Transducers generally convert electrical signals to mechanical signals or vibrations, and/or mechanical signals or vibrations to electrical signals. Acoustic transducers, in particular, convert electrical signals to acoustic signals (sound waves) in a transmit mode and/or convert received acoustic waves to electrical signals in a receive mode. Acoustic transducers generally include acoustic resonators, such as thin film bulk acoustic resonators (FBARs), surface acoustic wave (SAW) resonators or bulk acoustic wave (BAW) resonators, and may be used in a wide variety of electronic applications, such as cellular telephones, personal digital assistants (PDAs), electronic gaming devices, laptop computers and other portable communications devices. For example, FBARs may be used for electrical filters and voltage transformers. Generally, an acoustic resonator has a layer of piezoelectric material between two conductive plates (electrodes), which may be formed on a thin membrane. FBAR devices, in particular, generate laterally propagating acoustic waves when stimulated by an applied time-varying electric field confined to finite-sized electrodes, as well as higher order harmonic mixing products. The lateral modes and the higher order harmonic mixing products may have a deleterious impact on functionality.
A stacked bulk acoustic resonator (SBAR), also referred to as a double bulk acoustic resonator (DBAR), includes two layers of piezoelectric materials between three electrodes in a single stack, forming a single resonant cavity. That is, a first layer of piezoelectric material is formed between a first (bottom) electrode and a second (middle) electrode, and a second layer of piezoelectric material is formed between the second (middle) electrode and a third (top) electrode. Generally, the stacked bulk acoustic resonator device allows reduction of the area of a single bulk acoustic resonator device by about half.
In FBAR devices, mitigation of acoustic losses at the boundaries and the resultant mode confinement in the active region of the FBAR (the region of overlap of the top electrode, the piezoelectric layer, and the bottom electrode) has been effected through various methods. Notably, frames are provided along one or more sides of the FBARs. The frames create an acoustic impedance mismatch that reduces losses by reflecting desired modes back to the active area of the resonator, thus improving the confinement of desired modes within the active region of the FBAR and minimizing conversion of these modes at the edges of the electrodes into unwanted modes that cannot couple back to electric field (like shear and flexural modes).
While the incorporation of frames has resulted in improved mode confinement and attendant improvement in the quality (Q) factor of the FBAR, direct application of known frame elements has not resulted in significant improvement in mode confinement and Q of known DBARs.
What is needed, therefore, is a DBAR that overcomes at least the known shortcomings described above.
The illustrative embodiments are best understood from the following detailed description when read with the accompanying drawing figures. It is emphasized that the various features are not necessarily drawn to scale. In fact, the dimensions may be arbitrarily increased or decreased for clarity of discussion. Wherever applicable and practical, like reference numerals refer to like elements.
It is to be understood that the terminology used herein is for purposes of describing particular embodiments only, and is not intended to be limiting. The defined terms are in addition to the technical and scientific meanings of the defined terms as commonly understood and accepted in the technical field of the present teachings.
As used in the specification and appended claims, the terms ‘a’, ‘an’ and ‘the’ include both singular and plural referents, unless the context clearly dictates otherwise. Thus, for example, ‘a device’ includes one device and plural devices.
As used in the specification and appended claims, and in addition to their ordinary meanings, the terms ‘substantial’ or ‘substantially’ mean to within acceptable limits or degree. For example, ‘substantially cancelled’ means that one skilled in the art would consider the cancellation to be acceptable.
As used in the specification and the appended claims and in addition to its ordinary meaning, the term ‘approximately’ means to within an acceptable limit or amount to one having ordinary skill in the art. For example, ‘approximately the same’ means that one of ordinary skill in the art would consider the items being compared to be the same.
In the following detailed description, for purposes of explanation and not limitation, specific details are set forth in order to provide a thorough understanding of illustrative embodiments according to the present teachings. However, it will be apparent to one having ordinary skill in the art having had the benefit of the present disclosure that other embodiments according to the present teachings that depart from the specific details disclosed herein remain within the scope of the appended claims. Moreover, descriptions of well-known apparatuses and methods may be omitted so as to not obscure the description of the illustrative embodiments. Such methods and apparatuses are clearly within the scope of the present teachings.
Generally, it is understood that the drawings and the various elements depicted therein are not drawn to scale. Further, relative terms, such as “above,” “below,” “top,” “bottom,” “upper” and “lower” are used to describe the various elements' relationships to one another, as illustrated in the accompanying drawings. It is understood that these relative terms are intended to encompass different orientations of the device and/or elements in addition to the orientation depicted in the drawings. For example, if the device were inverted with respect to the view in the drawings, an element described as “above” another element, for example, would now be below that element.
The present teachings relate generally to BAW resonators, and particularly to DBARs. In certain applications, the BAW resonators provide DBAR-based filters (e.g., ladder filters). Certain details of BAW resonators and filters comprising BAW resonators, materials used therein and methods of fabrication thereof may be found in one or more of the following conunonly owned U.S. Patents and Patent Applications: U.S. Pat. No. 6,107,721, to Lakin; U.S. Pat. Nos. 5,587,620, 5,873,153, 6,060,818, 6,507,983, and 7,629,865 to Ruby, et al.; U.S. Pat. No. 7,280,007, to Feng, et al.; U.S. Patent Publication No. 20070205850 to Jamneala, et al.; U.S. Pat. No. 7,388,454, to Ruby, et al.; U.S. Patent Publication No. 20100327697 to Choy, et al.; and U.S. Patent Publication No. 20100327994 to Choy, et al. The disclosures of these patents and patent applications are specifically incorporated herein by reference. It is emphasized that the components, materials and method of fabrication described in these patents and patent applications are representative and other methods of fabrication and materials within the purview of one of ordinary skill in the art are contemplated.
