Stacked acoustic resonator comprising a bridge

Information

  • Patent Grant
  • 9136818
  • Patent Number
    9,136,818
  • Date Filed
    Tuesday, March 29, 2011
    13 years ago
  • Date Issued
    Tuesday, September 15, 2015
    9 years ago
Abstract
In accordance with a representative embodiment, a bulk acoustic wave (BAW) resonator structure, comprises: a first electrode disposed over a substrate; a first piezoelectric layer disposed over the first electrode; a second electrode disposed over the first piezoelectric layer; a second piezoelectric layer disposed over the second electrode; a third electrode disposed over the second piezoelectric layer; and a bridge disposed between the first electrode and the third electrode.
Description
BACKGROUND

Transducers generally convert electrical signals to mechanical signals or vibrations, and/or mechanical signals or vibrations to electrical signals. Acoustic transducers, in particular, convert electrical signals to acoustic signals (sound waves) in a transmit mode and/or convert received acoustic waves to electrical signals in a receive mode. Acoustic transducers generally include acoustic resonators, such as thin film bulk acoustic resonators (FBARs), surface acoustic wave (SAW) resonators or bulk acoustic wave (BAW) resonators, and may be used in a wide variety of electronic applications, such as cellular telephones, personal digital assistants (PDAs), electronic gaming devices, laptop computers and other portable communications devices. For example, FBARs may be used for electrical filters and voltage transformers. Generally, an acoustic resonator has a layer of piezoelectric material between two conductive plates (electrodes), which may be formed on a thin membrane. FBAR devices, in particular, generate longitudinal acoustic waves and lateral (or transverse) acoustic waves when stimulated by an applied time-varying electric field, as well as higher order harmonic mixing products. The lateral modes and the higher order harmonic mixing products may have a deleterious impact on functionality.


A stacked bulk acoustic resonator (SBAR), also referred to as a double bulk acoustic resonator (DBAR), includes two layers of piezoelectric materials between three electrodes in a single stack, forming a single resonant cavity. That is, a first layer of piezoelectric material is formed between a first (bottom) electrode and a second (middle) electrode, and a second layer of piezoelectric material is formed between the second (middle) electrode and a third (top) electrode. Generally, the stacked bulk acoustic resonator device allows reduction of the area of a single bulk acoustic resonator device by about half.


In FBAR devices, mitigation of acoustic losses at the boundaries and the resultant mode confinement in the active region of the FBAR (the region of overlap of the top electrode, the piezoelectric layer, and the bottom electrode) has been effected through various methods. Notably, frames are provided along one or more sides of the FBARs. The frames create an acoustic impedance mismatch that reduces losses by reflecting desired modes back to the active area of the resonator, thus improving the confinement of desired modes within the active region of the FBAR.


While the incorporation of frames has resulted in improved mode confinement and attendant improvement in the quality (Q) factor of the FBAR, direct application of known frame elements has not resulted in significant improvement in mode confinement and Q of known DBARs.


What is needed, therefore, is a DBAR that overcomes at least the known shortcomings described above.





BRIEF DESCRIPTION OF THE DRAWINGS

The illustrative embodiments are best understood from the following detailed description when read with the accompanying drawing figures. It is emphasized that the various features are not necessarily drawn to scale. In fact, the dimensions may be arbitrarily increased or decreased for clarity of discussion. Wherever applicable and practical, like reference numerals refer to like elements.



FIG. 1A shows a top-view of a DBAR in accordance with a representative embodiment.



FIG. 1B is a cross-sectional view of the DBAR of FIG. 1A, taken along the line 1B-1B.



FIG. 1C is a cross-sectional view of a DBAR in accordance with a representative embodiment.



FIG. 1D is a cross-sectional view of a DBAR in accordance with a representative embodiment.



FIG. 1E is a cross-sectional view of a DBAR in accordance with a representative embodiment.



FIG. 1F is a graphical representation of the Q factor of an odd mode (Qo) of a known DBAR and a DBAR in accordance with a representative embodiment.



FIG. 1G is a cross-sectional view of a DBAR in accordance with a representative embodiment.



FIGS. 2A˜2B are cross-sectional views of DBARs each having a bridge disposed in a single layer of the DBAR in accordance with a representative embodiment.



FIGS. 3A-3B are cross-sectional views of DBARs each having a bridge disposed in a single layer of the DBAR in accordance with a representative embodiment.



FIGS. 4A-4B are cross-sectional views of DBARs each having a bridge disposed in a single layer of the DBAR in accordance with a representative embodiment.



FIGS. 5A-5B are cross-sectional views of DBARs each having a bridge disposed in a single layer of the DBAR in accordance with a representative embodiment.



FIGS. 6A-6D are cross-sectional views of DBARs having bridges disposed in two layers of the DBAR in accordance with a representative embodiment.



FIGS. 7A-7D are cross-sectional views of DBARs having bridges disposed in two layers of the DBAR in accordance with a representative embodiment.



FIGS. 8A-8D are cross-sectional views of DBARs having bridges disposed in two layers of the DBAR in accordance with a representative embodiment.



FIGS. 9A-9D are cross-sectional views of DBARs having bridges disposed in two layers of the DBAR in accordance with a representative embodiment.



FIGS. 10A-10D are cross-sectional views of DBARs having bridges disposed in two layers of the DBAR in accordance with a representative embodiment.



FIGS. 11A-11B are cross-sectional views of DBARs having bridges disposed in two layers of the DBAR in accordance with a representative embodiment.



FIG. 11C is a graphical representation of the Q factor of an odd mode (Qo) of a known DBAR and a DBAR in accordance with a representative embodiment.



FIG. 11D is a cross-sectional view of a DBAR in accordance with a representative embodiment.





DEFINED TERMINOLOGY

It is to be understood that the terminology used herein is for purposes of describing particular embodiments only, and is not intended to be limiting. The defined terms are in addition to the technical and scientific meanings of the defined terms as commonly understood and accepted in the technical field of the present teachings.


As used in the specification and appended claims, the terms ‘a’, ‘an’ and ‘the’ include both singular and plural referents, unless the context clearly dictates otherwise. Thus, for example, ‘a device’ includes one device and plural devices.


As used in the specification and appended claims, and in addition to their ordinary meanings, the terms ‘substanial’ or ‘substantially’ mean to within acceptable limits or degree. For example, ‘substantially cancelled’ means that one skilled in the art would consider the cancellation to be acceptable.


As used in the specification and the appended claims and in addition to its ordinary meaning, the term ‘approximately’ means to within an acceptable limit or amount to one having ordinary skill in the art. For example, ‘approximately the same’ means that one of ordinary skill in the art would consider the items being compared to be the same.


DETAILED DESCRIPTION

In the following detailed description, for purposes of explanation and not limitation, specific details are set forth in order to provide a thorough understanding of illustrative embodiments according to the present teachings. However, it will be apparent to one having ordinary skill in the art having had the benefit of the present disclosure that other embodiments according to the present teachings that depart from the specific details disclosed herein remain within the scope of the appended claims. Moreover, descriptions of well-known apparatuses and methods may be omitted so as to not obscure the description of the illustrative embodiments. Such methods and apparatuses are clearly within the scope of the present teachings.


Generally, it is understood that the drawings and the various elements depicted therein are not drawn to scale. Further, relative terms, such as “above,” “below,” “top,” “bottom,” “upper” and “lower” are used to describe the various elements' relationships to one another, as illustrated in the accompanying drawings. It is understood that these relative terms are intended to encompass different orientations of the device and/or elements in addition to the orientation depicted in the drawings. For example, if the device were inverted with respect to the view in the drawings, an element described as “above” another element, for example, would now be below that element.


The present teachings relate generally to BAW resonator structures comprising DBARs. In certain applications, the BAW resonator structures provide DBAR-based filters (e.g., ladder filters). Certain details of DBARs, BAW resonator filters, materials thereof and their methods of fabrication may be found in one or more of the following commonly owned U.S. Patents and Patent Applications: U.S. Pat. No. 6,107,721, to Lakin; U.S. Pat. Nos. 5,587,620, 5,873,153, 6,507,983, and 7,629,865 to Ruby, et al.; U.S. Pat. No. 7,280,007, to Feng, et al.; U.S. Patent Publication No. 20070205850 to Jamneala, et al.; U.S. Pat. No 7,388,454, to Ruby, et al.; U.S. Patent Publication No. 20100327697 to Choy, et al.; and U.S. Patent Publication No. 20100327994 to Choy, et al. The disclosures of these patents and patent applications are specifically incorporated herein by reference. It is emphasized that the components, materials and method of fabrication described in these patents and patent applications are representative and other methods of fabrication and materials within the purview of one of ordinary skill in the art are contemplated.



FIG. 1A shows a top view of a DBAR 100 in accordance with a representative embodiment. The DBAR 100 comprises a top electrode 101 (referred to below as third electrode 101), comprising five (5) sides, with a connection side 102 configured to provide the electrical connection to an interconnect 103. The interconnect 103 provides electrical signals to the top electrode 101 to excite desired acoustic waves in piezoelectric layers (not shown in FIG. 1) of the DBAR 100. The top electrode 101 comprises a bridge 104 (referred to below as second bridge 104) disposed on all sides (the bridge on the connection side 102 cannot be seen in the top view of FIG. 1A). As described more fully below, providing the bridge 104 about the perimeter of the DBAR 100 contributes to improved insertion loss and the Q-factor of the odd mode (Qo) over a desired frequency range (e.g., a passband of the DBAR).



FIG. 1B shows a cross-sectional view of the DBAR 100 taken along line 1B-1B in accordance with a representative embodiment. The DBAR 100 comprises a plurality of layers disposed over a substrate 105 having a cavity 106. The inclusion of a cavity 106 for reflection of acoustic waves in the DBAR 100 is merely illustrative. It is emphasized that rather than cavity 106 a known acoustic reflector (e.g., a Bragg mirror (not shown)) comprising alternating layers of high and low acoustic impedance may be provided in the substrate 105 to provide acoustic isolation.


A first electrode 107 is disposed over the substrate 105 and partially over the cavity 106 (or Bragg mirror). A planarization layer 107′ is provided over the substrate as shown. In a representative embodiment, the planarization layer 107′ comprises non-etchable borosilicate glass (NEBSG). A first piezoelectric layer 108 is disposed over the first electrode 107. A planarization layer 109 is disposed over the first piezoelectric layer 108 and generally does not overlap the cavity 106. In a representative embodiment, the planarization layer 109 comprises non-etchable borosilicate glass (NEBSG). As should be appreciated by one of ordinary skill in the art, the structure provided by the first electrode 107, the first piezoelectric layer 108 and a second electrode 111 is a bulk acoustic wave (BAW) resonator, which in this illustrative embodiment comprises a first BAW resonator of the DBAR 100. When the BAW resonator is disposed over a cavity, it is a so-called FBAR; and when the BAW resonator is disposed over an acoustic reflector (e.g., Bragg mirror) it is a so-called solidly mounted resonator (SMR). The present teachings contemplate the use of either FBARs or SMRs in a variety of applications, including filters (e.g., ladder filters comprising a plurality of BAW resonators).


A first bridge 110 is provided at an interface of a second electrode 111 and the planarization layer 109, and is disposed along all sides of the DBAR 100 (i.e., forms a perimeter of the DBAR 100). In representative embodiments first and second bridges 110, 104 (and other bridges described in connection with representative embodiments below) have a trapezoidal cross-sectional shape. It is emphasized that the trapezoidal cross-sectional shape of the bridges of the representative embodiments is merely illustrative and the bridges are not limited to a trapezoidal cross-sectional shape. For example, the cross-sectional shape of the bridges of the representative embodiments could be square or rectangular, or of an irregular shape. The “slanting” walls of first and second bridges 110, 104 (and other bridges described in connection with representative embodiments below) is beneficial to the quality of layers (e.g., the quality of the crystalline piezoelectric layer(s)) grown over the first and second bridges 110, 104 (and other bridges described in connection with representative embodiments below). Notably, the first bridge 110 and the second bridge 104 (and other bridges described in connection with representative embodiments below) are not necessarily the same shape (e.g., one could have trapezoidal cross-sectional shape and one could have a rectangular cross-sectional in shape). Typical dimensions of the first and second bridges 110, 104 (and other bridges described in connection with representative embodiments below) are approximately 2.0 μm to approximately 10.0 μm in width (x-dimension in the coordinate system shown in FIG. 1B) and approximately 300 A to approximately 1500 A in height (y-dimension in the coordinate system shown in FIG. 1B). In certain embodiments, first and second bridges 110, 104 (and other bridges described in connection with representative embodiments below) extend over the cavity 106 (depicted as overlap 113 in FIG. 1B). The overlap 113 (also referred to as the decoupling region) has a width (x-dimension) of approximately 0.0 μm (i.e., no overlap with the cavity 106) to approximately 5.0 μm. Notably, the first bridge 110 and the second bridge 104 (and other bridges described in connection with representative embodiments below) do not need to be the same dimensions or located at the same relative position. For example, the overlap 113 of the first and second bridges 110 with cavity 106 is shown in FIG. 1B to be identical for all bridges 104, 110; but this is not essential as different bridges 104, 110 may overlap the cavity 106 to a greater or lesser extent than other bridges 104, 110.


Generally, first and second bridges 110, 104 (and other bridges described in connection with representative embodiments below) need to be wide enough to ensure suitable decay of evanescent waves at the boundary of an active region 114 (also referred to herein as a DBAR region) and the decoupling region 113 in order to minimize tunneling of modes into a field region 115 where propagating modes exist at the frequency of operation. On the other hand, if the first and second bridges 110, 104 are too wide, reliability issues can arise and can also limit the placement of similar DBARs (not shown) from being placed in proximity (thus unnecessary increasing the total area of a chip). As such, the optimum width of the first and second bridges 110, 104 is determined experimentally.


In addition, the width and position of the first and second bridges 110, 104 (and other bridges described in connection with representative embodiments) and overlap 113 with the cavity 106 are selected to improve Q-enhancement of the odd resonant mode. In general, the greater the overlap 113 of each bridge 104, 110 with the cavity 106 of the DBAR 100, the greater the improvement Qo with the improvement realized being fairly small after an initial increase. The improvement in Qo must be weighed against a decrease in the electromechanical effective coupling coefficient kt2, which decreases with increasing overlap 113 of the first and second bridges 110, 104 with the cavity 106. Degradation of kt2 results in a degradation of insertion loss (S21) of a filter comprising DBARs. As such, the overlap 113 of the first and second bridges 110, 104 with the cavity 106 is typically optimized experimentally.


The first and second bridges 110, 104 (and other bridges described in connection with representative embodiments below) have a height (y-dimension in the coordinate system of FIG. 1B) of approximately 300 A to approximately 1500 A. Notably, the lower limit of the height is determined by the limits of the process of releasing sacrificial material in the forming of the first and second bridges 110, 104 (and other bridges described in connection with representative embodiments below), and the upper limit of the height is determined by the quality of layers grown over the first and second bridges 110, 104 (and other bridges described in connection with representative embodiments) and by the quality of subsequent processing of possibly non-planar structures.


