1. Technical Field
This patent application relates to low profile, conformal antennas.
2. Background Information
It is known that wide bandwidth, miniaturized antennas can be provided using planar conductors fed through frequency-dependent impedance elements such as meander lines. By arranging these components in an appropriate configuration, the electrical properties of the antenna can be passively and automatically optimized over a wide bandwidth. This approach is particularly useful in aircraft and other low profile applications since no part of the antenna needs to protrude beyond the skin of the vehicle or other enclosure such as a wireless telephone. The overall design can also be adapted to wireless devices and laptop computers and the like where the antenna height can be minimized.
U.S. Pat. No. 6,373,446 issued to Apostolos discusses a crossed-element, meander line loaded antenna comprising a ground plane and a dual bow-tie configuration with four triangular sections. Each of the triangular sections has a side member substantially perpendicular from the ground plane and a triangle-shaped top member with a based end and a vertex end. The top member is disposed substantially parallel to the ground plane with the base end abutting the side member, being separated by a side gap. Each vertex end is arranged in close proximity to one another separated by a vertex gap, and there is a first connector operatively connecting a first pair of the triangular sections each at the vertex end. A second connector operatively connects a second pair of the triangular sections each at the vertex end.
U.S. Pat. No. 6,833,815 also to Apostolos discloses a flush-mounted meander line loaded antenna having a conductive cavity. The antenna radiating elements are positioned at the top portion of the conductive cavity such that the top plates of the antenna are flush with a surrounding ground plane surface that meets the upper edge of the cavity.
In another implementation described in U.S. Pat. No. 7,436,369 to Apostolos a wideband antenna can be provided using these techniques with the meander line loads placed at or below the plane of the conductive surface which carries the cavity.
According to various teachings herein, a low profile antenna is provided by a reflective cavity-backed central radiator structure. The central radiator structure is formed from multiple bow tie antenna elements. Each bow tie element is composed of a pair of triangle-shaped conductive radiating surfaces. The triangle surfaces in each pair are positioned to face one another at their vertices forming the bow tie shape. Two (or more) bow tie elements are then stacked over one another such that the base of a triangle of a first bow tie element is disposed adjacent to the base of a triangle of a second bow tie element.
The arrangement results in spaces between the elements of the central radiating structure and the cavity, such as at the sides of the bow ties, that do not contain radiating surfaces. In one arrangement these spaces are filled with one, and preferably more than one, additional conductive surfaces such as metallic surfaces. These additional metallic surfaces are isolated from the radiating bow tie elements. Filling in the spaces in this way results in a reduced radar cross section and improved gain performance.
In some implementations, passively reconfigurable impedance structure can be disposed between the radiating elements, the conductive cavity, and/or additional metallic surfaces. These passively reconfigurable impedance structures can operate as a frequency dependent coupling between the central radiator and the ground plane elements(s).
When these passively reconfigurable impedances are used, the center radiating element can be designed to operate efficiently, decoupled from the cavity, at a relatively high radiation frequency of interest. The other elements, being coupled to the central radiator in a frequency-dependent fashion, only become active as the frequency decreases.
The frequency dependent couplings may be implemented using meander line structures. The meander line structures may take various forms such as interconnected, alternating, high and low impedance sections disposed over a conductive surface.
The frequency dependent couplings may also take the form of a Variable Impedance Transmission Line (VITL) that consists of a meandering metallic transmission line with gradually decreasing section lengths, with interspersed dielectric portions to isolate the conductive segments. Specific embodiments of the VITL structure may further include electroactive actuators that alter the spacing between dielectric and metal layers to provide a Tunable Variable Impedance Transmission Line (TVITL).
The description below refers to the accompanying drawings, of which:
More particularly, this version of a stacked bow tie antenna array 100 makes use of a reflector 102. The reflector 102 here is a rectangular box formed of metal or other conductive material. In this configuration, the array 100 includes a central radiator structure provided by two bow tie elements, including a first bow tie element 110-1 and a second bow tie element 110-2, stacked over one another.
An example bow tie element 110-1 consists of an upper triangular section 120-1-1 and a lower section 120-1-2. The bow tie elements 110 are themselves formed of a suitable conductive material such as metal positioned on the face of the reflector cavity 102. The metal can be formed on a dielectric substrate (not shown) or otherwise mechanically supported on the face of the cavity.