A first electrode 107 is disposed over the substrate 105 and partially over the cavity 106. A planarization layer 107′ is provided over the substrate as shown. In a representative embodiment, the planarization layer 107′ comprises non-etchable borosilicate glass (NEBSG). A first piezoelectric layer 108 is disposed over the first electrode 107. A second electrode 111 is disposed over the first piezoelectric layer 108. A planarization layer 109 is also disposed over the first piezoelectric layer 108 and generally does not overlap the cavity 106. In a representative embodiment, the planarization layer 109 comprises non-etchable borosilicate glass (NEBSG). In an embodiment, the first bridge 110 is disposed along all sides (i.e., along the perimeter) of the DBAR 100. As should be appreciated by one of ordinary skill in the art, the structure provided by the first electrode 107, the first piezoelectric layer 108 and a second electrode Ill is a bulk acoustic wave (BAW) resonator, which in this illustrative embodiment comprises a first BAW resonator of the DBAR 100. A second piezoelectric layer 112 is disposed over the second electrode 111 and over the planarization layer 109. A third electrode 101 is disposed over the second piezoelectric layer 112. In an embodiment, the second bridge 104 is disposed along all sides (i.e., along the perimeter) of the DBAR 100. The structure provided by the second electrode 111, the second piezoelectric layer 112 and the third electrode 101 is also a BAW resonator, which in this illustrative embodiment comprises a second BAW resonator of the DBAR 100.
A first bridge 110 is provided at an interface of a second electrode 111 and the planarization layer 109, and is disposed along all sides of the DBAR 100 (i.e., forms a perimeter of the DBAR 100). In representative embodiments first and second bridges 110, 104 (and other bridges described in connection with representative embodiments below) have a trapezoidal cross-sectional shape. It is emphasized that the trapezoidal cross-sectional shape of the bridges of the representative embodiments is merely illustrative and the bridges are not limited to a trapezoidal cross-sectional shape. For example, the cross-sectional shape of the bridges of the representative embodiments could be square or rectangular, or of an irregular shape. The “slanting” walls of first and second bridges 110, 104 (and other bridges described in connection with representative embodiments below) is beneficial to the quality of layers (e.g., the quality of the crystalline piezoelectric layer(s)) grown over the first and second bridges 110, 104 (and other bridges described in connection with representative embodiments below). Notably, the first bridge 110 and the second bridge 104 (and other bridges described in connection with representative embodiments below) are not necessarily the same shape (e.g., one could have trapezoidal cross-sectional shape and one could have a rectangular cross-sectional in shape). Typical dimensions of the first and second bridges 110, 104 (and other bridges described in connection with representative embodiments below) are approximately 2.0 μm to approximately 10.0 μm in width (x-dimension in the coordinate system shown in
Generally, the first and second bridges 110, 104 (and other bridges described in connection with representative embodiments below) extend over the cavity 106 (depicted as overlap 113 in
On the other hand, if the first and second bridges 110, 104 are too wide, reliability issues can arise and can also limit the placement of similar DBARs (not shown) from being placed in proximity (thus unnecessarily increasing the total area of a chip). In practical situations, the propagating component of the complex evanescent waves can be used to find the optimum width of the first and second bridges 110, 104. In general, when the width of the first and second bridges 110 and 104 is equal to an odd multiple of the quarter-wavelength of the complex evanescent wave, the reflectivity of the eigenmodes can be further increased, which can be manifested by parallel resistance Rp and Q-factor attaining maximum values. Typically, depending on the details of the excitation mechanism, other propagating modes of the decoupling region 113, such as shear modes and flexural modes, can impact Rp and Q-factor. The width of the first and the second bridges 110, 104 can be modified in view of these other propagating modes. Such optimum width of the first and second bridges 110, 104 may be determined experimentally.
In addition, the width and position of the first and second bridges 110, 104 (and other bridges described in connection with representative embodiments) and overlap 113 with the cavity 106 are selected to improve Q-enhancement of the odd resonant mode. In general, the greater the overlap 113 of each bridge 110, 104 with the cavity 106 of the DBAR 100, the greater the improvement Qo with the improvement realized being fairly small after an initial increase. The improvement in Qo must be weighed against a decrease in the electromechanical effective coupling coefficient kt2, which decreases with increasing overlap 113 of the first and second bridges 110, 104 with the cavity 106. Degradation of kt2 results in a degradation of insertion loss (S21) of a filter comprising DBARs. As such, the overlap 113 of the first and second bridges 110, 104 with the cavity 106 is typically optimized experimentally.
The first and second bridges 110, 104 (and other bridges described in connection with representative embodiments below) have a height (y-dimension in the coordinate system of
Illustratively, the first electrode 107, second electrode Ill and the third electrode 101 are tungsten (W) having a thickness of approximately 1000 Å to approximately 20000 Å. Other materials may be used for the first electrode 107, second electrode 111 and the third electrode 101, including but not limited to molybdenum (Mo), iridium (Ir), copper (Cu), aluminum (Al) or a bi-metal material. Illustratively, the first piezoelectric layer 108 and the second piezoelectric layer 112 are aluminum nitride (AlN) having a thickness of approximately 5000 Å to approximately 25000 Å. Other materials may be used for the first piezoelectric layer 108 and the second piezoelectric layer 112, including but not limited to ZnO.
