated manually, by remote control, by Blue Tooth technology or by cell phone applications, that opens and closes on door tracks, and a sliding drawer with a plurality of head forms mounted on it. Assembly of units is made easier by the use of insulation piercing electrical contacts that are strategically placed on unassembled unit walls to match insulated wires on abutting unit walls which, automatically, establish electrical continuity within the unit during the assembly when the insulation piercing contacts pierce through the insulation of the corresponding wires as the wall screws are torqued down. Quick connect/disconnect hardware on unassembled walls aid the user during assembly by keeping the units loosely together until the walls are screwed in place. System installation of several units is simplified by use of externally placed pressure electrical contacts on top, bottom and sides of the enclosures that create electrical continuity when enclosures are stacked or placed in a side by side configuration on the floor or mounted on a wall. The magnetic stacking guides externally placed on top, bottom and sides of the enclosure ensure that the units adhere tightly to each other resulting in good electrical continuity between units. Adjustable head forms can be quickly adjusted to exact hat sizes with an Allen wrench.
In the drawings, closely related figures have the same number but different alphabetic suffices.
30 Cap Storage Cabinet (CapPalace)
32 Magnetic Stacking Guide (Female)
33 Magnetic Stacking Guide (Male)
34 Flush Electrical Contact Assembly
35 Pressure Contact Electrical Assembly
36 Flush Electrical Contact
37 Magnet
38 Door Handle
40 Adjustable Head Form
41 Cap Screw
42 Adjustable Head Form Mounting Stem
43 Access Hole
44 Door
45 Door Wheel Channel
46 Base
47 hexagonal opening (for Allen wrench)
49 Base with Power Supply
52 Screw
53 Wall Mount Frame
54 Wall Mounting Cabinet Attachment
55 Bracket Screws
56 Drawer Assembly
58 Drawer Handle
60 Wall Mountable Power Supply
62 Wall Mountable Power Supply Dimmer/On/Off Control
64 Stackable Power Supply
66 Stackable Power Supply Dimmer/On/Off Control
68 Power Cord
70 Pressure Electrical Contact Assembly
72 Screw Hole
74 Left End of Wall Mount Frame
76 Right End of Wall Mount Frame
77 Wall Mount Spacer Assembly
78 Rear Side of Flush Electrical Contact
79 Aperture
80 Hat Size Indicator
81 Hat Size Scale
82 Conductor
83 Segment Lip
84 Three Way Two Wire Quick Disconnect Junction Unit
85 Elastic Band
86 Quick Disconnect Wire Insertion Opening
87 Ball
88 Insulation Ring
89 Wire Release Hole
90 Pressure Electrical Contact
91 Sloping Surface (of head form segment)
92 Prssure Contact Insulation Ring Rear
93 Guide Hole (On Cap)
94 Pressure Contact Rear Terminal
96 Two Stranded Insulated Conductor Tape
98 Wire Tape Surface Contact
100 Insulation Piercing Contact
102 Bolt for Male Magnetic Guide Insert
104 Magnetic Guide Insert
106 Magnetic Guide Ridge
108 Magnetic Guide Retainer Ring
110 Magnetic Guide Retainer Hinge
112 Magnetic Guide Retainer Ring Groove
114 Magnetic Guide Retainer Ring Flange
116 Securing Hook
118 Magnetic Stacking Guide Cup Hole
120 Locking bolt
121 Locking Bolt Detent
122 Locking bolt Receptor
123 Magnet
124 Door Wheel
125 Door Wheel Shaft In Partial Depressed Position
126 LED Assembly
127 Door Wheel Shaft Spring
128 Top Panel
129 Door Wheel in Partial Depressed Position
130 Rear Panel
132 Screw Hole
136 Left Side Panel
137 Right Side Panel
138 Drawer Groove
140 Bottom Panel
142 Head Form Screw Hole
144 Access Hole
146 Top Drawer Assembly
148 Bottom Drawer Assembly
150 Rear Lip
154 Drawer Rail (mounted on top drawer assembly)
155 Drawer Rail (mounted on bottom drawer assembly)
156 Electrical Contact Clearance Opening
158 Head Form Segment
160 Segment Pivot
162 Head Form Support
164 Pivot Anchor Ring
166 Head Form Screw Mount
168 Mounting Screw
170 Ball Guide Screw Hole
172 Cap
174 Stop
176 Worm Screw Shaft
178 Worm Screw
179 Worm Screw Threaded Hole
180 Ball Guide
181 Ball Guide Hole (On Ball)
182 Teflon Washer
184 Retainer Ring
186 Electrical Contact Clearance Opening
188 Screw Hole
One embodiment of the CapPalace enclosure 30 is illustrated in
The cap storage cabinet (CapPalace) 30 enclosure consists of four durable plastic or medium-density fiberboard (MDF) panels approximately one half inch in thickness in proper sizes to produce external dimensions of 27 inch Width by 12 inch Height by 13 inch Depth. The base 46 is one piece construction consisting of the same material as the enclosure measuring 27 inch width by 5 inch Height by 13 inch Depth.