A second piezoelectric layer 112 is provided over the second electrode 111. The third electrode 101 is provided over the second piezoelectric layer 112. The second bridge 104 is disposed along all sides (i.e., along the perimeter) of the DBAR 100. As should be appreciated by one of ordinary skill in the art, the structure provided by the second electrode 111, the second piezoelectric layer 112 and the third electrode 101 is a (BAW) resonator, which in this illustrative embodiment comprises a second BAW resonator of the DBAR 100. As mentioned above, when the BAW resonator is disposed over a cavity, it is a so-called FBAR; and when the BAW resonator is disposed over an acoustic reflector (e.g., Bragg mirror) it is a so-called solidly mounted resonator (SMR). The present teachings contemplate the use of either FBARs or SMRs to form DBARs. The DBARs are contemplated for a variety of uses, including filters (e.g., ladder filters comprising a plurality of BAW resonators).


Illustratively, the first electrode 107, second electrode 111 and the third electrode 101 are tungsten (W) having a thickness of approximately 3000 A to approximately 10000 A. Other materials may be used for the first electrode 107, second electrode 111 and the third electrode 101, including but not limited to molybdenum (Mo) or a bi-metal material. Illustratively, the first piezoelectric layer 108 and the second piezoelectric layer 112 are aluminum nitride (AlN) having a thickness of approximately 5000 A to approximately 15000 A. Other materials may be used for the first piezoelectric layer 108 and the second piezoelectric layer 112, including but not limited to ZnO.


The first and second bridges 110, 104 are formed by patterning a sacrificial material over the first piezoelectric layer 108 and the second piezoelectric layer 112, and forming the depicted layers thereover. After the layers of the DBAR 100 are formed as desired, the sacrificial material is released leaving the first and second bridges 110, 104 “filled” with air. In a representative embodiment, the sacrificial material used to form the first and second bridges 110, 104 is the same as the sacrificial material used to form the cavity 106 (e.g., PSG).


In a representative embodiment, the first bridge 110 and the second bridge 104 define a perimeter along the active region 114 of the DBAR 100. The active region 114 thus includes the portions of the first BAW resonator and the second BAW resonator disposed over the cavity 106 and bounded by the perimeter provided by the first bridge 110 and the second bridge 104. As should be appreciated by one of ordinary skill in the art, the active region of the DBAR 100 is bordered around its perimeter by an acoustic impedance discontinuity created at least in part by the first and second bridges 110, 104, and above and below (cavity 106) by an acoustic impedance discontinuity due to the presence of air. Thus, a resonant cavity is beneficially provided in the active region of the DBAR 100. In certain embodiments, the first bridge 110 and the second bridge 104 are unfilled (i.e., contain air), as is the cavity 106. In other embodiments described more full below, the first bridge 110, or the second bridge 104, or both, are filled with a material to provide the desired acoustic impedance discontinuity.


It is noted that the first bridge 110, or the second bridge 104, or both, do not necessarily have to extend along all edges of the DBAR 100, and therefore not along the perimeter of the DBAR 100. For example, the first bridge 110 or the second bridge 104, or both, may be provided on four “sides” of the five-sided DBAR 100 shown in FIG. 1A. In certain embodiments, the first bridge 110 is disposed along the same four sides of the DBAR 100 as the second bridge 104. In other embodiments, the first bridge 110 is disposed along four sides (e.g., all sides but the connection side 102) of the DBAR 100 and the second bridge 104 is disposed along four sides of the DBAR 100, but not the same four sides as the first bridge 110 (e.g., second bridge 104 is disposed along the connection side 102).


The acoustic impedance mismatch provided by the first bridge 110 and the second bridge 104 causes reflection of acoustic waves at the boundary that may otherwise propagate out of the active region and be lost, resulting in energy loss. The first bridge 110 and the second bridge 104 serve to confine the modes of interest within the active region 114 of the DBAR 100 and reduce energy losses in the DBAR 100. Reducing such losses serves to increase the Q-factor (Qo) of the modes of interest in the DBAR 100. In filter applications of the DBAR 100, as a result of the reduced energy loss, the insertion loss (S21) is beneficially improved.


In the representative embodiment shown and described in connection with FIGS. 1A, 1B, the first and second bridges 110, 104 were unfilled (i.e., contained air as the acoustic medium). FIG. 1C shows a cross-sectional view of DBAR 100 in which both bridges are filled with a material to provide the acoustic impedance discontinuity to reduce losses. In certain embodiments, first bridge 110′ and second bridge 104′ are filled with NEBSG, CDO, silicon carbide (SiC) or other suitable dielectric material that will not release when the sacrificial material disposed in the cavity 106 is released. The first and second bridges 110′, 104′ are fabricated by forming the NEBSG or other fill material over the first piezoelectric layer 108 and over the second piezoelectric layer 112 by a known method, and forming respective layers of the DBAR 100 thereover. When the cavity 106 is formed through the release of the sacrificial, the first bridge 110′ and the second bridge 104′ remain “filled” with the selected material.



FIG. 1D shows a cross-sectional view of DBAR 100 in which the second bridge 104′ is filled with a material to provide the acoustic impedance discontinuity to reduce losses, and the first bridge 110 is filled with air. This modification of the DBAR 100 is fabricated by patterning a material (e.g., NEBSG) over the second piezoelectric layer 112 that will not release before forming the third electrode 101. The first bridge 110 is formed by patterning a sacrificial material over the first electrode 107, and releasing the sacrificial material as described above.



FIG. 1E shows a cross-sectional view of DBAR 100 in which the second bridge 104 is filled with air, and the first bridge 110′ is filled with a material to provide the acoustic impedance discontinuity to reduce losses. This modification of the DBAR 100 is fabricated by patterning a material (e.g., NEBSG) over the first piezoelectric layer 108 that will not release before forming the second electrode 111. The second bridge 104 is formed by patterning a sacrificial material over the first piezoelectric layer 108, and releasing the sacrificial material as described above.



FIG. 1F shows a comparison of simulated the odd mode Q (Qo) versus frequency of DBAR 100 of the representative embodiment depicted in FIG. 1B and odd mode Q (Qo) of a known DBAR. As shown in FIG. 1B, the first and second bridges 110, 104 are released. For purposes of illustration of the improvement in mode confinement in the active region 114 of the DBAR 100, first and second bridges, 110, 104 having a width (x-dimension) of approximately 5.0 μm, a height of 2000 A; and overlap 113 of 2.0 μm are provided. Curve 116 depicts Qo of a mode in a known DBAR (without bridges) and curve 117 depicts Qo of a mode in DBAR 100 with first and second bridges (110, 104) released. Compared to the known DBAR that does not include a bridge, an increase in Qo of approximately 200% (depending on frequency of operation, e.g. at 0.95 GHz) is expected.



FIG. 1G shows a cross-sectional view of the DBAR 100 in accordance with a representative embodiment. The DBAR 100 comprises a plurality of layers disposed over a substrate 105 having an acoustic reflector 120. The acoustic reflector 120 is a so-called Bragg mirror, and comprises alternating layers 121-126 of low acoustic impedance material and high acoustic impedance materials, with the “odd” numbered layers being low acoustic impedance materials and the “even” numbered layers being high acoustic impedance materials.


The first electrode 107 is disposed over the substrate 105 and partially over the acoustic reflector 120. The planarization layer 107′ is provided over the substrate as shown. In a representative embodiment, the planarization layer 107′ comprises non-etchable borosilicate glass (NEBSG). The first piezoelectric layer 108 is disposed over the first electrode 107. The planarization layer 109 is disposed over the first piezoelectric layer 108 and generally does not overlap the acoustic reflector 120. In a representative embodiment, the planarization layer 109 comprises non-etchable borosilicate glass (NEBSG). As should be appreciated by one of ordinary skill in the art, the structure provided by the first electrode 107, the first piezoelectric layer 108 and a second electrode 111 is a bulk acoustic wave (BAW) resonator, which in this illustrative embodiment comprises a first BAW resonator of the DBAR 100.


The first bridge 110 is provided at an interface of the second electrode 111 and the planarization layer 109, and is disposed along all sides of the DBAR 100 (i.e., forms a perimeter of the DBAR 100). In representative embodiments first and second bridges 110, 104 (and other bridges described in connection with representative embodiments below) have a trapezoidal cross-sectional shape. It is emphasized that the trapezoidal cross-sectional shape of the bridges of the representative embodiments is merely illustrative and the bridges are not limited to a trapezoidal cross-sectional shape. For example, the cross-sectional shape of the bridges of the representative embodiments could be square or rectangular, or of an irregular shape. The “slanting” walls of first and second bridges 110, 104 (and other bridges described in connection with representative embodiments below) is beneficial to the quality of layers (e.g., the quality of the crystalline piezoelectric layer(s)) grown over the first and second bridges 110, 104 (and other bridges described in connection with representative embodiments below). Notably, the first bridge 110 and the second bridge 104 (and other bridges described in connection with representative embodiments below) are not necessarily the same shape (e.g., one could have trapezoidal cross-sectional shape and one could have a rectangular cross-sectional in shape). Typical dimensions of the first and second bridges 110, 104 (and other bridges described in connection with representative embodiments below) are approximately 2.0 μm to approximately 10.0 μm in width (x-dimension in the coordinate system shown in FIG. 1G) and approximately 300 Å to approximately 1500 Å in height (y-dimension in the coordinate system shown in FIG. 1B). In certain embodiments, first and second bridges 110, 104 (and other bridges described in connection with representative embodiments below) extend over the acoustic reflector 120 (depicted as overlap 113 in FIG. 1G). The overlap 113 (also referred to as the decoupling region) has a width (x-dimension) of approximately 0.0 μm (i.e., no overlap with the acoustic reflector 120) to approximately 5.0 μm. Notably, the first bridge 110 and the second bridge 104 (and other bridges described in connection with representative embodiments below) do not need to be the same dimensions or located at the same relative position. For example, the overlap 113 of the first and second bridges 110 with acoustic reflector 120 is shown in FIG. 1G to be identical for all bridges 104, 110; but this is not essential as different bridges 104, 110 may overlap the acoustic reflector 120 to a greater or lesser extent than other bridges 104, 110.


Generally, first and second bridges 110, 104 (and other bridges described in connection with representative embodiments below) need to be wide enough to ensure suitable decay of evanescent waves at the boundary of the active region 114 (also referred to herein as a DBAR region) and the decoupling region 113 in order to minimize tunneling of modes into a field region 115 where propagating modes exist at the frequency of operation. On the other hand, if the first and second bridges 110, 104 are too wide, reliability issues can arise and can also limit the placement of similar DBARs (not shown) from being placed in proximity (thus unnecessary increasing the total area of a chip). As such, the optimum width of the first and second bridges 110, 104 is determined experimentally.


In addition, the width and position of the first and second bridges 110, 104 (and other bridges described in connection with representative embodiments) and overlap 113 with the acoustic reflector 120 are selected to improve Q-enhancement of the odd resonant mode. In general, the greater the overlap 113 of each bridge 104, 110 with the acoustic reflector 120 of the DBAR 100, the greater the improvement Qo with the improvement realized being fairly small after an initial increase. The improvement in Qo must be weighed against a decrease in the electromechanical effective coupling coefficient kt2, which decreases with increasing overlap 113 of the first and second bridges 110, 104 with the acoustic reflector 120. Degradation of kt2 results in a degradation of insertion loss (S21) of a filter comprising DBARs. As such, the overlap 113 of the first and second bridges 110, 104 with the acoustic reflector 120 is typically optimized experimentally.


The first and second bridges 110, 104 (and other bridges described in connection with representative embodiments below) have a height (y-dimension in the coordinate system of FIG. 1G) of approximately 300 A to approximately 1500 A. Notably, the lower limit of the height is determined by the limits of the process of releasing sacrificial material in the forming of the first and second bridges 110, 104 (and other bridges described in connection with representative embodiments below), and the upper limit of the height is determined by the quality of layers grown over the first and second bridges 110, 104 (and other bridges described in connection with representative embodiments) and by the quality of subsequent processing of possibly non-planar structures.


A second piezoelectric layer 112 is provided over the second electrode 111. The third electrode 101 is provided over the second piezoelectric layer 112. The second bridge 104 is disposed along all sides (i.e., along the perimeter) of the DBAR 100. As should be appreciated by one of ordinary skill in the art, the structure provided by the second electrode 111, the second piezoelectric layer 112 and the third electrode 101 is a (BAW) resonator, which in this illustrative embodiment comprises a second BAW resonator of the DBAR 100.


Illustratively, the first electrode 107, second electrode 111 and the third electrode 101 are tungsten (W) having a thickness of approximately 3000 A to approximately 10000 A. Other materials may be used for the first electrode 107, second electrode 111 and the third electrode 101, including but not limited to molybdenum (Mo) or a bi-metal material. Illustratively, the first piezoelectric layer 108 and the second piezoelectric layer 112 are aluminum nitride (AlN) having a thickness of approximately 5000 A to approximately 15000 A. Other materials may be used for the first piezoelectric layer 108 and the second piezoelectric layer 112, including but not limited to ZnO.


The first and second bridges 110, 104 are formed by patterning a sacrificial material over the first piezoelectric layer 108 and the second piezoelectric layer 112, and forming the depicted layers thereover. After the layers of the DBAR 100 are formed as desired, the sacrificial material is released leaving the first and second bridges 110, 104 “filled” with air.


In a representative embodiment, the first bridge 110 and the second bridge 104 define a perimeter along the active region 114 of the DBAR 100. The active region 114 thus includes the portions of the first BAW resonator and the second BAW resonator disposed over the acoustic resonator 120 and bounded by the perimeter provided by the first bridge 110 and the second bridge 104. As should be appreciated by one of ordinary skill in the art, the active region of the DBAR 100 is bordered around its perimeter by an acoustic impedance discontinuity created at least in part by the first and second bridges 110, 104, above by an acoustic impedance discontinuity due to the presence of air, and below by the acoustic reflector 120. Thus, a resonant cavity is beneficially provided in the active region of the DBAR 100. In certain embodiments, the first bridge 110 and the second bridge 104 are unfilled (i.e., contain air). In other embodiments described more fully below, the first bridge 110, or the second bridge 104, or both, are filled with a material to provide the desired acoustic impedance discontinuity.


It is noted that the first bridge 110, or the second bridge 104, or both, do not necessarily have to extend along all edges of the DBAR 100, and therefore not along the perimeter of the DBAR 100. For example, the first bridge 110 or the second bridge 104, or both, may be provided on four “sides” of the five-sided DBAR 100 shown in FIG. 1A. In certain embodiments, the first bridge 110 is disposed along the same four sides of the DBAR 100 as the second bridge 104. In other embodiments, the first bridge 110 is disposed along four sides (e.g., all sides but the connection side 102) of the DBAR 100 and the second bridge 104 is disposed along four sides of the DBAR 100, but not the same four sides as the first bridge 110 (e.g., second bridge 104 is disposed along the connection side 102).