The first and second bridges 110, 104 are formed by patterning a sacrificial material over the first piezoelectric layer 108 and the second piezoelectric layer 112, and forming the depicted layers thereover. After the layers of the DBAR 100 are formed as desired, the sacrificial material is released leaving the first and second bridges 110, 104 “filled” with air. In a representative embodiment, the sacrificial material used to form the first and second bridges 110, 104 is the same as the sacrificial material used to form the cavity 106 (e.g., PSG).
In a representative embodiment, the first bridge 110 and the second bridge 104 define a perimeter along the active region 114 of the DBAR 100. The active region 114 thus includes the portions of the first BAW resonator and the second BAW resonator disposed over the cavity 106 and bounded by the perimeter provided by the first bridge 110 and the second bridge 104. As should be appreciated by one of ordinary skill in the art, the active region of the DBAR 100 is bordered around its perimeter by an acoustic impedance discontinuity created at least in part by the first and second bridges 110, 104, and above and below (cavity 106) by an acoustic impedance discontinuity due to the presence of air. Thus, a resonant cavity is beneficially provided in the active region of the DBAR 100. In certain embodiments, the first bridge 110 and the second bridge 104 are unfilled (i.e., contain air), as is the cavity 106. In other embodiments described more fully below, the first bridge 110, or the second bridge 104, or both, are filled with a material to provide the desired acoustic impedance discontinuity.
It is noted that the first bridge 110, or the second bridge 104, or both, do not necessarily have to extend along all edges of the DBAR 100, and therefore not along the perimeter of the DBAR 100. For example, the first bridge 110 or the second bridge 104, or both, may be provided on four “sides” of the five-sided DBAR 100 shown in
The acoustic impedance mismatch provided by the first bridge 110 and the second bridge 104 causes reflection of acoustic waves at the boundary that may otherwise propagate out of the active region and be lost, resulting in energy loss. The first bridge 110 and the second bridge 104 serve to confine the modes of interest within the active region 114 of the DBAR 100 and reduce energy losses in the DBAR 100. Reducing such losses serves to increase the Q-factor (Qo) of the modes of interest in the DBAR 100. In filter applications of the DBAR 100, as a result of the reduced energy loss, the insertion loss (S21) is beneficially improved.
Generally, if the frequency of the driving electric field is close to the series resonance frequency for the full wavelength thickness extensional mode (known as the TE2 mode), the TE2 mode is predominantly excited. As mentioned above, the first and second bridges 110, 104 foster decoupling of the TE2 mode from the laterally propagating modes in the outside field region 115. However, the edge of the cavity 106 presents a large acoustic impedance discontinuity to the modes that are supported in the decoupling region 113. That impedance discontinuity couples both evanescent modes (i.e., complex TE2 mode) and propagating modes (e.g., TE1 mode, shear modes and flexural modes) in the decoupling region 113 to the freely propagating modes of the substrate, leading to radiative energy losses and reduction of the Q-factor. Notably, this loss is not addressed by the first and second bridges 110, 104 which mostly decouple waves propagating in the lateral direction (x-z plane in the coordinate system depicted in
Mitigation of acoustic losses in the vertical direction (y-dimension in the coordinate system depicted in
The first Bragg layers 116-1, 116-2, 116-3 are comparatively low acoustic impedance layers and are provided beneath the first electrode 107 and the planarization layer 107′; and the second Bragg layers 117-1, 117-2 having comparatively high acoustic impedance are disposed beneath first Bragg layers 116-1 and 116-2, respectively. It is noted that the use of five Bragg layers (e.g., first and second Bragg layers 116-1, 116-2, 116-3, 117-1, 117-2) is merely illustrative, and the DBR 118 may comprise more than five Bragg layers. The number of Bragg layers provided for the DBR is determined by a tradeoff between expected reflection performance (the more layers the better) and cost and processing issues (the fewer layers the cheaper and more straightforward mirror growth and post-processing).
The amount of acoustic isolation of the excited eigenmodes provided by DBR 118 also depends on the contrast between the acoustic impedances of the adjacent Bragg layers, with a greater amount of contrast creating better acoustic reflection of the vertical component of the eigenmodes. In some embodiments, the first and second Bragg layers 116-1˜117-2 are formed of a pair of dielectric materials having contrasting acoustic impedances. One example of such a pair of dielectric materials comprises alternating layers of sputter-deposited silicon carbide (SiC) and plasma enhanced chemical vapor deposited (PECVD) SiC. Notably, the sputter-deposited SiC layer has a comparatively high acoustic impedance and the PECVD SiC layer has a comparatively low acoustic impedance. As such, according to one embodiment, the first Bragg layers 116-1, 116-2, 116-3 each comprise PECVD SiC and the second Bragg layers 117-1, 117-2 each comprise sputter-deposited SiC. Another example of such a pair of dielectric layers is carbon-doped silicon oxide (CDO) and silicon nitride. As such, according to another representative embodiment, the second Bragg layers 117-1, 117-2 each comprise silicon nitride and the first Bragg layers 116-1, 116-2, 116-3 each comprise CDO.