The left panel 136 has two bolt lock receptors 122, a pressure electrical assembly 35, a two stranded insulated conductor tape 96, one insulation piercing contact 100, a door wheel channel 45, and four magnetic stacking guides (Male) 33. The right panel 137 has two bolt lock receptors 122, a flush electrical assembly 34, four magnetic stacking guides (Female) 32, two 2-stranded insulated conductor tape lengths 96, two insulation piercing contacts 100 and a door wheel channel 45. The top panel 128 has four magnetic stacking guides (Female) 32, three LED assemblies 126, five 2-stranded conductor tapes 96, two 2 wire tape surface contacts 98, four locking bolts 120, and a flush electrical assembly 34. The rear panel 130 has four screw holes 132, five bracket screw holes 55, and a drawer groove 138. The bottom panel 140 has four magnetic stacking guides (Male) 33, a pressure electrical assembly 35, a two stranded insulated conductor tape 96 and a two wire tape surface contact 98. The door 44 consists of a sheet of rigid transparent material measuring 25¾ inches by 11¾ inches with four door wheels 124 and a door handle 38.
The top drawer assembly
The head forms
The preferred embodiment of the CapPalace enclosure
To assemble a CapPalace enclosure first hand screw in the four Magnetic Stacking Guides (Male) 33 into the holes provided on the external side of the bottom panel 140 until snug. Then flip over and place the bottom panel 140 with the longer sides extending sideways on a horizontal surface with the locking bolts 120 pointing up and the pressure electrical assembly 35 farthest away. This will position the bottom panel 140 so that the front of the enclosure will be closest to the user. Next screw the four magnetic stacking guides (Male) 33 in the holes provided on the external side of the left panel 136 if desired. Then hold the left panel 136 vertically and aligned with the left edge of bottom panel 140. The locking bolt receptors 122 are located on the panels in configurations that only match the one set of locking bolts pertaining to them. Therefore, before lowering the left panel 136 on to the bottom panel 140 the user must ensure that both locking bolts 120 and the locking bolt receptors 122 are all properly aligned. If they do not align, ensure that the panel being installed is the correct one or that the panel is right side up. When the locking bolts 120 and locking bolt receptors 122 are properly aligned lower the panel engaging the locking bolts 120 and locking bolt receptors 122 and continue pressing the left panel 136 down until the detents 121 on the locking bolts 120
The stackable power supply 64 and the wall mountable power supply 60 do not require assembly as they are preassembled and ready for installation. Both power supplies 62 and 66 have manual and remote control capabilities
It is my intent to incorporate as many items that are already available for purchase in the open market as possible into my embodiment. For that reason, the drawer rails 154 and 155, the internal circuitry of the power supplies
To install the cap storage cabinet (CapPalace) 30 in a stacked configuration simply, assemble the individual enclosures as discussed above and starting with the base unit 46 place each CapPalace enclosure unit 30 on top of the other. The magnetic stacking guides 32 and 33 keep the units securely together and contact between the flush electrical contact assembly 34
To install the cap storage cabinet (CapPalace) 30 in a wall mounted configuration
Accordingly the reader will see that, according to one embodiment of the invention, I have provided a significant improvement over prior art pertaining to the storage and display of fitted fashionable baseball style caps, hats, turbines, wigs and other headwear and in alternative embodiments without head forms for the storage/display of sweaters, shoes or valuable collectibles, etc. This embodiment incorporates state-of-the-art technologies from various sources to produce an enclosure that is sold unassembled to economize in warehouse storage and shipping expenses but uses quick-disconnect technology, pressure and insulation piercing electrical contact technology and magnetic stacking guides for easy assembly and wall mounted or stacked installation in horizontal configuration. Additionally, this embodiment protects the contents from dust and dirt, has a plurality of adjustable head forms to ensure the integrity of fashionable caps' or hats' crowns, bills and brims, has low voltage multicolored lighting that can be controlled manually, by remote control, by blue tooth technology via smart phone applications or be synchronized to a stereo system, has a front cantilevered transparent door on door tracks or in an alternative embodiment a hinged transparent door for easy viewing of contents, and has a drawer for ease of access. Furthermore, this embodiment has the additional advantages in that it:
is designed to fit into any modern interior decor in numerous configurations thus freeing up precious closet space,
can be manufactured in a variety of sizes and shapes as well as a variety of materials including wood, plastic, composition materials or metals,
lets the user expand the system as his/her storage requirements increase,
does not require special skills or knowledge from the user to successfully assemble and install the units,
requires only a flat blade screwdriver, a Phillips head screwdriver, and an Allen wrench to assemble and install the units in a stacked configuration. A wall mounted installation would also require a hand drill and level.
While the above description contains many specifications, these should not be construed as limitations on the scope of any embodiment, but as exemplifications of the presently preferred embodiments thereof. Many other ramifications and variations are possible within the teachings of the various embodiments. For example, the intended contents may dictate larger or smaller dimensions, type of drawer used or no drawer, omission of head forms, or even the angle in which the units hang for a special wall mounted configuration, new technological advances in communications devices may make new wireless lighting controls possible, the door can be made of glass, plastic or any other transparent material and be hinged at the bottom or either side, the head forms can be made adjustable by a simple marked band over a spring loaded form or may be a partial head form (top part from the cheek bones up) instead of a full head form, the placement of the lights may be on a different place in the units, each unit's wall may have two diagonally placed magnetic guides instead of four as shown in this embodiment, etc.
Thus the scope of the invention should be determined by the appended claims and their legal equivalents, and not by the examples given.