The acoustic impedance mismatch provided by the first bridge 110 and the second bridge 104 causes reflection of acoustic waves at the boundary that may otherwise propagate out of the active region and be lost, resulting in energy loss. The first bridge 110 and the second bridge 104 serve to confine the modes of interest within the active region 114 of the DBAR 100 and reduce energy losses in the DBAR 100. Reducing such losses serves to increase the Q-factor (Qo) of the modes of interest in the DBAR 100. In filter applications of the DBAR 100, as a result of the reduced energy loss, the insertion loss (S21) is beneficially improved.


Embodiments Comprising a Single Bridge

In the embodiments described presently, a single bridge is provided in an illustrative DBAR. The single bridge is provided at a single layer in each embodiment, and forms a perimeter that encloses the active region of the DBAR. By placing the bridge under different layers, the various embodiments can be studied to test the degree of coupling of modes in the active region (DBAR region) and the modes in the field region. Generally, the bridge decouples modes with a comparatively large propagation constant (kr) from the modes in the field region. As described below, certain embodiments comprise a “filled” bridge and certain embodiments comprise an “unfilled” bridge. Many details of the present embodiments are common to those described above in connection with the representative embodiments of FIGS. 1A-1F. Generally, the common details are not repeated in the description of embodiments comprising a single bridge.



FIGS. 2A˜2B show cross-sectional views of a DBAR 200 in accordance with a representative embodiment. A bridge 201 provided in the first piezoelectric layer 108. The bridge 201 is unfilled (i.e., filled with air). Bridge 201 is disposed around the perimeter of the active region 114 of the DBAR 200, and fosters confinement of modes in the active region 114 of the DBAR 200. For purposes of illustration of the improvement in mode confinement in the active region 114 of the DBAR 200, bridge 201 having a width (x-dimension) of approximately 5.0 μm, a height of 500 A, and overlap 113 of the cavity 106 by 2.0 μm was provided. An increase in Qo of approximately 100% (depending on frequency of operation, e.g. at 0.95 GHz) is expected compared to a known DBAR that does not include a bridge



FIG. 2B shows a bridge 202 provided in the first piezoelectric layer 108 of DBAR 200. The bridge 202 is “filled” with a material (e.g., NEBSG or other material described above) to provide an acoustic impedance discontinuity. Bridge 202 is disposed around the perimeter of the active region 114 of the DBAR 200, and fosters confinement of modes in the active region 114 of the DBAR 200. Similar improvements in Qo expected for bridge 201 are expected with the use of bridge 202. Beneficially, the use of a filled bridge provides a more rugged structure.



FIGS. 3A˜3B show a cross-sectional view of a DBAR 300 in accordance with a representative embodiment. The DBAR 300 comprises a plurality of layers disposed over a substrate 105 having a cavity 106. Many aspects of the DBAR 300 are common to those of DBARs 100, 200, described above, and are not repeated in order to avoid obscuring the description of the representative embodiments presently described.



FIG. 3A shows a bridge 301 provided in the second electrode 111 and into the planarization layer 109. The bridge 301 is unfilled (i.e., filled with air). Bridge 301 is disposed along the perimeter of the active region 114 of the DBAR 300, and fosters confinement of modes in the active region 114 of the DBAR 300. For purposes of illustration of the improvement in mode confinement in the active region 114 of the DBAR 200, bridge 201 having a width (x-dimension) of approximately 5.0 μm, a height of 500 A, and overlap 113 of the cavity 106 by 2.0 μm was provided. An increase in Qo of approximately 100% (depending on frequency of operation, e.g. at 0.95 GHz) is expected compared to a known DBAR that does not include a bridge.



FIG. 3B shows a bridge 302 provided in the second electrode 111. The bridge 302 is “filled” with a material (e.g., NEBSG or other material described above) to provide an acoustic impedance discontinuity. Bridge 302 is disposed along the perimeter of the active region 114 of the DBAR 300, and fosters confinement of modes in the active region 114 of the DBAR 300. For bridge 302 having the same width, height and overlap 113 of cavity 106 as bridge 301, similar improvements in Qo expected for bridge 301 are expected with the use of bridge 302. Beneficially, the use of a filled bridge provides a more rugged structure.



FIGS. 4A˜4B show cross-sectional views of a DBAR 400 in accordance with a representative embodiment. The DBAR 400 comprises a plurality of layers disposed over a substrate 105 having a cavity 106. Many aspects of the DBAR 400 are common to those of DBARs 100˜300, and are not repeated in order to avoid obscuring the description of the representative embodiments presently described.



FIG. 4A shows a bridge 401 provided in the second piezoelectric layer 112. The bridge 401 is unfilled (i.e., filled with air). Bridge 401 is disposed around the perimeter of the active region 114 of the DBAR 400, and fosters confinement of modes in the active region of the DBAR 400. For purposes of illustration of the improvement in mode confinement in the active region 114 of the DBAR 400, bridge 401 having a width (x-dimension) of approximately 5.0 μm, a height of 500 A, and overlap 113 of the cavity 106 by 2.0 μm was provided. An increase in Qo of approximately 100% (depending on frequency of operation, e.g. at 0.95 GHz) is expected compared to a known DBAR that does not include a bridge.



FIG. 4B shows a bridge 402 provided in the second piezoelectric layer 112. The bridge 402 is “filled” with a material (e.g., NEBSG or other material described above) to provide an acoustic impedance discontinuity. Bridge 402 is disposed around the perimeter of the active region 114 of the DBAR 400, and fosters confinement of modes in the active region 114 of the DBAR 400. For bridge 402 having the same width, height and overlap 113 of cavity 106 as bridge 401, similar improvements in Qo expected for bridge 401 are expected with the use of bridge 402. Beneficially, the use of a filled bridge provides a more rugged structure.



FIGS. 5A˜5B show a cross-sectional view of a DBAR 500 in accordance with a representative embodiment. The DBAR 500 comprises a plurality of layers disposed over a substrate 105 having a cavity 106. Many aspects of the DBAR 500 are common to those of DBARs 100˜400, and are not repeated in order to avoid obscuring the description of the representative embodiments presently described.



FIG. 5A shows a bridge 501 provided in the third electrode 101. The bridge 501 is unfilled (i.e., filled with air). Bridge 501 is disposed around the perimeter of the active region 114 of the DBAR 500, and fosters confinement of modes in the active region 114 of the DBAR 500. For purposes of illustration of the improvement in mode confinement in the active region 114 of the DBAR 500, bridge 501 having a width (x-dimension) of approximately 5.0 μm, a height of 500 A, and overlap 113 of the cavity 106 by 2.0 μm was provided. An increase in Qo of approximately 100% (depending on frequency of operation, e.g. at 0.95 GHz) is expected compared to a known DBAR that does not include a bridge.



FIG. 5B shows a bridge 502 provided in the third electrode 101. The bridge 502 is “filled” with a material (e.g., NEBSG or other material described above) to provide an acoustic impedance discontinuity. Bridge 502 is disposed along the perimeter of the active region 114 of the DBAR 500, and fosters confinement of modes in the active region 114 of the DBAR 500. For bridge 502 having the same width, height and overlap 113 of cavity 106 as bridge 501, similar improvements in Qo expected for bridge 501 are expected with the use of bridge 502. Beneficially, the use of a filled bridge provides a more rugged structure.


Embodiments Comprising Two Bridges

In the embodiments described presently, two bridges are provided in an illustrative DBAR. One bridge is provided in one layer of the DBAR and a second bridge is provided in another layer of the DBAR in each embodiment. The bridges are generally concentric, although not circular in shape, and are disposed about a perimeter that encloses the active region of the DBAR. By placing the bridges under different combinations of layers, the various embodiments can be studied to test the degree of coupling of modes in the active region 114 (DBAR region) and the modes in the field region 115. Generally, the bridge decouples modes with a comparatively large propagation constant (kr) from the modes in the field region 115. As described below, certain embodiments comprise a “filled” bridge and certain embodiments comprise an “unfilled” bridge.



FIGS. 6A˜6D show a cross-sectional view of a DBAR 600 in accordance with a representative embodiment. The DBAR 600 comprises a plurality of layers disposed over a substrate 105 having a cavity 106. Many aspects of the DBAR 600 are common to those of DBARs 100˜500, and are not repeated in order to avoid obscuring the description of the representative embodiments presently described.



FIG. 6A shows a first bridge 601 provided in the first piezoelectric layer 108. The first bridge 601 is unfilled (i.e., filled with air). A second bridge 602 is provided in the third electrode 101. The second bridge 602 is unfilled (i.e., filled with air). First and second bridges 601, 602 are disposed along the perimeter of the active region 114 of the DBAR 600, and foster confinement of modes in the active region of the DBAR 600. For purposes of illustration of the improvement in mode confinement in the active region of the DBAR 600, first and second bridges 601, 602 each having a width (x-dimension) of approximately 5.0 μm a height of 500 A, and overlap 113 the cavity 106 by 2.0 μm are provided. Compared to a known DBAR without bridges (depending on frequency of operation, e.g. at 0.95 GHz), an improvement, of approximately 200% in Qo for the DBAR 600 is expected due to the increased confinement of an odd mode in the DBAR 600 by use of first and second bridges 601, 602 of the representative embodiment.



FIG. 6B shows a first bridge 603 provided in the first piezoelectric layer 108. The first bridge 603 is filled (e.g., filled with NEBSG). A second bridge 604 is provided in the third electrode 101. The second bridge 804 is also filled. First and second bridges 603, 604 are disposed around the perimeter of the active region of the DBAR 600, and, foster confinement of modes in the active region of the DBAR 600. For first and second bridges 603, 604 having the same width, height and overlap 113 of cavity 106 as first and second bridges 601, 602 similar improvements in Qo expected for first and second bridges 601, 602 are expected with the use of first and second bridges 603, 604. Beneficially, the use of filled bridges provides a more rugged structure.



FIG. 6C shows a first bridge 601 provided in the first piezoelectric layer 108. The first bridge 601 is unfilled (i.e., filled with air). Second bridge 604 is provided in the third electrode 101. The second bridge 604 is filled. First and second bridges 601, 604 are disposed around the perimeter of the active region 114 of the DBAR 600, and foster confinement of modes in the active region 114 of the DBAR 600. For first and second bridges 601, 604 having the same width, height and overlap 113 of cavity 106 as first and second bridges 601, 602 similar improvements in Qo expected for first and second bridges 601, 602 are expected with the use of first and second bridges 601, 604. Beneficially, the use of a filled bridge provides a more rugged structure.



FIG. 6D shows first bridge 603 provided in the first piezoelectric layer 108. The first bridge 603 is filled. A second bridge 602 is provided in the third electrode 101. The second bridge 602 is unfilled (i.e., filled with air). First and second bridges 603, 602 are disposed along the perimeter of the active region 114 of the DBAR 600, and foster confinement of modes in the active region 114 of the DBAR 600. For first and second bridges 603, 602 having the same width, height and overlap 113 of cavity 106 as first and second bridges 601, 602, similar improvements in Qo expected for first and second bridges 601, 602 are expected with the use of first and second bridges 603, 602. Beneficially, the use of a filled bridge provides a more rugged structure.



FIGS. 7A˜7D show cross-sectional views of a DBAR 700 in accordance with a representative embodiment. The DBAR 700 comprises a plurality of layers disposed over a substrate 105 having a cavity 106. Many aspects of the DBAR 700 are common to those of DBARs 100˜600, and are not repeated in order to avoid obscuring the description of the representative embodiments presently described.



FIG. 7A shows a first bridge 701 provided in the first piezoelectric layer 108. The first bridge 701 is unfilled (i.e., filled with air). A second bridge 702 is provided in the second electrode 111 and extends partially into the planarization layer 109. The second bridge 702 is unfilled (i.e., filled with air). First and second bridges 701, 702 are disposed along the perimeter of the active region 114 of the DBAR 700, and foster confinement of modes in the active region 114 of the DBAR. For purposes of illustration of the improvement in mode confinement in the active region of the DBAR 700, first and second bridges 701, 702 each have a width (x-dimension) of approximately 5.0 μm, a height of 500 A, and overlap 113 the cavity 106 by 2.0 μm. Compared to a known DBAR without bridges (depending on frequency of operation, e.g. at 0.95 GHz), an improvement of approximately 200% in Qo for the DBAR 700 is expected due to the increased confinement of an odd mode in the DBAR 700 by use of first and second bridges 701, 702 of the representative embodiment.



FIG. 7B shows a first bridge 703 provided in the first piezoelectric layer 108. The first bridge 703 is filled. A second bridge 704 is provided in the second electrode 111 and extends partially into the planarization layer 109. The second bridge 704 is filled. First and second bridges 703, 704 are disposed along the perimeter of the active region 114 of the DBAR 700, and foster confinement of modes in the active region 114 of the DBAR 700. For first and second bridges 703, 704 having the same width, height and overlap of cavity 106 as first and second bridges 701, 702, similar improvements in Qo expected for first and second bridges 701, 702 are expected with the use of first and second bridges 703, 704. Beneficially, the use of a filled bridge provides a more rugged structure.



FIG. 7C shows first bridge 701 provided in the first piezoelectric layer 108. The first bridge 701 is unfilled (i.e., filled with air). Second bridge 704 is provided in the second electrode 111 and extends partially into the planarization layer 109. The second bridge 704 is filled. First and second bridges 701, 704 are disposed along the perimeter of the active region of the DBAR 700, and foster confinement of modes in the active region of the DBAR 700. For first and second bridges 701, 704 having the same width, height and overlap of cavity 106 as first and second bridges 701, 702, similar improvements in Qo expected for first and second bridges 701, 702 are expected with the use of first and second bridges 701, 704. Beneficially, the use of a filled bridge provides a more rugged structure.



FIG. 7D shows first bridge 703 provided in the first piezoelectric layer 108. The first bridge 703 is filled. Second bridge 702 is provided in the second electrode 111 and extends partially into the planarization layer 109. The second bridge 702 is unfilled (i.e., filled with air). First and second bridges 703, 702 are disposed around the perimeter of the active region of the DBAR 700, and foster confinement of modes in the active region 114 of the DBAR 700. For first and second bridges 703, 702 having the same width, height and overlap of cavity 106 as first and second bridges 701, 702, similar improvements in Qo expected for first and second bridges 701, 702 are expected with the use of first and second bridges 703, 702. Beneficially, the use of a filled bridge provides a more rugged structure.



FIGS. 8A˜8D show cross-sectional views of a DBAR 800 in accordance with a representative embodiment. The DBAR 800 comprises a plurality of layers disposed over a substrate 105 having a cavity 106. Many aspects of the DBAR 800 are common to those of DBARs 100˜700, and are not repeated in order to avoid obscuring the description of the representative embodiments presently described.



FIG. 8A shows a first bridge 801 provided in the first piezoelectric layer 108. The first bridge 801 is unfilled (i.e., filled with air). A second bridge 802 is provided in the second piezoelectric layer 112. The second bridge 802 is unfilled (i.e., filled with air). First and second bridges 801, 802 are disposed along the perimeter of the active region 114 of the DBAR 800, and foster confinement of modes in the active region 114 of the DBAR 800. For purposes of illustration of the improvement in mode confinement in the active region of the DBAR 800, first and second bridges 801, 802 each having a width (x-dimension) of approximately 5.0 μm, a height of 500 A, and overlap 113 of the cavity 106 by 2.0 μm are provided. Compared to a known DBAR without bridges (depending on frequency of operation, e.g. at 0.95 GHz), an improvement of approximately 200% in Qo for the DBAR 800 is expected due to the increased confinement of an odd mode in the DBAR 800 by use of first and second bridges 801802 of the representative embodiment.