The DBR 118 is formed before the formation of the cavity 106 and the subsequent layers of the DBAR 100. In particular, the layers of the DBR 118 are provided over the substrate 105 using selected materials deposited by known methods. For example, the first Bragg layer 116-3 may be formed over the substrate 105, and the second Bragg layer 117-2 is formed over the first Bragg layer 116-3. In all embodiments, however, the first Bragg layer 116-1, which has a comparatively low acoustic impedance, is provided beneath the first electrode 107. The layers of the DBR 118 can be fabricated using various known methods, an example of which is described in U.S. Pat. No. 7,358,831 to Larson, III, et al., the disclosure of which is hereby incorporated by reference.
In general, DBAR 118 is defined by the presence of air (essentially zero impedance material) at both top and bottom boundaries. Therefore vertical stress components are zero at these boundaries. Through the proper selection of materials, the first Bragg layers 116-1, 116-2, 116-3 can have a very low acoustic impedance compared to the first electrode 107, which may also lead to a lowered vertical stress at the boundary between the first electrode 107 and the first Bragg layer 116-1. Such a lowered stress condition (defining the overall thickness (y-dimension in the depicted coordinate system) of the DBAR) is however only possible when thickness of the first Bragg layer 116-1 is reasonably close to an odd multiple of the quarter wavelength of the fundamental eigenmode (e.g., TE2) for which the DBR 118 is being designed. Adding more layers to the DBR 118 further lowers the vertical stress at the interface between the first electrode 107 and the first Bragg layer 116-1, thus allowing for closer approximation of an ideal zero-stress condition. However, as mentioned above, while lower vertical stress for the TE2 mode is realized by the selection of the thickness of the first Bragg layer 116-1, for other modes which are excited either electrically or mechanically (by modal coupling at the lateral edges of the membrane) that must not necessarily be the case and leakage of these modes through the DBR 118 may be actually enhanced (leading to lesser than expected energy confinement).
The first and second Bragg layers 116-1, 117-1, 116-2, 117-2 combined have a thickness (y-dimension of the coordinate system of
The first and second Bragg layers 116-1, 117-1, 116-2, 17-2 have thicknesses in the range of approximately 3000 Å to approximately 50000 Å, depending on the material used and the frequency operating range of the filter. As mentioned above, thickness of all layers comprising the DBR 118 is substantially equal to one quarter-wavelength of the fundamental eigenmode in the selected material and excited at the selected operational frequency (e.g., series resonance frequency). For example, if each of the first Bragg layers 116-1, 116-2, 116-3 comprises CDO for operation at 800 MHz (series resonance frequency) the each of the first Bragg layers 116-1, 116-2, 116-3116 has a thickness of approximately 1.2 μm. In this example, second Bragg layer may comprise SiN, having a thickness of approximately 3.2 μm for operation at 800 MHz. Notably, the thickness of all layers of the DBR 118 can be selected to be odd-multiple (e.g., 3) quarter-wavelengths of the fundamental DBAR eigenmode in the selected material (e.g., if one quarter-wavelength layer is too thin for practical processing).
After the first and second Bragg layers 116-1, 117-1, 116-2 deposited, the cavity 106 is etched according to a known method and filled with a sacrificial layer, such as described in U.S. Pat. No. 6,060,818. The remaining layers of the DBAR 100 are then provided over the filled cavity and the first and second Bragg layers 116-1, 117-1, 116-2 using a known method such as described above, in the parent application and/or one or more of the incorporated patents and patent publications referenced above.
In the representative embodiment shown and described in connection with
Embodiments Comprising a Single Bridge
In the embodiments described presently, a single bridge is provided in an illustrative DBAR. The single bridge is provided at a single layer in each embodiment, and forms a perimeter that encloses the active region of the DBAR. By placing the bridge under different layers, the various embodiments can be studied to test the degree of coupling of modes in the active region (DBAR region) and the modes in the field region. Generally, the bridge decouples modes with a comparatively large propagation constant (kr) from the modes in the field region. As described below, certain embodiments comprise a “filled” bridge and certain embodiments comprise an “unfilled” bridge. Many details of the present embodiments are common to those described above in connection with the representative embodiments of
Embodiments Comprising Two Bridges
In the embodiments described presently, two bridges are provided in an illustrative DBAR. One bridge is provided in one layer of the DBAR and a second bridge is provided in another layer of the DBAR in each embodiment. The bridges are generally concentric, although not circular in shape, and are disposed about a perimeter that encloses the active region of the DBAR. By placing the bridges under different combinations of layers, the various embodiments can be studied to test the degree of coupling of modes in the active region 114 (DBAR region) and the modes in the field region 115. Generally, the bridge decouples modes with a comparatively large propagation constant (kr) from the modes in the field region 115. As described below, certain embodiments comprise a “filled” bridge and certain embodiments comprise an “unfilled” bridge.
As shown in
Curve 805 depicts Qo of a mode in a known DBAR (without bridges or DBR in accordance with representative embodiments) and curve 806 depicts Qo of a mode in DBAR 800 with first and second bridges (110, 104) released. Compared to the known DBAR that does not include a bridge or DBR 118, an increase in Qo of approximately 400% (depending on frequency of operation, e.g. at 0.87 GHz) is numerically predicted.