Each of the triangular sections 120 has a base end and a vertex end. The upper triangle 120-1-1 of the upper bow tie element 110-1 is disposed with its base end substantially parallel to a top edge 103 of the face of cavity 102, and with its vertex facing the vertex of the lower triangle section 120-1-2. Each vertex end is thus arranged in close proximity to one another separated by a gap 140. Example bow tie element 110-1 is fed by a radio transmitter and/or receiver (not shown) by connecting to a point 130-1 adjacent this junction of the triangular elements 120-1-1 and 120-1-2.
The second bow tie element 110-2 is formed identical or at least similar to the first bow tie element 110-1. The base of the lower triangle 120-1-2 is thus disposed near a center portion of the face of the cavity 102. The base of the lower triangle element 120-2-2 of the lower bow tie 110-2 is positioned near and substantially parallel to a bottom edge 104 of cavity 102, with its vertex facing the vertex of the upper triangle element 120-2-1.
The bow tie elements 110-1 and 110-2 are thus considered to be “stacked” on top of one another such that they lie in a common vertical plane, coincident with or at least parallel to a front face of the reflector 102.
The reflector 102 is otherwise filled with air or other non-conductive material depending of course, on the desired operating frequency.
It should be understood that while only two stacked bow tie elements 110 are shown in
The closed spaced metallic structures 150 in the example shown in
The size of the gap between the closely spaced elements 150 in this configuration (7×12.5 inch overall size; 6×6 inch bow ties, for operating at 1090 MHz) was 0.16 inches.
The closely spaced metallic structures 150 may take the form of the spaced apart triangular shaped pieces as illustrated, with the smaller triangle pieces disposed nearest the radiating elements 120. However the metallic structures may have other sizes or shapes. What is important is that a substantial portion of the space to the sides of the bow tie elements 110 is filled with conductive material.
The stacked bow tie array 100 of
This can be seen by comparing the modeled azimuthal and elevational plots of
The surrounding metallic spaced elements 150 may also be connected to the reflective cavity 102 walls with passively reconfigurable couplings 210. The grounded elements, being coupled to the radiators 110 in a frequency-dependent fashion, only become active as the frequency decreases. The first cell 110-1 makes use of one or more of the other cell(s) 110-2 through the couplers to increase the effective length.
As is known in the art, the frequency dependent couplings 210 may be implemented using meander line structures. The meander line structures may take various forms such as interconnected, alternating, high and low impedance sections disposed over a conductive surface. The frequency dependent couplings may also take the form of a Variable Impedance Transmission Line (VITL) that consists of a meandering metallic transmission line with gradually decreasing section lengths, with interspersed dielectric portions to isolate the conductive segments. Specific embodiments of the VITL structure may further include electroactive actuators that alter the spacing between dielectric and metal layers to provide a Tunable Variable Impedance Transmission Line (TVITL).
While this invention has been particularly shown and described with references to example embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.
This patent application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/596,951 filed Feb. 9, 2012 entitled “LOW RCS STACKED BOW TIE ARRAY WITH REFLECTOR” and is related to U.S. patent application Ser. No. 13/536,445 filed Jun. 28, 2012 entitled “LOW-PROFILE, VERY WIDE BANDWIDTH AIRCRAFT COMMUNICATIONS ANTENNAS USING ADVANCED GROUND-PLANE TECHNIQUES”. The content of each these referenced patent applications is hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
5696372 | Grober et al. | Dec 1997 | A |
6072439 | Ippolito et al. | Jun 2000 | A |
6373446 | Apostolos | Apr 2002 | B2 |
6417816 | Sadler et al. | Jul 2002 | B2 |
6480158 | Apostolos | Nov 2002 | B2 |
6753816 | Apostolos | Jun 2004 | B1 |
6795021 | Ngai et al. | Sep 2004 | B2 |
6833815 | Apostolos | Dec 2004 | B2 |
6842154 | Apostolos | Jan 2005 | B1 |
6847328 | Libonati et al. | Jan 2005 | B1 |
6900770 | Apostolos | May 2005 | B2 |
7148850 | Baliarda et al. | Dec 2006 | B2 |
7358920 | Apostolos et al. | Apr 2008 | B2 |
7436369 | Apostolos | Oct 2008 | B2 |
20080231528 | Guixa Arderiu | Sep 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20130222199 A1 | Aug 2013 | US |
Number | Date | Country | |
---|---|---|---|
61596951 | Feb 2012 | US |