FIG. 8B shows a first bridge 803 provided in the first piezoelectric layer 108. The first bridge 803 is filled. Second bridge 804 is provided in the second piezoelectric layer 112. The second bridge 804 is filled. First and second bridges 803, 804 are disposed along the perimeter of the active region 114 of the DBAR 800, and foster confinement of modes in the active region of the DBAR 800. For first and second bridges 803, 804 having the same width, height and overlap 113 of cavity 106 as first and second bridges 801, 802, similar improvements in Qo expected for first and second bridges 801, 802 are expected with the use of first and second bridges 803, 804. Beneficially, the use of a filled bridge provides a more rugged structure.



FIG. 8C shows first bridge 801 provided in the first piezoelectric layer 108. The first bridge 801 is unfilled. Second bridge 804 is provided in the second piezoelectric layer 112. The second bridge 804 is unfilled. First and second bridges 801, 804 are disposed along the perimeter of the active region 114 of the DBAR 800, and foster confinement of modes in the active region 114 of the DBAR 800. For first and second bridges 801, 804 having the same width, height and overlap 113 of cavity 106 as first and second bridges 801, 802, similar improvements in Qo expected for first and second bridges 801, 802 are expected with the use of first and second bridges 801, 804. Beneficially, the use of a filled bridge provides a more rugged structure.



FIG. 8D shows first bridge 803 provided in the first piezoelectric layer 10$. The first bridge 803 is filled. Second bridge 802 is provided in the second piezoelectric layer 112. The second bridge 802 is unfilled. First and second bridges 803, 802 are disposed along the perimeter of the active region 114 of the DBAR 800, and foster confinement of modes in the active region 114 of the DBAR 800. For first and second bridges 803, 802 having the same width, height and overlap 113 of cavity 106 as first and second bridges 801, 802, similar improvements in Qo expected for first and second bridges 801, 802 are expected with the use of first and second bridges 803, 802. Beneficially, the use of a filled bridge provides a more rugged structure.



FIGS. 9A˜9D show cross-sectional views of a DBAR 900 in accordance with a representative embodiment. The DBAR 900 comprises a plurality of layers disposed over a substrate 105 having a cavity 106. Many aspects of the DBAR 900 are common to those of DBARs 100˜800, and are not repeated in order to avoid obscuring the description of the representative embodiments presently described.



FIG. 9A shows a first bridge 901 provided in the second electrode 111 and extending partially into the planarization layer 109. The first bridge 901 is unfilled (i.e., filled with air). A second bridge 902 is provided in the second piezoelectric layer 112. The second bridge 902 is unfilled (i.e., filled with air). First and second bridges 901, 902 are disposed along the perimeter of the active region 114 of the DBAR 900, and foster confinement of modes in the active region 114 of the DBAR 900. For purposes of illustration of the improvement in mode confinement in the active region of the DBAR 900, first and second bridges 901, 902 each having a width (x-dimension) of approximately 5.0 μm, a height of 500 A, and overlap 113 of the cavity 106 by 2.0 μm are provided. Compared to a known DBAR without bridges (depending on frequency of operation, e.g. at 0.95 GHz), an improvement of approximately 200% in Qo for the DBAR 900 is expected due to the increased confinement of an odd mode in the DBAR 900 by use of first and second bridges 901, 902 of the representative embodiment.



FIG. 9B shows a first bridge 903 provided in the second electrode 111 and extending partially into the planarization layer 109. The first bridge 903 is filled. A second bridge 904 is provided in the second piezoelectric layer 112. The second bridge 904 is filled. First and second bridges 903, 904 are disposed along the perimeter of the active region 114 of the DBAR 900, and foster confinement of modes in the active region 114 of the DBAR 900. For first and second bridges 903, 904 having the same width, height and overlap 113 of cavity 106 as first and second bridges 901, 902 similar improvements in Qo expected for first and second bridges 901, 902 are expected with the use of first and second bridges 903, 904. Beneficially, the use of a filled bridge provides a more rugged structure.



FIG. 9C shows a first bridge 901 provided in the second electrode 111 and extending partially into the planarization layer 109. The first bridge 901 is unfilled (i.e., filled with air). Second bridge 904 is provided in the second piezoelectric layer 112. The second bridge 904 is filled. First and second bridges 901, 904 are disposed along the perimeter of the active region 114 of the DBAR 900, and foster confinement of modes in the active region 114 of the DBAR 900. For first and second bridges 901, 904 having the same width, height and overlap 113 of cavity 106 as first and second bridges 901, 902 similar improvements in Qo expected for first and second bridges 901, 902 are expected with the use of first and second bridges 901, 904. Beneficially, the use of a filled bridge provides a more rugged structure.



FIG. 9D shows first bridge 903 provided in the second electrode 111 and extending partially into the planarization layer 109. The first bridge 903 is filled. Second bridge 902 is provided, in the second piezoelectric layer 112. The second bridge 902 is unfilled (i.e., filled with air). First and second bridges 903, 902 are disposed along the perimeter of the active region 114 of the DBAR 900, and foster confinement of modes in the active region 114 of the DBAR 900. For first and second bridges 903, 902 having the same width, height and overlap 113 of cavity 106 as first and second bridges 901, 902 similar improvements in Qo expected for first and second bridges 901, 902 are expected with the use of first and second bridges 903, 902. Beneficially, the use of a filled bridge provides a more rugged structure.



FIGS. 10A˜10D show cross-sectional views of a DBAR 1000 in accordance with a representative embodiment. The DBAR 1000 comprises a plurality of layers disposed over a substrate 105 having a cavity 106. Many aspects of the DBAR 1000 are common to those of DBARs 100˜900, and are not repeated in order to avoid obscuring the description of the representative embodiments presently described.



FIG. 10A shows a first bridge 1001 provided in the second piezoelectric layer 112. The first bridge 1001 is unfilled (i.e., filled with air). A second bridge 1002 is provided in the third electrode 101. The second bridge 1002 is unfilled (i.e., filled with air). First and second bridges 1001, 1002 are disposed around the perimeter of the active region 114 of the DBAR 1000, and foster confinement of modes in the active region 114 of the DBAR 1000. For purposes of illustration of the improvement in mode confinement in the active region of the DBAR 1000, first and second bridges 1001, 1002 each having a width (x-dimension) of approximately 5.0 μm, a height of 500 A, and overlap 113 of the cavity 106 by 2.0 μm are provided. Compared to a known DBARs without bridges (depending on frequency of operation, e.g. at 0.95 GHz), an improvement of approximately 200% in Qo for the DBAR 1000 is expected due to the increased confinement of an odd mode in the DBAR 1000 by use of first and second bridges 1001, 1.002 of the representative embodiment.



FIG. 10B shows a first bridge 1003 provided in the second piezoelectric layer 112. The first bridge 1003 is filled. A second bridge 1004 is provided in the third electrode 101. The second bridge 1004 is filled. First and second bridges 1003, 1004 are disposed around the perimeter of the active region 114 of the DBAR 1000, and foster confinement of modes in the active region 114 of the DBAR 1000. For first and second bridges 1003, 1004 having the same width, height and overlap 113 of cavity 106 as first and second bridges 1001, 1002 similar improvements in Qo expected for first and second bridges 1001, 1002 are expected with the use of first and second bridges 1003, 1004. Beneficially, the use of a filled bridge provides a more rugged structure.



FIG. 10C shows first bridge 1001 provided in the second piezoelectric layer 112. The first bridge 1001 is unfilled (i.e., filled with air). Second bridge 1004 is provided in the third electrode 101. The second bridge 1004 is filled. First and second bridges 1001, 1004 are disposed around the perimeter of the active region 114 of the DBAR 1000, and foster confinement of modes in the active region 114 of the DBAR 1000. For first and second bridges 1001, 1004 having the same width, height and overlap 113 of cavity 106 as first and second bridges 1001, 1002 similar improvements in Qo expected for first and second bridges 1001, 1002 are expected with the use of first and second bridges 1001, 1004. Beneficially, the use of a filled bridge provides a more rugged structure.



FIG. 10D shows first bridge 1003 provided in the second piezoelectric layer 112. The first bridge 1003 is filled. Second bridge 1002 is provided in the third electrode 101. The second bridge 1002 unfilled (i.e., filled with air). First and second bridges 1003, 1002 are disposed around the perimeter of the active region 114 of the DBAR 1000, and foster confinement of modes in the active region 114 of the DBAR 1000. For first and second bridges 1003, 1002 having the same width, height and overlap 113 of cavity 106 as first and second bridges 1001, 1002 similar improvements in Qo expected for first and second bridges 1001, 1002 are expected with the use of first and second bridges 1003, 1002. Beneficially, the use of a filled bridge provides a more rugged structure.



FIG. 11A shows a cross-sectional view of a DBAR 1100 in accordance with a representative embodiment. The DBAR 1100 comprises a plurality of layers disposed over a substrate 105 having a cavity 106. Many aspects of the DBAR 1100 are common to those of DBARs 100˜1000, and are not repeated in order to avoid obscuring the description of the representative embodiments presently described.



FIG. 11A shows first bridge 110 provided in the second electrode 111 and extending into the planarization layer 109. The first bridge 110 is unfilled (i.e., filled with air). Second bridge 104 is provided in the third electrode 101. The second bridge 102 is unfilled (i.e., filled with air). First and second bridges 110, 104 are disposed along the perimeter of the active region 114 of the DBAR 1100, and foster confinement of modes in the active region of the DBAR 1100. Illustratively, first and second bridges 104, 110 each have a width (x-dimension) of approximately 5.0 μm, a height of 500 A, and overlap 113 the cavity 106 by 2.0 μm.


An inner raised region 1101 is provided over the third electrode 101 in the active region 114. The inner raised region 1101 is separated from the edges of the active region by gaps 1102, each having a width (in the x-dimension of the coordinate system shown in FIG. 11A) of approximately 1.0 μm to approximately 10.0 μm and a thickness (in the y-dimension of the coordinate system shown in FIG. 11A) of 100 A to 1000 A, depending on the product performance needs. Many details of the inner raised region 1101 are described in commonly owned U.S. patent application Ser. No. 13/074,094 entitled “Stacked Bulk Acoustic Resonator and Method of Fabricating Same” filed on Mar. 29, 2011, to Alexandre Shirakawa, et al. The disclosure of this U.S. Patent Application is specifically incorporated herein by reference.



FIG. 11B shows first bridge 110 provided, in the second electrode 111 and extending into the planarization layer 109. The first bridge 110 is unfilled (i.e., filled with air). Second bridge 104 is provided in the third electrode 101. The second bridge 102 is unfilled (i.e., filled with air). The DBAR 1100 depicted in FIG. 11B includes inner raised region 1101 and an outer raised region 1103 disposed over the third electrode 101. The outer raised region 1103 abuts the edge of the active region 114 as depicted in FIG. 11B, and has a width (in the x-dimension of the coordinate system shown in FIG. 11B) of approximately 1.0 μm to approximately 10.0 μm and a thickness (in the y-dimension of the coordinate system shown in FIG. 11B) of 100 A to 1000 A, depending on the product performance needs. Many details of the outer raised region 1103 are provided in U.S. patent application Ser. No. 13/074,094 entitled “Stacked Bulk Acoustic Resonator and Method of Fabricating Same” filed on Mar. 29, 2011, to Alexandre Shirakawa, et al. and incorporated herein by reference above.


The combination of the first and second bridges 104, 110, the inner raised region 1101 and outer raised region 1103 further improves mode confinement in the active region 114 of the DBAR 1100. FIG. 11C is a graph illustrating measured odd mode Q factor (Qo) versus resonant frequency, in which trace 1110 corresponds to a known DBAR (without bridges, inner raised region and outer raised regions), and trace 1120 corresponds to a DBAR, according to a representative embodiment, such as stacked bulk acoustic resonator 1100 shown in FIG. 11A. Trace 1120 shows that Qo is strongly enhanced by inclusion of bridges and the inner raised region, in comparison to trace 1110.



FIG. 11D shows a cross-sectional view of a DBAR 1100 in accordance with a representative embodiment. Many aspects of the DBAR 1100 are common to those of DBARs 100˜1000, and are not repeated in order to avoid obscuring the description of the representative embodiments presently described.


The DBAR 1100 comprises a plurality of layers disposed over a substrate 105 having an acoustic reflector 1120. The acoustic reflector 1120 is a so-called Bragg mirror, and comprises alternating layers 1121-1126 of low acoustic impedance material and high acoustic impedance materials, with the “odd” numbered layers being low acoustic impedance materials and the “even” numbered layers being high acoustic impedance materials.



FIG. 11D shows first bridge 110 provided in the second electrode 111 and extending into the planarization layer 109. The first bridge 110 is unfilled (i.e., filled with air). Second bridge 104 is provided in the third electrode 101. The second bridge 102 is unfilled (i.e., filled with air). First and second bridges 110, 104 are disposed along the perimeter of the active region 114 of the DBAR 1100, and foster confinement of modes in the active region of the DBAR 1100. Illustratively, first and second bridges 104, 110 each have a width (x-dimension) of approximately 5.0 μm, a height of 500 A, and overlap 113 the cavity 106 by 2.0 μm.


An inner raised region 1101 is provided over the third electrode 101 in the active region 114. The inner raised region 1101 is separated from the edges of the active region by gaps 1102, each having a width (in the x-dimension of the coordinate system shown in FIG. 11D) of approximately 1.0 μm to approximately 10.0 μm and a thickness (in the y-dimension of the coordinate system shown in FIG. 11D) of 100 A to 1000 A, depending, on the product performance needs. Again, many details of the inner raised region 1101 are described in commonly owned U.S. patent application Ser. No. 13/074,094 entitled “Stacked Bulk Acoustic Resonator and Method of Fabricating Same” filed on Mar. 29, 2011, to Alexandre Shirakawa, et al.


In accordance with illustrative embodiments, BAW resonator structures comprising bridges and their methods of fabrication are described. One of ordinary skill in the art appreciates that many variations that are in accordance with the present teachings are possible and remain within the scope of the appended claims. These and other variations would become clear to one of ordinary skill in the art after inspection of the specification, drawings and claims herein. The invention therefore is not to be restricted except within the spirit and scope of the appended claims.