Curve 807 depicts Rp at parallel resonance Fp of a known DBAR (without bridges or DBR in accordance with representative embodiments) and curve 808 depicts Rp at parallel resonance Fp of a mode in DBAR 800 with first and second bridges (110, 104) released. As can be appreciated, Rp of DBAR 800 peaks at approximately 4200, and Rp of the known DBAR peaks at approximately 1400. As such, an improvement of approximately 300% is realized through the implementations various features of the DBAR 800 of the present teachings.
An inner raised region 1101 is provided over the third electrode 101 in the active region 114. The inner raised region 1101 is separated from the edges of the active region by gaps 1102, each having a width (in the x-dimension of the coordinate system shown in FIG. 11A) of approximately 1.0 μm to approximately 10.0 μm and a thickness (in the y-dimension of the coordinate system shown in
When connected in a selected topology, a plurality of DBRs according to representative embodiments described above can function as an electrical filter.
In accordance with illustrative embodiments, BAW resonators comprising bridges and their methods of fabrication are described. One of ordinary skill in the art appreciates that many variations that are in accordance with the present teachings are possible and remain within the scope of the appended claims. These and other variations would become clear to one of ordinary skill in the art after inspection of the specification, drawings and claims herein. The invention therefore is not to be restricted except within the spirit and scope of the appended claims.
This application is a continuation-in-part application of commonly owned U.S. patent application Ser. No. 13/074,262 entitled “Stacked Acoustic Resonator Comprising Bridge” filed on Mar. 29, 2011 to Dariusz Burak, et al. The present application claims priority under 35 U.S.C. §120 to U.S. patent application Ser. No. 13/074,262, the disclosure of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3174122 | Fowler et al. | Mar 1965 | A |
3189851 | Fowler | Jun 1965 | A |
3321648 | Kolm | May 1967 | A |
3422371 | Poirier et al. | Jan 1969 | A |
3568108 | Poirier et al. | Mar 1971 | A |
3582839 | Pim et al. | Jun 1971 | A |
3590287 | Berlincourt et al. | Jun 1971 | A |
3610969 | Clawson et al. | Oct 1971 | A |
3826931 | Hammond | Jul 1974 | A |
3845402 | Nupp | Oct 1974 | A |
4084217 | Brandli et al. | Apr 1978 | A |
4172277 | Pinson | Oct 1979 | A |
4272742 | Lewis | Jun 1981 | A |
4281299 | Newbold | Jul 1981 | A |
4320365 | Black et al. | Mar 1982 | A |
4344004 | Okubo | Aug 1982 | A |
4355408 | Scarrott | Oct 1982 | A |
4456850 | Inoue et al. | Jun 1984 | A |
4529904 | Hattersley | Jul 1985 | A |
4608541 | Moriwaki et al. | Aug 1986 | A |
4625138 | Ballato | Nov 1986 | A |
4640756 | Wang et al. | Feb 1987 | A |
4719383 | Wang et al. | Jan 1988 | A |
4769272 | Byrne et al. | Sep 1988 | A |
4798990 | Henoch | Jan 1989 | A |
4819215 | Yokoyama et al. | Apr 1989 | A |
4836882 | Ballato | Jun 1989 | A |
4841429 | McClanahan et al. | Jun 1989 | A |
4906840 | Zdeblick et al. | Mar 1990 | A |
4975892 | Defranould et al. | Dec 1990 | A |
5048036 | Scifres et al. | Sep 1991 | A |
5048038 | Brennan et al. | Sep 1991 | A |
5066925 | Freitag | Nov 1991 | A |
5075641 | Weber et al. | Dec 1991 | A |
5111157 | Komiak | May 1992 | A |
5118982 | Inoue et al. | Jun 1992 | A |
5129132 | Zdeblick et al. | Jul 1992 | A |
5162691 | Mariani et al. | Nov 1992 | A |
5166646 | Avanic et al. | Nov 1992 | A |
5185589 | Krishnaswamy et al. | Feb 1993 | A |
5214392 | Kobayashi et al. | May 1993 | A |
5233259 | Krishnaswamy et al. | Aug 1993 | A |
5241209 | Sasaki | Aug 1993 | A |