Claims
  • 1. A bulk acoustic wave (BAW) resonator structure, comprising: a substrate comprising a cavity;a first electrode disposed over the substrate;a planarization layer disposed over the substrate and adjacent to the first electrode, the planarization layer not overlapping the cavity;a first piezoelectric layer disposed over the first electrode;a second electrode disposed over the first piezoelectric layer;a second piezoelectric layer disposed over the second electrode;a third electrode disposed over the second piezoelectric layer; anda bridge disposed between the first electrode and the third electrode, the bridge extending past an edge of the cavity or acoustic reflector.
  • 2. A BAW resonator structure as claimed in claim 1, wherein the bridge is a first bridge, and the BAW resonator structure further comprises a second bridge disposed between the first electrode and the third electrode.
  • 3. A BAW resonator structure as claimed in claim 2, wherein the BAW resonator structure has a first perimeter bounding an active region of the BAW resonator structure, and the first bridge is disposed along the first perimeter.
  • 4. A BAW resonator structure as claimed in claim 3, the BAW resonator structure having a second perimeter bounding the active region of the BAW resonator structure, and a second bridge is disposed along the second perimeter.
  • 5. A BAW resonator structure as claimed in claim 2, wherein the first bridge comprises a fill material having an acoustic impedance.
  • 6. A BAW resonator structure as claimed in claim 5, wherein the fill material comprises non-etchable borosilicate glass (NEBSG).
  • 7. A BAW resonator structure as claimed in claim 2, wherein the second bridge comprises a fill material having an acoustic impedance.
  • 8. A BAW resonator structure as claimed in claim 7, wherein the fill material comprises non-etchable borosilicate glass (NEBSG).
  • 9. A BAW resonator structure as claimed in claim 2, wherein neither the first bridge nor the second bridge is disposed in the first electrode.
  • 10. A BAW resonator structure as claimed in claim 1, wherein the bridge comprises a fill material having an acoustic impedance.
  • 11. A BAW resonator structure as claimed in claim 1, wherein the bridge has a trapezoidal cross-sectional shape.
  • 12. A BAW resonator structure as claimed in claim 1, wherein the bridge comprises a first bridge disposed in the second electrode, and the BAW resonator structure further comprises a second bridge disposed in the third electrode.
  • 13. A BAW resonator structure as claimed in claim 12, wherein the first bridge is disposed along a first perimeter of the BAW resonator structure.
  • 14. A BAW resonator structure as claimed in claim 13, wherein the second bridge is disposed along a second perimeter of the BAW resonator structure.
  • 15. A BAW resonator structure as claimed in claim 1, wherein the bridge comprises a first bridge disposed in the first piezoelectric layer, and the BAW resonator structure further comprises a second bridge disposed in the second piezoelectric layer.
  • 16. A BAW resonator structure as claimed in claim 15, wherein the first bridge is disposed along a first perimeter of the BAW resonator structure.
  • 17. A BAW resonator structure as claimed in claim 16, wherein the second bridge is disposed along a second perimeter of the BAW resonator structure.
  • 18. A BAW resonator structure as claimed in claim 1, the planarization layer being a first planarization layer, and the BAW resonator structure further comprises a second planarization layer disposed over the first piezoelectric layer and adjacent to the second electrode, wherein the second planarization layer does not overlap the acoustic reflector.
  • 19. A bulk acoustic wave (BAW) resonator structure, comprising: a substrate comprising a cavity;a first electrode disposed over the substrate;a planarization layer disposed over the substrate and adjacent to the first electrode, the planarization layer not overlapping the cavity;a first piezoelectric layer disposed over the first electrode;a second electrode disposed over the first piezoelectric layer;a second piezoelectric layer disposed over the second electrode;a third electrode disposed over the second piezoelectric layer;a bridge disposed between the first electrode and the third electrode, the bridge extending past an edge of the cavity or acoustic reflector; andan inner raised region disposed over the third electrode.
  • 20. A BAW resonator structure as claimed in claim 19, further comprising an outer raised region disposed over the third electrode.
  • 21. A BAW resonator structure as claimed in claim 19, wherein the BAW resonator structure has a first perimeter bounding an active region of the BAW resonator structure, the bridge is disposed along the first perimeter, and the inner raised region is in the active region.
  • 22. A BAW resonator structure as claimed in claim 19, the planarization layer being a first planarization layer, and the BAW resonator structure further comprises a second planarization layer disposed over the first piezoelectric layer and adjacent to the second electrode, wherein the second planarization layer does not overlap the acoustic reflector.
  • 23. A BAW resonator structure as claimed in claim 19, wherein the bridge is a first bridge, and the BAW resonator structure further comprises a second bridge disposed between the first electrode and the third electrode.
  • 24. A BAW resonator structure as claimed in claim 23, wherein the first bridge comprises a fill material having an acoustic impedance.
  • 25. A BAW resonator structure as claimed in claim 23, wherein the second bridge comprises a fill material having an acoustic impedance.
  • 26. A BAW resonator structure as claimed in claim 19, wherein the BAW resonator structure has a first perimeter bounding an active region of the BAW resonator structure, and the bridge is disposed along the first perimeter.
  • 27. A BAW resonator structure as claimed in claim 26, wherein the BAW resonator structure has a second perimeter bounding the active region of the BAW resonator structure, and a second bridge is disposed along the second perimeter.
  • 28. A BAW resonator structure as claimed in claim 19, wherein the bridge comprises a fill material having an acoustic impedance.
  • 29. A BAW resonator structure as claimed in claim 19, wherein the bridge comprises a first bridge disposed in the second electrode, and the BAW resonator structure further comprises a second bridge disposed in the third electrode.
  • 30. A BAW resonator structure as claimed in claim 29, wherein the first bridge is disposed along a first perimeter of the BAW resonator structure.
  • 31. A BAW resonator structure as claimed in claim 30, wherein the second bridge is disposed along a second perimeter of the BAW resonator structure.
  • 32. A BAW resonator as claimed in claim 19, wherein the bridge comprises a first bridge disposed in the first piezoelectric layer, and the BAW resonator structure further comprises a second bridge disposed in the second piezoelectric layer.
  • 33. A bulk acoustic wave (BAW) resonator structure, comprising: a substrate comprising an acoustic reflector;a first electrode disposed over the substrate;a planarization layer disposed over the substrate and adjacent to the first electrode, the planarization layer not overlapping the acoustic reflector;a first piezoelectric layer disposed over the first electrode;a second electrode disposed over the first piezoelectric layer;a second piezoelectric layer disposed over the second electrode;a third electrode disposed over the second piezoelectric layer; anda bridge disposed between the first electrode and the third electrode, the bridge extending past an edge of the acoustic reflector.
  • 34. A BAW resonator structure as claimed in claim 33, wherein the bridge is a first bridge, and the BAW resonator structure further comprises a second bridge disposed between the first electrode and the third electrode.
  • 35. A BAW resonator structure as claimed in claim 34, wherein the BAW resonator structure has a first perimeter bounding an active region of the BAW resonator structure, and the first bridge is disposed along the first perimeter.
  • 36. A BAW resonator structure as claimed in claim 35, the BAW resonator structure having a second perimeter bounding the active region of the BAW resonator structure, and the second bridge is disposed along the second perimeter.
  • 37. A BAW resonator structure as claimed in claim 34, wherein the first bridge comprises a fill material having an acoustic impedance.
  • 38. A BAW resonator structure as claimed in claim 37, wherein the first bridge is disposed along a first perimeter of the BAW resonator structure.
  • 39. A BAW resonator structure as claimed in claim 37, wherein the fill material comprises non-etchable borosilicate glass (NEBSG).
  • 40. A BAW resonator structure as claimed in claim 34, wherein the second bridge comprises a fill material having an acoustic impedance.
  • 41. A BAW resonator structure as claimed in claim 34, wherein neither the first bridge nor the second bridge is disposed in the first electrode.
  • 42. A BAW resonator structure as claimed in claim 33, wherein the bridge comprises a fill material having an acoustic impedance.
  • 43. A BAW resonator structure as claimed in claim 42, wherein a second bridge is disposed along a second perimeter of the BAW resonator structure.
  • 44. A BAW resonator structure as claimed in claim 42, wherein the fill material comprises non-etchable borosilicate glass (NEBSG).
  • 45. A BAW resonator structure as claimed in claim 33, wherein the bridge has a trapezoidal cross-sectional shape.
  • 46. A BAW resonator structure as claimed in claim 45, wherein a second bridge is disposed along a second perimeter of the BAW resonator structure.
  • 47. A BAW resonator structure as claimed in claim 33, wherein the bridge is a first bridge disposed in the second electrode, and the BAW resonator structure further comprises a second bridge disposed in the third electrode.
  • 48. A BAW resonator structure as claimed in claim 33, wherein the bridge is a first bridge disposed in the first piezoelectric layer, and the BAW resonator structure further comprises a second bridge disposed in the second piezoelectric layer.
  • 49. A bulk acoustic wave (BAW) resonator structure, comprising: a substrate comprising an acoustic reflector;a first electrode disposed over the substrate;a planarization layer disposed over the substrate and adjacent to the first electrode, the planarization layer not overlapping the acoustic reflector;a first piezoelectric layer disposed over the first electrode;a second electrode disposed over the first piezoelectric layer;a second piezoelectric layer disposed over the second electrode;a third electrode disposed over the second piezoelectric layer;a bridge disposed between the first electrode and the third electrode, the bridge extending past an edge of the acoustic reflector; andan inner raised region disposed over the third electrode.
  • 50. A BAW resonator structure as claimed in claim 49, further comprising an outer raised region disposed over the third electrode.
  • 51. A BAW resonator structure as claimed in claim 49, wherein the BAW resonator structure has a first perimeter bounding an active region of the BAW resonator structure, the bridge is disposed along the first perimeter, and the inner raised region is in the active region.
  • 52. A BAW resonator structure as claimed in claim 49, the planarization layer being a first planarization layer, and the BAW resonator structure further comprises a second planarization layer disposed over the first piezoelectric layer and adjacent to the second electrode, wherein the second planarization layer does not overlap the acoustic reflector.
  • 53. A BAW resonator structure as claimed in claim 49, wherein the bridge is a first bridge, and the BAW resonator structure further comprises a second bridge disposed between the first electrode and the third electrode.
  • 54. A BAW resonator structure as claimed in claim 53, wherein the first bridge comprises a fill material having an acoustic impedance.
  • 55. A BAW resonator structure as claimed in claim 53, wherein the second bridge comprises a fill material having an acoustic impedance.
  • 56. A BAW resonator structure as claimed in claim 49, wherein the BAW resonator structure has a first perimeter bounding an active region of the BAW resonator structure, and the bridge is disposed along the first perimeter.
  • 57. A BAW resonator structure as claimed in claim 56, wherein the BAW resonator structure has a second perimeter bounding the active region of the BAW resonator structure, and a second bridge is disposed along the second perimeter.
  • 58. A BAW resonator structure as claimed in claim 49, wherein the bridge comprises a fill material having an acoustic impedance.
  • 59. A BAW resonator structure as claimed in claim 49, wherein the bridge comprises a first bridge disposed in the second electrode, and the BAW resonator structure further comprises a second bridge disposed in the third electrode.
  • 60. A BAW resonator structure as claimed in claim 59, wherein the first bridge is disposed along a first perimeter of the BAW resonator structure.
  • 61. A BAW resonator structure as claimed in claim 60, wherein the second bridge is disposed along a second perimeter of the BAW resonator structure.
  • 62. A BAW resonator structure as claimed in claim 49, wherein the bridge comprises a first bridge disposed in the first piezoelectric layer, and the BAW resonator structure further comprises a second bridge disposed in the second piezoelectric layer.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part application of commonly owned U.S. patent application Ser. No. 13/036,489 entitled “Coupled Resonator Filter Comprising Bridge” filed on Feb. 28, 2011 to Dariusz Burak. The present application claims priority under 35 U.S.C. §120 to U.S. patent application Ser. No. 13/036,489, the disclosure of which is hereby incorporated by reference in its entirety.

US Referenced Citations (513)
Number Name Date Kind
3174122 Fowler et al. Mar 1965 A
3189851 Fowler Jun 1965 A
3321648 Kolm May 1967 A
3422371 Poirier et al. Jan 1969 A
3568108 Poirier et al. Mar 1971 A
3582839 Pim et al. Jun 1971 A
3590287 Berlincourt et al. Jun 1971 A
3610969 Clawson et al. Oct 1971 A
3826931 Hammond Jul 1974 A
3845402 Nupp Oct 1974 A
4084217 Brandli et al. Apr 1978 A
4172277 Pinson Oct 1979 A
4272742 Lewis Jun 1981 A
4281299 Newbold Jul 1981 A
4320365 Black et al. Mar 1982 A
4344004 Okubo Aug 1982 A
4355408 Scarrott Oct 1982 A
4456850 Inoue et al. Jun 1984 A
4529904 Hattersley Jul 1985 A
4608541 Moriwaki et al. Aug 1986 A
4625138 Ballato Nov 1986 A
4640756 Wang et al. Feb 1987 A
4719383 Wang et al. Jan 1988 A
4769272 Byrne et al. Sep 1988 A
4798990 Henoch Jan 1989 A
4819215 Yokoyama et al. Apr 1989 A
4836882 Ballato Jun 1989 A
4841429 McClanahan et al. Jun 1989 A
4906840 Zdeblick et al. Mar 1990 A
4975892 Defranould et al. Dec 1990 A
5048036 Scifres et al. Sep 1991 A
5048038 Brennan et al. Sep 1991 A
5066925 Freitag Nov 1991 A
5075641 Weber et al. Dec 1991 A
5111157 Komiak May 1992 A
5118982 Inoue et al. Jun 1992 A
5129132 Zdeblick et al. Jul 1992 A
5162691 Mariani et al. Nov 1992 A
5166646 Avanic et al. Nov 1992 A
5185589 Krishnaswamy et al. Feb 1993 A
5214392 Kobayashi et al. May 1993 A
5233259 Krishnaswamy et al. Aug 1993 A
5241209 Sasaki Aug 1993 A
5241456 Marcinkiewicz et al. Aug 1993 A
5262347 Sands Nov 1993 A
5270492 Fukui Dec 1993 A
5294898 Dworsky et al. Mar 1994 A
5361077 Weber Nov 1994 A
5382930 Stokes et al. Jan 1995 A
5384808 Van Brunt et al. Jan 1995 A
5448014 Kong et al. Sep 1995 A
5465725 Seyed-Bolorforosh Nov 1995 A
5475351 Uematsu et al. Dec 1995 A
5548189 Williams Aug 1996 A
5567334 Baker et al. Oct 1996 A
5587620 Ruby et al. Dec 1996 A
5589858 Kadowaki et al. Dec 1996 A
5594705 Connor et al. Jan 1997 A
5603324 Oppelt et al. Feb 1997 A
5633574 Sage May 1997 A
5671242 Takiguchi et al. Sep 1997 A
5692279 Mang et al. Dec 1997 A
5704037 Chen Dec 1997 A
5705877 Shimada Jan 1998 A
5714917 Ella Feb 1998 A
5729008 Blalock et al. Mar 1998 A
5789845 Wadaka et al. Aug 1998 A
5835142 Nakamura et al. Nov 1998 A
5853601 Krishaswamy et al. Dec 1998 A
5864261 Weber Jan 1999 A
5866969 Shimada et al. Feb 1999 A
5872493 Ella Feb 1999 A
5873153 Ruby et al. Feb 1999 A
5873154 Ylilammi et al. Feb 1999 A
5894184 Furuhashi et al. Apr 1999 A
5894647 Lakin Apr 1999 A
5903087 Mattson et al. May 1999 A
5910756 Ella Jun 1999 A
5932953 Drees et al. Aug 1999 A
5936150 Kobrin et al. Aug 1999 A
5953479 Zhou et al. Sep 1999 A
5955926 Uda et al. Sep 1999 A
5962787 Okada et al. Oct 1999 A
5969463 Tomita Oct 1999 A
5982297 Welle Nov 1999 A
6001664 Swirhun et al. Dec 1999 A
6016052 Vaughn Jan 2000 A
6040962 Kanazawa et al. Mar 2000 A
6051907 Ylilammi Apr 2000 A
6060818 Ruby et al. May 2000 A
6087198 Panasik Jul 2000 A
6090687 Merchant et al. Jul 2000 A
6107721 Lakin Aug 2000 A
6111341 Hirama Aug 2000 A
6111480 Iyama et al. Aug 2000 A
6114795 Tajima et al. Sep 2000 A
6118181 Merchant et al. Sep 2000 A
6124678 Bishop et al. Sep 2000 A
6124756 Yaklin et al. Sep 2000 A
6131256 Dydyk Oct 2000 A
6150703 Cushman et al. Nov 2000 A
6187513 Katakura Feb 2001 B1
6198208 Yano et al. Mar 2001 B1
6215375 Larson, III et al. Apr 2001 B1
6219032 Rosenberg et al. Apr 2001 B1
6219263 Wuidart Apr 2001 B1
6228675 Ruby et al. May 2001 B1
6229247 Bishop May 2001 B1
6252229 Hays et al. Jun 2001 B1
6262600 Haigh et al. Jul 2001 B1
6262637 Bradley et al. Jul 2001 B1
6263735 Nakatani et al. Jul 2001 B1
6265246 Ruby et al. Jul 2001 B1
6278342 Ella Aug 2001 B1
6284121 Reid Sep 2001 B1
6292336 Horng et al. Sep 2001 B1
6306755 Zheng Oct 2001 B1
6307447 Barber et al. Oct 2001 B1
6307761 Nakagawa Oct 2001 B1
6335548 Roberts et al. Jan 2002 B1
6355498 Chan et al. Mar 2002 B1
6366006 Boyd Apr 2002 B1
6376280 Ruby et al. Apr 2002 B1
6377137 Ruby Apr 2002 B1
6384697 Ruby May 2002 B1
6396200 Misu et al. May 2002 B2
6407649 Tikka et al. Jun 2002 B1
6414569 Nakafuku Jul 2002 B1
6420820 Larson, III Jul 2002 B1
6424237 Ruby et al. Jul 2002 B1
6429511 Ruby et al. Aug 2002 B2
6434030 Rehm et al. Aug 2002 B1
6437482 Shibata Aug 2002 B1
6441539 Kitamura et al. Aug 2002 B1
6441702 Ella et al. Aug 2002 B1
6462631 Bradley et al. Oct 2002 B2
6466105 Lobl et al. Oct 2002 B1
6466418 Horng et al. Oct 2002 B1
6469597 Ruby et al. Oct 2002 B2
6469909 Simmons Oct 2002 B2
6472954 Ruby et al. Oct 2002 B1
6476536 Pensala Nov 2002 B1
6479320 Gooch Nov 2002 B1
6483229 Larson, III et al. Nov 2002 B2
6486751 Barber et al. Nov 2002 B1
6489688 Baumann et al. Dec 2002 B1
6492883 Liang et al. Dec 2002 B2
6496085 Ella et al. Dec 2002 B2
6498604 Jensen Dec 2002 B1
6507983 Ruby et al. Jan 2003 B1
6515558 Ylilammi Feb 2003 B1
6518860 Ella et al. Feb 2003 B2
6525996 Miyazawa Feb 2003 B1
6528344 Kang Mar 2003 B2
6530515 Glenn et al. Mar 2003 B1
6534900 Aigner et al. Mar 2003 B2
6542055 Frank et al. Apr 2003 B1
6548942 Panasik Apr 2003 B1
6548943 Kaitila et al. Apr 2003 B2
6549394 Williams Apr 2003 B1
6550664 Bradley et al. Apr 2003 B2
6559487 Kang et al. May 2003 B1
6559530 Hinzel et al. May 2003 B2
6564448 Oura et al. May 2003 B1
6566956 Ohnishi et al. May 2003 B2
6566979 Larson, III et al. May 2003 B2
6580159 Fusaro et al. Jun 2003 B1
6583374 Knieser et al. Jun 2003 B2
6583688 Klee et al. Jun 2003 B2
6593870 Dummermuth et al. Jul 2003 B2
6594165 Duerbaum et al. Jul 2003 B2
6600390 Frank Jul 2003 B2
6601276 Barber Aug 2003 B2
6603182 Low et al. Aug 2003 B1
6617249 Ruby et al. Sep 2003 B2
6617750 Dummermuth et al. Sep 2003 B2
6617751 Sunwoo et al. Sep 2003 B2
6621137 Ma et al. Sep 2003 B1
6630753 Malik et al. Oct 2003 B2
6635509 Ouellet Oct 2003 B1
6639872 Rein Oct 2003 B1
6651488 Larson, III et al. Nov 2003 B2
6657363 Aigner Dec 2003 B1
6668618 Larson, III et al. Dec 2003 B2
6670866 Ella et al. Dec 2003 B2
6677929 Gordon et al. Jan 2004 B2
6693500 Yang et al. Feb 2004 B2
6710508 Ruby et al. Mar 2004 B2
6710681 Figueredo et al. Mar 2004 B2
6713314 Wong et al. Mar 2004 B2
6714102 Ruby et al. Mar 2004 B2
6720844 Lakin Apr 2004 B1
6720846 Iwashita et al. Apr 2004 B2
6724266 Plazza et al. Apr 2004 B2
6738267 Navas Sabater et al. May 2004 B1
6750593 Iwata Jun 2004 B2
6774746 Whatmore et al. Aug 2004 B2
6777263 Gan et al. Aug 2004 B1
6787048 Bradley et al. Sep 2004 B2
6788170 Kaitila et al. Sep 2004 B1
6803835 Frank Oct 2004 B2
6812619 Kaitila et al. Nov 2004 B1
6820469 Adkins et al. Nov 2004 B1
6828713 Bradley et al. Dec 2004 B2
6842088 Yamada et al. Jan 2005 B2
6842089 Lee Jan 2005 B2
6849475 Kim Feb 2005 B2
6853534 Williams Feb 2005 B2
6861920 Ishikawa et al. Mar 2005 B2
6872931 Liess et al. Mar 2005 B2
6873065 Haigh et al. Mar 2005 B2
6873529 Ikuta et al. Mar 2005 B2
6874211 Bradley et al. Apr 2005 B2
6874212 Larson, III Apr 2005 B2
6888424 Takeuchi et al. May 2005 B2
6900705 Nakamura et al. May 2005 B2
6903452 Ma et al. Jun 2005 B2
6906451 Yamada et al. Jun 2005 B2
6911708 Park Jun 2005 B2
6917261 Unterberger Jul 2005 B2
6924583 Lin et al. Aug 2005 B2
6924717 Ginsburg et al. Aug 2005 B2
6927651 Larson, III et al. Aug 2005 B2
6936837 Yamada et al. Aug 2005 B2
6936928 Hedler et al. Aug 2005 B2
6936954 Peczalski Aug 2005 B2
6941036 Lucero Sep 2005 B2
6943647 Aigner Sep 2005 B2
6943648 Maiz et al. Sep 2005 B2
6946928 Larson, III et al. Sep 2005 B2
6954121 Bradley et al. Oct 2005 B2
6963257 Ella et al. Nov 2005 B2
6970365 Turchi Nov 2005 B2
6975183 Aigner et al. Dec 2005 B2
6977563 Komuro et al. Dec 2005 B2
6985051 Nguyen et al. Jan 2006 B2
6985052 Tikka Jan 2006 B2
6987433 Larson, III et al. Jan 2006 B2
6989723 Komuro et al. Jan 2006 B2
6998940 Metzger Feb 2006 B2
7002437 Takeuchi et al. Feb 2006 B2
7019604 Gotoh et al. Mar 2006 B2
7019605 Larson, III Mar 2006 B2
7026876 Esfandiari et al. Apr 2006 B1
7053456 Matsuo May 2006 B2
7057476 Hwu Jun 2006 B2
7057478 Korden et al. Jun 2006 B2
7064606 Louis Jun 2006 B2
7084553 Ludwiczak Aug 2006 B2
7091649 Larson, III et al. Aug 2006 B2
7098758 Wang et al. Aug 2006 B2
7102460 Schmidhammer et al. Sep 2006 B2
7109826 Ginsburg et al. Sep 2006 B2
7128941 Lee Oct 2006 B2
7129806 Sato Oct 2006 B2
7138889 Lakin Nov 2006 B2
7148466 Eckman et al. Dec 2006 B2
7158659 Baharav et al. Jan 2007 B2
7161448 Feng et al. Jan 2007 B2
7170215 Namba et al. Jan 2007 B2
7173504 Larson, III et al. Feb 2007 B2
7179392 Robert et al. Feb 2007 B2
7187254 Su et al. Mar 2007 B2
7199683 Thalhammer Apr 2007 B2
7209374 Noro Apr 2007 B2
7212083 Inoue et al. May 2007 B2
7212085 Wu May 2007 B2
7230509 Stoemmer Jun 2007 B2
7230511 Onishi et al. Jun 2007 B2
7233218 Park et al. Jun 2007 B2
7235915 Nakamura et al. Jun 2007 B2
7242270 Larson, III et al. Jul 2007 B2
7259498 Nakatsuka et al. Aug 2007 B2
7268647 Sano et al. Sep 2007 B2
7275292 Ruby et al. Oct 2007 B2
7276994 Takeuchi et al. Oct 2007 B2
7280007 Feng et al. Oct 2007 B2
7281304 Kim et al. Oct 2007 B2
7294919 Bai Nov 2007 B2
7301258 Tanaka Nov 2007 B2
7310861 Aigner et al. Dec 2007 B2
7313255 Machida et al. Dec 2007 B2
7332985 Larson, III et al. Feb 2008 B2
7345410 Grannen et al. Mar 2008 B2
7358831 Larson et al. Apr 2008 B2
7367095 Larson, III et al. May 2008 B2
7368857 Tanaka May 2008 B2
7369013 Fazzio et al. May 2008 B2
7385467 Stoemmer et al. Jun 2008 B2
7388318 Yamada et al. Jun 2008 B2
7388454 Ruby et al. Jun 2008 B2
7388455 Larson, III Jun 2008 B2
7391286 Jamneala et al. Jun 2008 B2
7400217 Larson, III et al. Jul 2008 B2
7408428 Larson, III Aug 2008 B2
7414349 Sasaki Aug 2008 B2
7414495 Iwasaki et al. Aug 2008 B2
7420320 Sano et al. Sep 2008 B2
7423503 Larson, III et al. Sep 2008 B2
7425787 Larson, III Sep 2008 B2
7439824 Aigner Oct 2008 B2
7463118 Jacobsen Dec 2008 B2
7466213 Lobl et al. Dec 2008 B2
7468608 Feucht et al. Dec 2008 B2
7482737 Yamada et al. Jan 2009 B2
7508286 Ruby et al. Mar 2009 B2
7515018 Handtmann et al. Apr 2009 B2
7535154 Umeda et al. May 2009 B2
7535324 Fattinger et al. May 2009 B2
7545532 Muramoto Jun 2009 B2
7561009 Larson, III et al. Jul 2009 B2
7567023 Iwaki et al. Jul 2009 B2
7576471 Solal Aug 2009 B1
7602101 Hara et al. Oct 2009 B2
7616079 Tikka et al. Nov 2009 B2
7619493 Uno et al. Nov 2009 B2
7629865 Ruby Dec 2009 B2
7636026 Heinze et al. Dec 2009 B2
7649304 Umeda et al. Jan 2010 B2
7655963 Sadaka et al. Feb 2010 B2
7684109 Godshalk et al. Mar 2010 B2
7714684 Ruby et al. May 2010 B2
7737807 Larson et al. Jun 2010 B2
7758979 Akiyama et al. Jul 2010 B2
7768364 Hart et al. Aug 2010 B2
7795781 Barber et al. Sep 2010 B2
7869187 McKinzie Jan 2011 B2
7889024 Bradley et al. Feb 2011 B2
7966722 Hart et al. Jun 2011 B2
7978025 Yokoyama et al. Jul 2011 B2
8008993 Milsom et al. Aug 2011 B2
8030823 Sinha et al. Oct 2011 B2
8084919 Nishihara et al. Dec 2011 B2
8188810 Fazzio et al. May 2012 B2
8222795 Sinha et al. Jul 2012 B2
8230562 Fazzio et al. Jul 2012 B2
8248185 Choy et al. Aug 2012 B2
8253513 Zhang Aug 2012 B2
8384497 Zhang Feb 2013 B2
8456257 Fattinger Jun 2013 B1
8692631 Zhang Apr 2014 B2
8902023 Choy et al. Dec 2014 B2
20010045793 Misu et al. Nov 2001 A1
20020000646 Gooch et al. Jan 2002 A1
20020030424 Iwata Mar 2002 A1
20020063497 Panasik May 2002 A1
20020070463 Chang et al. Jun 2002 A1
20020121944 Larson, III et al. Sep 2002 A1
20020121945 Ruby et al. Sep 2002 A1
20020126517 Matsukawa et al. Sep 2002 A1
20020140520 Hikita et al. Oct 2002 A1
20020152803 Larson, III et al. Oct 2002 A1
20020153965 Ruby et al. Oct 2002 A1
20020158716 Pensala Oct 2002 A1
20020190814 Yamada et al. Dec 2002 A1
20030001251 Cheever et al. Jan 2003 A1
20030006502 Karpman Jan 2003 A1
20030011285 Ossmann Jan 2003 A1
20030011446 Bradley Jan 2003 A1
20030051550 Nguyen et al. Mar 2003 A1
20030087469 Ma May 2003 A1
20030102776 Takeda et al. Jun 2003 A1
20030111439 Fetter et al. Jun 2003 A1
20030128081 Ella et al. Jul 2003 A1
20030132493 Kang et al. Jul 2003 A1
20030132809 Senthilkumar et al. Jul 2003 A1
20030141946 Ruby et al. Jul 2003 A1