5241456 | Marcinkiewicz et al. | Aug 1993 | A |
5262347 | Sands | Nov 1993 | A |
5270492 | Fukui | Dec 1993 | A |
5294898 | Dworsky et al. | Mar 1994 | A |
5361077 | Weber | Nov 1994 | A |
5382930 | Stokes et al. | Jan 1995 | A |
5384808 | Van Brunt et al. | Jan 1995 | A |
5448014 | Kong et al. | Sep 1995 | A |
5465725 | Seyed-Bolorforosh | Nov 1995 | A |
5475351 | Uematsu et al. | Dec 1995 | A |
5548189 | Williams | Aug 1996 | A |
5567334 | Baker et al. | Oct 1996 | A |
5587620 | Ruby et al. | Dec 1996 | A |
5589858 | Kadowaki et al. | Dec 1996 | A |
5594705 | Connor et al. | Jan 1997 | A |
5603324 | Oppelt et al. | Feb 1997 | A |
5633574 | Sage | May 1997 | A |
5671242 | Takiguchi et al. | Sep 1997 | A |
5692279 | Mang et al. | Dec 1997 | A |
5704037 | Chen | Dec 1997 | A |
5705877 | Shimada | Jan 1998 | A |
5714917 | Ella | Feb 1998 | A |
5729008 | Blalock et al. | Mar 1998 | A |
5789845 | Wadaka et al. | Aug 1998 | A |
5835142 | Nakamura et al. | Nov 1998 | A |
5853601 | Krishaswamy et al. | Dec 1998 | A |
5864261 | Weber | Jan 1999 | A |
5866969 | Shimada et al. | Feb 1999 | A |
5872493 | Ella | Feb 1999 | A |
5873153 | Ruby et al. | Feb 1999 | A |
5873154 | Ylilammi et al. | Feb 1999 | A |
5894184 | Furuhashi et al. | Apr 1999 | A |
5894647 | Lakin | Apr 1999 | A |
5903087 | Mattson et al. | May 1999 | A |
5910756 | Ella | Jun 1999 | A |
5932953 | Drees et al. | Aug 1999 | A |
5936150 | Kobrin et al. | Aug 1999 | A |
5953479 | Zhou et al. | Sep 1999 | A |
5955926 | Uda et al. | Sep 1999 | A |
5962787 | Okada et al. | Oct 1999 | A |
5969463 | Tomita | Oct 1999 | A |
5982297 | Welle | Nov 1999 | A |
6001664 | Swirhun et al. | Dec 1999 | A |
6016052 | Vaughn | Jan 2000 | A |
6040962 | Kanazawa et al. | Mar 2000 | A |
6051907 | Ylilammi | Apr 2000 | A |
6060818 | Ruby et al. | May 2000 | A |
6087198 | Panasik | Jul 2000 | A |
6090687 | Merchant et al. | Jul 2000 | A |
6107721 | Lakin | Aug 2000 | A |
6111341 | Hirama | Aug 2000 | A |
6111480 | Iyama et al. | Aug 2000 | A |
6118181 | Merchant et al. | Sep 2000 | A |
6124678 | Bishop et al. | Sep 2000 | A |
6124756 | Yaklin et al. | Sep 2000 | A |
6131256 | Dydyk | Oct 2000 | A |
6150703 | Cushman et al. | Nov 2000 | A |
6187513 | Katakura | Feb 2001 | B1 |
6198208 | Yano et al. | Mar 2001 | B1 |
6215375 | Larson, III et al. | Apr 2001 | B1 |
6219032 | Rosenberg et al. | Apr 2001 | B1 |
6219263 | Wuidart | Apr 2001 | B1 |
6228675 | Ruby et al. | May 2001 | B1 |
6229247 | Bishop | May 2001 | B1 |
6252229 | Hays et al. | Jun 2001 | B1 |
6262600 | Haigh et al. | Jul 2001 | B1 |
6262637 | Bradley et al. | Jul 2001 | B1 |
6263735 | Nakatani et al. | Jul 2001 | B1 |
6265246 | Ruby et al. | Jul 2001 | B1 |
6278342 | Ella | Aug 2001 | B1 |
6292336 | Horng et al. | Sep 2001 | B1 |
6307447 | Barber et al. | Oct 2001 | B1 |
6307761 | Nakagawa | Oct 2001 | B1 |
6335548 | Roberts et al. | Jan 2002 | B1 |
6355498 | Chan et al. | Mar 2002 | B1 |
6366006 | Boyd | Apr 2002 | B1 |
6376280 | Ruby et al. | Apr 2002 | B1 |
6377137 | Ruby | Apr 2002 | B1 |
6384697 | Ruby | May 2002 | B1 |
6396200 | Misu et al. | May 2002 | B2 |
6407649 | Tikka et al. | Jun 2002 | B1 |
6414569 | Nakafuku | Jul 2002 | B1 |
6420820 | Larson, III | Jul 2002 | B1 |
6424237 | Ruby et al. | Jul 2002 | B1 |
6429511 | Ruby et al. | Aug 2002 | B2 |
6434030 | Rehm et al. | Aug 2002 | B1 |
6437482 | Shibata | Aug 2002 | B1 |
6441539 | Kitamura et al. | Aug 2002 | B1 |
6441702 | Ella et al. | Aug 2002 | B1 |
6462631 | Bradley et al. | Oct 2002 | B2 |
6466105 | Lobl et al. | Oct 2002 | B1 |
6466418 | Horng et al. | Oct 2002 | B1 |
6469597 | Ruby et al. | Oct 2002 | B2 |
6469909 | Simmons | Oct 2002 | B2 |
6472954 | Ruby et al. | Oct 2002 | B1 |
6476536 | Pensala | Nov 2002 | B1 |
6479320 | Gooch | Nov 2002 | B1 |
6483229 | Larson, III et al. | Nov 2002 | B2 |
6486751 | Barber et al. | Nov 2002 | B1 |
6489688 | Baumann et al. | Dec 2002 | B1 |
6492883 | Liang et al. | Dec 2002 | B2 |
6496085 | Ella et al. | Dec 2002 | B2 |
6498604 | Jensen | Dec 2002 | B1 |
6507983 | Ruby et al. | Jan 2003 | B1 |
6515558 | Ylilammi | Feb 2003 | B1 |
6518860 | Ella et al. | Feb 2003 | B2 |
6525996 | Miyazawa | Feb 2003 | B1 |
6528344 | Kang | Mar 2003 | B2 |
6530515 | Glenn et al. | Mar 2003 | B1 |
6534900 | Aigner et al. | Mar 2003 | B2 |
6542055 | Frank et al. | Apr 2003 | B1 |
6548942 | Panasik | Apr 2003 | B1 |
6548943 | Kaitila et al. | Apr 2003 | B2 |
6549394 | Williams | Apr 2003 | B1 |
6550664 | Bradley et al. | Apr 2003 | B2 |
6559487 | Kang et al. | May 2003 | B1 |
6559530 | Hinzel et al. | May 2003 | B2 |
6564448 | Oura et al. | May 2003 | B1 |
6566956 | Ohnishi et al. | May 2003 | B2 |
6566979 | Larson, III et al. | May 2003 | B2 |
6580159 | Fusaro et al. | Jun 2003 | B1 |
6583374 | Knieser et al. | Jun 2003 | B2 |
6583688 | Klee et al. | Jun 2003 | B2 |
6593870 | Dummermuth et al. | Jul 2003 | B2 |
6594165 | Duerbaum et al. | Jul 2003 | B2 |
6600390 | Frank | Jul 2003 | B2 |
6601276 | Barber | Aug 2003 | B2 |
6603182 | Low et al. | Aug 2003 | B1 |
6617249 | Ruby et al. | Sep 2003 | B2 |
6617750 | Dummermuth et al. | Sep 2003 | B2 |
6617751 | Sunwoo et al. | Sep 2003 | B2 |
6621137 | Ma et al. | Sep 2003 | B1 |
6630753 | Malik et al. | Oct 2003 | B2 |
6635509 | Ouellet | Oct 2003 | B1 |
6639872 | Rein | Oct 2003 | B1 |
6651488 | Larson, III et al. | Nov 2003 | B2 |
6657363 | Aigner | Dec 2003 | B1 |
6668618 | Larson, III et al. | Dec 2003 | B2 |
6670866 | Ella et al. | Dec 2003 | B2 |
6677929 | Gordon et al. | Jan 2004 | B2 |
6693500 | Yang et al. | Feb 2004 | B2 |
6710508 | Ruby et al. | Mar 2004 | B2 |
6710681 | Figueredo et al. | Mar 2004 | B2 |
6713314 | Wong et al. | Mar 2004 | B2 |
6714102 | Ruby et al. | Mar 2004 | B2 |
6720844 | Lakin | Apr 2004 | B1 |
6720846 | Iwashita et al. | Apr 2004 | B2 |
6724266 | Plazza et al. | Apr 2004 | B2 |
6738267 | Navas Sabater et al. | May 2004 | B1 |
6774746 | Whatmore et al. | Aug 2004 | B2 |
6777263 | Gan et al. | Aug 2004 | B1 |
6787048 | Bradley et al. | Sep 2004 | B2 |
6788170 | Kaitila et al. | Sep 2004 | B1 |
6803835 | Frank | Oct 2004 | B2 |
6812619 | Kaitila et al. | Nov 2004 | B1 |
6820469 | Adkins et al. | Nov 2004 | B1 |
6828713 | Bradley et al. | Dec 2004 | B2 |
6842088 | Yamada et al. | Jan 2005 | B2 |
6842089 | Lee | Jan 2005 | B2 |
6849475 | Kim | Feb 2005 | B2 |
6853534 | Williams | Feb 2005 | B2 |
6861920 | Ishikawa et al. | Mar 2005 | B2 |
6872931 | Liess et al. | Mar 2005 | B2 |
6873065 | Haigh et al. | Mar 2005 | B2 |
6873529 | Ikuta | Mar 2005 | B2 |
6874211 | Bradley et al. | Apr 2005 | B2 |
6874212 | Larson, III | Apr 2005 | B2 |
6888424 | Takeuchi et al. | May 2005 | B2 |
6900705 | Nakamura et al. | May 2005 | B2 |
6903452 | Ma et al. | Jun 2005 | B2 |
6906451 | Yamada et al. | Jun 2005 | B2 |
6911708 | Park | Jun 2005 | B2 |
6917261 | Unterberger | Jul 2005 | B2 |
6924583 | Lin et al. | Aug 2005 | B2 |
6924717 | Ginsburg et al. | Aug 2005 | B2 |
6927651 | Larson, III et al. | Aug 2005 | B2 |
6936837 | Yamada et al. | Aug 2005 | B2 |
6936928 | Hedler et al. | Aug 2005 | B2 |
6936954 | Peczalski | Aug 2005 | B2 |
6941036 | Lucero | Sep 2005 | B2 |
6943647 | Aigner | Sep 2005 | B2 |
6943648 | Maiz et al. | Sep 2005 | B2 |
6946928 | Larson, III et al. | Sep 2005 | B2 |
6954121 | Bradley et al. | Oct 2005 | B2 |
6963257 | Ella et al. | Nov 2005 | B2 |
6970365 | Turchi | Nov 2005 | B2 |
6975183 | Aigner et al. | Dec 2005 | B2 |