20030179053 Aigner et al. Sep 2003 A1
20030193269 Jang et al. Oct 2003 A1
20030205948 Lin et al. Nov 2003 A1
20030227357 Metzger et al. Dec 2003 A1
20040016995 Kuo et al. Jan 2004 A1
20040017130 Wang et al. Jan 2004 A1
20040027216 Ma et al. Feb 2004 A1
20040056735 Nomura et al. Mar 2004 A1
20040092234 Pohjonen May 2004 A1
20040099898 Grivna et al. May 2004 A1
20040124952 Tikka Jul 2004 A1
20040129079 Kato et al. Jul 2004 A1
20040150293 Unterberger Aug 2004 A1
20040150296 Park et al. Aug 2004 A1
20040166603 Carley Aug 2004 A1
20040195937 Matsubara et al. Oct 2004 A1
20040212458 Lee Oct 2004 A1
20040246075 Bradley et al. Dec 2004 A1
20040257171 Park et al. Dec 2004 A1
20040257172 Schmidhammer et al. Dec 2004 A1
20040263287 Ginsburg et al. Dec 2004 A1
20050012570 Korden et al. Jan 2005 A1
20050012716 Mikulin et al. Jan 2005 A1
20050023931 Bouche et al. Feb 2005 A1
20050030126 Inoue et al. Feb 2005 A1
20050036604 Scott et al. Feb 2005 A1
20050057117 Nakatsuka et al. Mar 2005 A1
20050057324 Onishi et al. Mar 2005 A1
20050068124 Stoemmer Mar 2005 A1
20050093396 Larson, III et al. May 2005 A1
20050093397 Yamada et al. May 2005 A1
20050093653 Larson, III May 2005 A1
20050093654 Larson, III et al. May 2005 A1
20050093655 Larson, III et al. May 2005 A1
20050093657 Larson, III et al. May 2005 A1
20050093658 Larson, III et al. May 2005 A1
20050093659 Larson, III et al. May 2005 A1
20050104690 Larson, III et al. May 2005 A1
20050110598 Larson, III May 2005 A1
20050128030 Larson, III et al. Jun 2005 A1
20050140466 Larson, III et al. Jun 2005 A1
20050167795 Higashi Aug 2005 A1
20050193507 Ludwiczak Sep 2005 A1
20050206271 Higuchi et al. Sep 2005 A1
20050206479 Nguyen et al. Sep 2005 A1
20050206483 Pashby et al. Sep 2005 A1
20050218488 Matsuo Oct 2005 A1
20050248232 Itaya et al. Nov 2005 A1
20050269904 Oka Dec 2005 A1
20050275486 Feng Dec 2005 A1
20060017352 Tanielian Jan 2006 A1
20060038636 Tsurumi et al. Feb 2006 A1
20060071736 Ruby et al. Apr 2006 A1
20060081048 Mikado et al. Apr 2006 A1
20060087199 Larson, III et al. Apr 2006 A1
20060103492 Feng et al. May 2006 A1
20060114541 Van Beek Jun 2006 A1
20060119453 Fattinger et al. Jun 2006 A1
20060125489 Feucht et al. Jun 2006 A1
20060132262 Fazzio et al. Jun 2006 A1
20060164183 Tikka et al. Jul 2006 A1
20060164186 Stoemmer et al. Jul 2006 A1
20060176126 Wang et al. Aug 2006 A1
20060185139 Larson, III et al. Aug 2006 A1
20060197411 Hoen et al. Sep 2006 A1
20060226932 Fazzio et al. Oct 2006 A1
20060238070 Costa et al. Oct 2006 A1
20060284706 Ginsburg et al. Dec 2006 A1
20060284707 Larson, III et al. Dec 2006 A1
20060290446 Aigner et al. Dec 2006 A1
20070035364 Sridhar et al. Feb 2007 A1
20070037311 Izumi et al. Feb 2007 A1
20070080759 Jamneala et al. Apr 2007 A1
20070085447 Larson, III Apr 2007 A1
20070085631 Larson, III et al. Apr 2007 A1
20070085632 Larson, III et al. Apr 2007 A1
20070086080 Larson, III et al. Apr 2007 A1
20070086274 Nishimura et al. Apr 2007 A1
20070090892 Larson, III Apr 2007 A1
20070170815 Unkrich Jul 2007 A1
20070171002 Unkrich Jul 2007 A1
20070176710 Jamneala et al. Aug 2007 A1
20070205850 Jamneala et al. Sep 2007 A1
20070279153 Ruby Dec 2007 A1
20070291164 Goh et al. Dec 2007 A1
20080055020 Handtmann et al. Mar 2008 A1
20080129414 Lobl et al. Jun 2008 A1
20080129417 Taniguchi Jun 2008 A1
20080143215 Hara et al. Jun 2008 A1
20080258842 Ruby et al. Oct 2008 A1
20080297278 Handtmann et al. Dec 2008 A1
20080297279 Thalhammer et al. Dec 2008 A1
20080297280 Thalhammer et al. Dec 2008 A1
20090001848 Umeda et al. Jan 2009 A1
20090064498 Mok et al. Mar 2009 A1
20090079302 Wall et al. Mar 2009 A1
20090096550 Handtmann et al. Apr 2009 A1
20090102319 Nakatsuka et al. Apr 2009 A1
20090127978 Asai et al. May 2009 A1
20090153268 Milson et al. Jun 2009 A1
20090201594 Smith Aug 2009 A1
20090267453 Barber et al. Oct 2009 A1
20090267457 Barber et al. Oct 2009 A1
20100033063 Nishihara et al. Feb 2010 A1
20100039000 Milson et al. Feb 2010 A1
20100052176 Kamada et al. Mar 2010 A1
20100052815 Bradley et al. Mar 2010 A1
20100091370 Mahrt et al. Apr 2010 A1
20100102358 Lanzieri et al. Apr 2010 A1
20100107389 Nessler et al. May 2010 A1
20100148637 Satou Jun 2010 A1
20100176899 Schaufele et al. Jul 2010 A1
20100187948 Sinha et al. Jul 2010 A1
20100260453 Block Oct 2010 A1
20100327697 Choy et al. Dec 2010 A1
20100327994 Choy et al. Dec 2010 A1
20110084779 Zhang Apr 2011 A1
20110121916 Barber et al. May 2011 A1
20110148547 Zhang Jun 2011 A1
20110204996 Gilbert et al. Aug 2011 A1
20120154074 Ruby et al. Jun 2012 A1
20120161902 Feng et al. Jun 2012 A1
20120177816 Larson et al. Jul 2012 A1
20120194297 Choy Aug 2012 A1
20120218055 Burak et al. Aug 2012 A1
20120218056 Burak Aug 2012 A1
20120218057 Burak et al. Aug 2012 A1
20120218058 Burak et al. Aug 2012 A1
20120218059 Burak et al. Aug 2012 A1
20120218060 Burak et al. Aug 2012 A1
20120226807 Panella et al. Sep 2012 A1
20120248941 Shirakawa et al. Oct 2012 A1
20120280767 Burak et al. Nov 2012 A1
20130038408 Burak et al. Feb 2013 A1
20130063227 Burak et al. Mar 2013 A1
20130082799 Zuo et al. Apr 2013 A1
20130106534 Burak et al. May 2013 A1
20130127300 Umeda et al. May 2013 A1
20130140959 Shin et al. Jun 2013 A1
20130205586 Takada et al. Aug 2013 A1
20130235001 Yun et al. Sep 2013 A1
20130241673 Yokoyama et al. Sep 2013 A1
20140111288 Nikkel et al. Apr 2014 A1
20140118088 Burak et al. May 2014 A1
20140118091 Burak et al. May 2014 A1
20140118092 Burak et al. May 2014 A1
Foreign Referenced Citations (92)
Number Date Country
1383611 Dec 2002 CN
101170303 Apr 2008 CN
10160617 Jun 2003 DE
10239317 Mar 2004 DE
102007012384 Sep 2008 DE
231892 Aug 1987 EP
0637875 Feb 1995 EP
689254 Dec 1995 EP
0865157 Sep 1998 EP
880227 Nov 1998 EP
1047189 Oct 2000 EP
1096259 May 2001 EP
1100196 May 2001 EP
1180494 Feb 2002 EP
1249932 Oct 2002 EP
1258989 Nov 2002 EP
1258990 Nov 2002 EP
1517443 Mar 2005 EP
1517444 Mar 2005 EP
1528674 May 2005 EP
1528675 May 2005 EP
1528676 May 2005 EP
1528677 May 2005 EP
1542362 Jun 2005 EP
1557945 Jul 2005 EP
1575165 Sep 2005 EP
0973256 Sep 2006 EP
2299592 Mar 2011 EP
2299593 Mar 2011 EP
2951027 Apr 2011 FR
1207974 Oct 1970 GB
2013343 Aug 1979 GB
2411239 Aug 2005 GB
2418791 Apr 2006 GB
2427773 Jan 2007 GB
59023612 Feb 1984 JP
61054686 Mar 1986 JP
6165507 Apr 1986 JP
62-109419 May 1987 JP
62-200813 Sep 1987 JP
1157108 Jun 1989 JP
2-10907 Jan 1990 JP
06005944 Jan 1994 JP
8-330878 Dec 1996 JP
09-027729 Jan 1997 JP
9-83029 Mar 1997 JP
10-32456 Feb 1998 JP
2000-31552 Jan 2000 JP
2000-232334 Aug 2000 JP
2000-295065 Oct 2000 JP
2001-102901 Apr 2001 JP
2001-508630 Jun 2001 JP
2002217676 Aug 2002 JP
2002217676 Aug 2002 JP
1-295512 Nov 2002 JP
2003017964 Jan 2003 JP
2003-505905 Feb 2003 JP
2003124779 Apr 2003 JP
2003124779 Apr 2003 JP
2003-332872 Nov 2003 JP
2006-109472 Apr 2006 JP
2006-186412 Jul 2006 JP
2006-295924 Oct 2006 JP
2006-319796 Nov 2006 JP
2007-006501 Jan 2007 JP
2007028669 Feb 2007 JP
2007-208845 Aug 2007 JP
2007-295306 Nov 2007 JP
2008-066792 Mar 2008 JP
2008-131194 Jun 2008 JP
2008-211394 Sep 2008 JP
WO-9816957 Apr 1998 WO
WO-9838736 Sep 1998 WO
WO-9856049 Dec 1998 WO
WO-9937023 Jul 1999 WO
WO-0106646 Jan 2001 WO
WO-0106647 Jan 2001 WO
WO-0199276 Dec 2001 WO
WO-02103900 Dec 2002 WO
WO-03030358 Apr 2003 WO
WO-03043188 May 2003 WO
WO-03050950 Jun 2003 WO
WO-03058809 Jul 2003 WO
WO-2004034579 Apr 2004 WO
WO-2004051744 Jun 2004 WO
WO-2004102688 Nov 2004 WO
WO-2005043752 May 2005 WO
WO-2005043753 May 2005 WO
WO-2005043756 May 2005 WO
WO-2006018788 Feb 2006 WO
2006079353 Aug 2006 WO
2013065488 May 2013 WO
Non-Patent Literature Citations (125)
Entry
W. Yang et al.; “Spurious Wave Suppression in BAW Resonators with Frame-like Airgap”; 2010 IEEE International Frequency Control Symposium, Jun. 1-4, 2010, pp. 656-660.
U.S. Appl. No. 10/971,169, filed Oct. 22, 2004, Larson III, John D., et al.
“A partial GB Search Report for”, Application No. GB0522393.8 Jan. 9, 2006, 4 pages.
“A partial GB Search Report for Application No.”, GB0525884.3 Feb. 2, 2006, 4 pgs.
“British Search Report Application No.”, 0605222.9 Jul. 11, 2006.
“Co-pending U.S. Appl. No. 13/036,489, filed on Feb. 28, 2011”.
“Co-pending U.S. Appl. No. 13/074,262, filed on Mar. 29, 2011”.
“Co-pending U.S. Appl. No. 13/101,376, filed on May 5, 2011”.
“Examination report corresponding to application No.”, GB0605770.7 Aug. 25, 2006.
“Examination Report from UK for application”, GB 0605971.1 Aug. 24, 2006.
“Search Report for Great Britain Patent Application”, No. 0617742.2 Mar. 29, 2007.
“Search Report for Great Britain Patent Application”, No. 0617742.2 Dec. 13, 2006.
“Search Report from corresponding application”, No. GB0605225.2 Jun. 26, 2006.
“Search report from corresponding application No.”, GB0620152.9 Nov. 15, 2006.
“Search report from corresponding application No.”, GB0620653.6 Nov. 17, 2006.
“Search report from corresponding application No.”, GB0620655.1 Nov. 17, 2006.
“Search Resort from corresponding application No.”, GB0620657.7 Nov. 23, 2006.
“Search Report from corresponding application No.”, GB 0605779.8 Aug. 23, 2006.
“Search Report in the Great Britain Patent Application”, No. 0619698.4 Nov. 30, 2006.
Akiyama, et al., “Enhancement of Piezoelectric Response in Scandium Aluminum Nitride Alloy Thin Films Prepared by Dual Reactive Cosputtering”, Adv. Mater 2009 , 593-596.
Al-Ahmad, M. et al., “Piezoelectric-Based Tunable Microstrip Shunt Resonator”, Proceedings of Asia-Pacific Microwave Conference 2006.
Aoyama, Takayuki et al., “Diffusion of Boron, Phosphorous, Arsenic and Antimony in Thermally Grown Silicon Dioxide”, Journal of The Electrochemical Society, vol. 146, No. 5 1999, 1879-1883.
Auld, B. A. , “Acoustic Resonators”, Acoustic Fields and Waves in Solids, Second Edition, vol. II 1990, 250-259.
Bauer, L. O. et al., “Properties of Silicon Implanted with Boron Ions through Thermal Silicon Dioxide”, Solid State Electronics, vol. 16, No. 3 Mar. 1973, 289-300.
Bi, F.Z. , “Bulk Acoustic Wave RF TEchnology”, IEEE Microwave Magazine, vol. 9, Issue 5. 2008 , 65-80.
Chen, , “Fabrication and Characterization of ALN Thin Film Bulk Acoustic Wave Resonator”, Dissertation, University of Pittsburg School of Engineering 2006.
Choi, Sungjin et al., “Design of Half-Bridge Piezo-Transformer Converters in the AC Adapter Applications”, APEC 2005, IEEE Mar. 2005 , 244-248.
Coombs, Clyde F. , “Electronic Instrument Handbook”, Second Edition, McGraw-Hill, Inc. 1995 , pp. 5.1 to 5.29.
C-S Lee, et al., “Copper-Airbridged Low-Noise GaAs PHEMT with Ti/WNX/Ti Diffusion Barrier for High-Frequency”, IEEE Transactions on Electron Devices, vol. 53 , Issue: 8. 2006 , 1753-1758.
Denisse, C.M.M. et al., “Plasma-Enhanced Growth and Composition of Silicon Oxynitride Films”, J. Appl. Phys. vol. 60, No. 7. Oct. 1, 1986 , 2536-2542.
Fattinger, G. G. et al., “Coupled Bulk Acoustic Wave Resonator Filters: Key technology for single-to-balanced RF filters”, 0-7803-8331-1/4/W20.00; IEEE MTT-S Digest 2004 , 927-929.
Fattinger, G.G. et al., “Single-To-Balance Filters for Mobile Phones Using Coupled Resonator BAW Technology”, 2004 IEEE Ultrasonics Symposium Aug. 2004 , 416-419.
Fattinger, G. B. et al., “Spurious Mode Suppression in Coupled Resonator Filters”, IEEE MTT-S International Microwave Symposium Digest 2005 , 409-412.
Gilbert, S. R. , “An Ultra-Miniature, Low Cost Single Ended to Differential Filter for ISM Band Applications”, Micro. Symp. Digest, 2008 IEEE MTT-S Jun. 2008 , 839-842.
Grill, A. et al., “Ultralow-K Dielectrics Prepared by Plasma-Enhanced Chemical Vapor Deposition”, App. Phys. Lett, vol. 79 2001 , 803-805.
Hadimioglu, B. et al., ““Polymer Films As Acoustic Matching Layers”.”, 1990 IEEE Ultrasonics Symposium Proceedings, vol. 3 PP. [Previously submitted as “Polymer Files As Acoustic Matching Layers, 1990 IEEE Ultrasonics Symposium Proceeding, vol. 4 PP. 1227-1340, Dec. 1990”. Considered by Examiner on Mar. 20, 2007 Dec. 1990 , 1337-1340.
Hara, K. , “Surface Treatment of Quartz Oscillator Plate by Ion Implantation”, Oya Buturi, vol. 47, No. 2 Feb. 1978 , 145-146.
Holzlohner, Ronald et al., “Accurate Calculation of Eye Diagrams and Bit Error Rates in Optical Transmission Systems Using Linearization”, Journal of Lightwave Technology, vol. 20, No. 3, Mar. 2002, pp. 389-400.
Ivensky, Gregory et al., “A Comparison of Piezoelectric Transformer AC/DC Converters with Current Doubler and voltage Doubler Rectifiers”, IEEE Transactions on Power Electronics, vol. 19, No. 6. Nov. 2004.
Jamneala, T. et al., “Coupled Resonator Filter with Single-Layer Acoustic Coupler”, IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 55 Oct. 2008 , 2320-2326.
Jamneala, Tiberiu et al., “Ultra-Miniature Coupled Resonator Filter with Single-Layer Acoustic Coupler”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 56, No. 11. Nov. 2009 , 2553-2558.
Jiang, Yimin et al., “A Novel Single-Phase Power Factor Correction Scheme”, IEEE 1993 , 287-292.
Jung, Jun-Phil et al., “Experimental and Theoretical Investigation on the Relationship Between AIN Properties and AIN-Based FBAR Characteristics” 2003 IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum Sep. 3, 2003 , 779-784.
Kaitila, J. et al., “Measurement of Acoustical Parameters of Thin Films”, 2006 IEEE Ultrasonics Symposium Oct. 2006 , 464-467.
Krishnaswamy, S.V. et al., “Film Bulk Acoustic Wave Resonator Technology”, May 29, 1990 , 529-536.
Lakin, K.M. , “Bulk Acoustic Wave Coupled Resonator Filters”, 2002 IEEE International Frequency Control Symposium and PDA Exhibition May 8-14, 2002.
Lakin, K.M. , “Coupled Resonator Filters”, 2002 IEEE Ultrasonics Symposium Mar. 2, 2002 , 901-908.
Lakin, K.M. et al., “High Performance Stacked Crystal Filters for GPS and Wide Bandwidth Applications”, 2001 IEEE Ultrasonics Symposium Jan. 1, 2001 , 833-838.
Lakin, K. M. et al., “Temperature Compensated Bulk Acoustic Thin Film Resonators”, IEEE Ultrasonics Symposium, San Juan, Puerto Rico Oct. 2000 , 855-858.
Lakin, K.M. ,“Thin Film BAW Filters for Wide Bandwidth and High Performance Applications”, IEEE Microwave Symposium Digest: vol. 2 Jun. 6-11, 2004 , 923-926.
Lakin, K. M. , “Thin Film Resonators and Filters”, IEEE Untrasonics Symposium, Caesar's Tahoe, NV Oct. 1999 , 895-906.
Lakin, et al., “Wide Bandwidth Thin Film BAW Filters”, 2004 IEEE Ultrasonics Symposium, vol. 1, Aug. 2004 , 407-410.
Larson III, John D. at al., “Measurement of Effective Kt2,Q,Rp,Rs vs. Temperature for Mo/AIN FBAR Resonators”, IEEE Ultrasonics Symposium 2002 , 939-943.
Lee, Jiunn-Homg et al., “Optimization of Frame-Like Film Bulk Acoustic Resonators for Suppression of Spurious Lateral Modes Using Finite Element Method”, IEEE Ultrasonic Symposium, vol. 1, 2004 , 278-281.
Li, Yunxiu et al., “AC-DC Converter with Worldwide Range Input Voltage by Series and Parallel Piezoelectric Transformer Connection”, 35th Annual IEEE Power Electronics Specialists Conference 2004.
Lobl, H.P. at al., “Piezoelectric Materials for BAW Resonators and Filters”, 2001 IEEE Ultrasonics Symposium Jan. 1, 2001 , 807-811.
Loboda, M. J. , “New Solutions for Intermetal Dielectrics Using Trimethylsilane-Based PECVD Processes”, Microelectronics Eng., vol. 50. 2000 , 15-23.
Martin, Steven J. at al., “Development of a Low Dielectric Constant Polymer for the Fabrication of Integrated Circuit Interconnect”, 12 Advanced Materials Dec. 23, 2000 , 1769-1778.
Martin, et al., “Re-growth of C-Axis Oriented AIN Thin Films”, IEEE Ultrasonics Symposium, 2006 , 169-172.
Martin, et al., “Shear Mode Coupling and Tilted Gram Growth of AIN Thin Films in BAW Resonators”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 53, No. 7 Jul. 2006 , 1339-1343.
Martinez, et al., “High confinement suspended micro-ring resonators in silicon-on-insulator”, Optics Express, Vo. 14, No. 13 Jun. 26, 2006, 6259-6263.
Merriam-Webster, , “Collegiate Dictionary”, tenth edition 2000 , 2 pages.
Navas, J. et al., “Miniaturised Battery Charger using Piezoelectric Transformers”, IEEE 2001 , 492-496.
Ng, J. et al., “The Diffusion Ion-Implanted Boron in Silicon Dioxide”, AIP Conf. Proceedings, No. 122 1984 , 20-33.
Ohta, S. et al., “Temperature Characteristics of Solidly Mounted Piezoelectric Thin Film Resonators”, IEEE Ultrasonics Symposium, Honolulu, HI Oct. 2003 , 2011-2015.
Pandey, et al., “Anchor Loss Reduction in Resonant MEMS using MESA Structures”, Proceedings of the 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Bangkok, Thailand Jan. 16-19, 2007 , 880-885.
Pang, W. et al., “High Q Single-Mode High-Tone Bulk Acoustic Resonator Integrated With Surface-Machined FBAR Filter”, Microwave Symposium Digest, IEEE MTT-S International 2005 , 413-416.
Parker, T. E. et al., “Temperature-Compensated Surface Acoustic-Wave Devices with SiO2 Film Overlays”, J. Appl Physics, vol. 50 1360-1369 , Mar. 1979.
Pensala, et al., “Spurious resonance supression in gigahertz-range ZnO thin-film bulk acoustic wave resonators by the boundary frame method: modeling and experiment”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 56 No. 8 Aug. 2009, 1731-1744.
Pensala, , “Thin film bulk acoustic wave devices: performance optimization and modeling”, http://vtt.fi/inf/pdf/publications/2011/P756.pdf.
Reinhardt, Alexandre et al., “Design of Coupled Resonator Filters Using Admittance and Scattering Matrices” 2003 IEEE Ultrasonics Symposium May 3, 2003 , 1428-1431.
Ruby, R. C. , “MicroMachined Thin Film Bulk Acoustic Resonators”, IEEE International Frequency Control Symposium 1994 , 135-138.
Ruby, R. et al., “The Effect of Perimeter Geometry on FBAR Resonator Electrical Performance”, Microwave Symposium Digest, 2005 IEEE MTT-S International Jun. 12, 2005 , 217-221.
Sanchez, A.M. et al., “Mixed Analytical and Numerical Design Method for Piezoelectric Transformers”, IEEE Xplore 2003 , 841-846.
Schoenholz, J.E. et al., “Plasma-Enhanced Deposition of Silicon Oxynitride Films”, Thin Solid Films 1987 , 285-291.
Schuessler, Hans H. , “Ceramic Filters and Resonators”, Reprinted from IEEE Trans. Sonics Ultrason., vol. SU-21 Oct. 1974 , 257-268.
Shirakawa, A. A. et al., “Bulk Acoustic Wave Coupled Resonator Filters Synthesis Methodology”, 2005 European Microwave Conference, vol. 1 Oct. 2005.
Small, M. K et al., “A De-Coupled Stacked Bulk Acoustic Resonator (DSBAR) Filter with 2 dB Bandwidth >4%”, 2007 IEEE Ultrasonics Symposium Oct. 2007 , 604-607.
Spangenberg, B. et al., “Dependence of the Layer Resistance of Boron Implantation in Silicon and the Annealing Conditions”, Comptus Rendus de l'Academic Bulgare des Sciences, vol. 33, No. 3 1980 , 325-327.
Tas, et al., “Reducing Anchor Loss in Micromechanical Extensional Mode Resonators”, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 57, No, 2. Feb. 2010 , 448-454.
Thomsen, C. et al., “Surface Generation and Detection of Phonons by Picosecond Light Pulses”, Phys. Rev. B, vol. 34 1986 , 4129.
Tiersten, H. F. et al., “An Analysis of Thickness-Extensional Trapped Energy Resonant Device Structures with Rectangular Electrodes in the Piezoelectric Thin Film on Silicon Configuration”, J. Appl. Phys. 54 (10) Oct. 1983 , 5893-5910.
Topich, J. A. et al., “Effects of Ion Implanted Fluorine in Silicon Dioxide”, Nuclear Instr. and Methods, Cecon Rec, Cleveland, OH May 1978 , 70-73.
Tsubbouchi, K. et al., “Zero Temperature coefficient Surface Acoustic Wave Devices using Epitaxial AIN Films”, IEEE Ultrasonic symposium, San Diego, CA, 1082 1982 , 240-245.
Vasic, D et al., “A New Method to Design Piezoelectric Transformer Used in MOSFET & IGBT Drive Circuits”, IEEE 34th Annual Power Electronics Specialists Conference, 2003 vol. 1, Jun. 15-19, 2003 , 307-312.
Vasic, D et al., “A New MOSFET & IGBT Gate Drive Insulated By a Piezoelectric Transformer”, IEEE 32 nd Annual Power Electronics Specialists Conference, 2001 vol. 3 2001 , 1479-1484.
Yanagitani, et al., “Giant Shear Mode Electromechanical Coupling Coefficient k15 in C-Axis Tilted ScAIN Films”, IEEE International Ultrasonics Symposium 2010.
Yang, C.M. et al., “Highly C Axis Oriented AIN Film Using MOCVD for 5GHx Band FBAR Filter”, 2003 IEEE Ultrasonics Symposium Oct. 5, 2003 , pp. 170-173.
Co-pending U.S. Appl. No. 12/710,640, filed Feb. 23, 2010.
Co-pending U.S. Appl. No. 13/074,094, filed Mar. 29, 2011.
Allaha, Mohamed A. , “Solid Mounted BAW Resonators With Layer-Transfered AIN Using Sacrificial Si Surfaces”, Solid State Electronics, ESSDERC 2009 Conference, vol. 54, Issue ( Sep. 2010 , 1041-1046.
Dubois, M A. , “Solid Mounted Resonator Based on Aluminum Nitride Thin Film”, 1998 IEEE Ultrasonics Symposium, vol. 1 1998, 909-912.
Strijbos, R. , “Design and Characterisation of High-Q Solidly-Mounted Bulk Acoustic Wave Filter”, ECTC '07. Proceedings. 57th Electronic Components and Technology Conference, Publication Year 2007 , 169-174.
“Co-pending U.S. Appl. No. 13/161,946, filed Jun. 16, 2011”.
“Co-pending U.S. Appl. No. 13/286,038, filed Oct. 31, 2011”.
“Co-pending U.S. Appl. No. 13/654,718, filed Oct. 18, 2012”.
“Co-pending U.S. Appl. No. 13/658,024, filed Oct. 23, 2012”.
“Co-pending U.S. Appl. No. 13/660,941, filed Oct. 25, 2012”.
“Co-pending U.S. Appl. No. 13/663,449, filed Oct. 29, 2012”.
“Co-pending U.S. Appl. No. 13/781,491, filed Feb. 28, 2013”.
Lee, et at., “Development of High-Quality FBAR Devices for Wireless Applications Employing Two-Step Annealing Treatments”, IEEE Microwave and Wireless Components Letters, vol. 21, No. 11 Nov. 2011.
Tang, et al., “Micromachined Bulk Acoustic Resonator With a Raised Frame”, 16th International Conference on Mechatronics Technology, Oct. 16-19, 2012, Tianjin, China Oct. 16-19, 2012.
“Co-pending U.S. Appl. No. 13/151,631, filed Jun. 2, 2011”.
“Co-pending U.S. Appl. No. 13/662,425, filed Oct. 27, 2012”.
“Co-pending U.S. Patent Application No. 13/662,460, filed Oct. 27, 2012”.
“Co-pending U.S. Patent Application No, 13/766,993, filed Feb. 14, 2013”.
“Co-pending U.S. Appl. No. 13/767,754, filed Feb. 14, 2013”.
“Co-pending U.S. Appl. No. 13/767,765, filed Feb. 14, 2013”.
“Co-pending U.S. Appl. No. 13/955,744, filed Jul. 31, 2013”.
“Co-pending U.S. App. No. 13/955,774, filed Jul. 31, 2013”.
“Co-pending U.S. App. No. 14/092,077, filed Nov. 27, 2013”.
“Non-Final Office Action dated Feb. 26, 2014 from U.S. Appl. No. 13/151,631”.
Aigner, Robert , “SAW, BAW and the Future of Wireless”, May 6, 2013, pp. 1-4 May 6, 2013.
El Hassan, M. et al., “Techniques for Tuning BAW-SMR Resonators for the 4th Generation of Mobile Communications”, Intech 2013 , 421-442.
Pineda, Humberto , “Thin-Film Bulk Acoustic Wave Resonators-FBAR”, Bellaterra, Monpeller Dec. 2007 , 1-241.
Umeda, Keiichi et al., “Piezoelectric Properties of Scain Thin Films for Piezo-Mems Devices”, MEMS, 2013, Taipei, Taiwan, Jan. 20-24, 2013 pp. 733-736 2013.
Moriera, et al., “Aluminum Scandium Nitride Thin-Film Bulk Acoustic Resonators for Wide Band Applications”, Vacuum 86 (2011) 23-26.
IEEE Xplore Abstract for Suppression of Acoustic Energy Leakage in FBARS with Al Bottom Electrode: FEM Simulation and Experimental Results, Oct. 28-31, 2007.
Machine Translation of JP 2007-208845.
Machine Translation of JP 2008-211394.
Ohara, et al. “Suppression of Acoustic Energy Leakage in FBARs with Al Bottom Electrode: FEM Simulation and Experimental Results”, 2007 IEEE Ultrasonics Symposium, 1657-1660, Oct. 28-34, 2007.
Machine translation of JP 2006-186412.
Machine translation of JP 2008-066792.
Office Action mailed Apr. 15, 2015 in Chinese Patent Application No. 201210093059.0 (Unofficial/Non-certified translation provided by foreign agent included).
Machine translation of CN1383611A.
Related Publications (1)
Number Date Country
20120218055 A1 Aug 2012 US
Continuation in Parts (1)
Number Date Country
Parent 13036489 Feb 2011 US
Child 13074262 US