6977563 | Komuro et al. | Dec 2005 | B2 |
6985051 | Nguyen et al. | Jan 2006 | B2 |
6985052 | Tikka | Jan 2006 | B2 |
6987433 | Larson, III et al. | Jan 2006 | B2 |
6989723 | Komuro et al. | Jan 2006 | B2 |
6998940 | Metzger | Feb 2006 | B2 |
7002437 | Takeuchi et al. | Feb 2006 | B2 |
7019604 | Gotoh et al. | Mar 2006 | B2 |
7019605 | Larson, III | Mar 2006 | B2 |
7026876 | Esfandiari et al. | Apr 2006 | B1 |
7053456 | Matsuo | May 2006 | B2 |
7057476 | Hwu | Jun 2006 | B2 |
7057478 | Korden et al. | Jun 2006 | B2 |
7064606 | Louis | Jun 2006 | B2 |
7084553 | Ludwiczak | Aug 2006 | B2 |
7091649 | Larson, III et al. | Aug 2006 | B2 |
7098758 | Wang et al. | Aug 2006 | B2 |
7102460 | Schmidhammer et al. | Sep 2006 | B2 |
7109826 | Ginsburg et al. | Sep 2006 | B2 |
7128941 | Lee | Oct 2006 | B2 |
7129806 | Sato | Oct 2006 | B2 |
7138889 | Lakin | Nov 2006 | B2 |
7148466 | Eckman et al. | Dec 2006 | B2 |
7158659 | Baharav et al. | Jan 2007 | B2 |
7161448 | Feng et al. | Jan 2007 | B2 |
7170215 | Namba et al. | Jan 2007 | B2 |
7173504 | Larson, III et al. | Feb 2007 | B2 |
7179392 | Robert et al. | Feb 2007 | B2 |
7187254 | Su et al. | Mar 2007 | B2 |
7199683 | Thalhammer et al. | Apr 2007 | B2 |
7209374 | Noro | Apr 2007 | B2 |
7212083 | Inoue et al. | May 2007 | B2 |
7212085 | Wu | May 2007 | B2 |
7230509 | Stoemmer | Jun 2007 | B2 |
7230511 | Onishi et al. | Jun 2007 | B2 |
7233218 | Park et al. | Jun 2007 | B2 |
7235915 | Nakamura et al. | Jun 2007 | B2 |
7242270 | Larson, III et al. | Jul 2007 | B2 |
7259498 | Nakatsuka et al. | Aug 2007 | B2 |
7268647 | Sano et al. | Sep 2007 | B2 |
7275292 | Ruby et al. | Oct 2007 | B2 |
7276994 | Takeuchi et al. | Oct 2007 | B2 |
7280007 | Feng et al. | Oct 2007 | B2 |
7281304 | Kim et al. | Oct 2007 | B2 |
7294919 | Bai | Nov 2007 | B2 |
7301258 | Tanaka | Nov 2007 | B2 |
7310861 | Aigner et al. | Dec 2007 | B2 |
7313255 | Machida et al. | Dec 2007 | B2 |
7332985 | Larson, III et al. | Feb 2008 | B2 |
7345410 | Grannen et al. | Mar 2008 | B2 |
7358831 | Larson, III et al. | Apr 2008 | B2 |
7367095 | Larson, III et al. | May 2008 | B2 |
7368857 | Tanaka | May 2008 | B2 |
7369013 | Fazzio et al. | May 2008 | B2 |
7388318 | Yamada et al. | Jun 2008 | B2 |
7388454 | Ruby et al. | Jun 2008 | B2 |
7388455 | Larson, III | Jun 2008 | B2 |
7391286 | Jamneala et al. | Jun 2008 | B2 |
7400217 | Larson, III et al. | Jul 2008 | B2 |
7408428 | Larson, III | Aug 2008 | B2 |
7414349 | Sasaki | Aug 2008 | B2 |
7414495 | Iwasaki et al. | Aug 2008 | B2 |
7423503 | Larson, III et al. | Sep 2008 | B2 |
7425787 | Larson, III | Sep 2008 | B2 |
7439824 | Aigner | Oct 2008 | B2 |
7463118 | Jacobsen | Dec 2008 | B2 |
7466213 | Lobl et al. | Dec 2008 | B2 |
7468608 | Feucht et al. | Dec 2008 | B2 |
7482737 | Yamada et al. | Jan 2009 | B2 |
7508286 | Ruby et al. | Mar 2009 | B2 |
7535154 | Umeda et al. | May 2009 | B2 |
7535324 | Fattinger et al. | May 2009 | B2 |
7545532 | Muramoto | Jun 2009 | B2 |
7561009 | Larson, III et al. | Jul 2009 | B2 |
7576471 | Solal | Aug 2009 | B1 |
7602101 | Hara et al. | Oct 2009 | B2 |
7616079 | Tikka et al. | Nov 2009 | B2 |
7619493 | Uno et al. | Nov 2009 | B2 |
7629865 | Ruby | Dec 2009 | B2 |
7636026 | Heinze et al. | Dec 2009 | B2 |
7649304 | Umeda et al. | Jan 2010 | B2 |
7684109 | Godshalk et al. | Mar 2010 | B2 |
7768364 | Hart et al. | Aug 2010 | B2 |
7795781 | Barber et al. | Sep 2010 | B2 |
7869187 | McKinzie et al. | Jan 2011 | B2 |
7889024 | Bradley et al. | Feb 2011 | B2 |
7966722 | Hart et al. | Jun 2011 | B2 |
7978025 | Yokoyama et al. | Jul 2011 | B2 |
8008993 | Milsom et al. | Aug 2011 | B2 |
8030823 | Sinha et al. | Oct 2011 | B2 |
8222795 | Sinha et al. | Jul 2012 | B2 |
8253513 | Zhang | Aug 2012 | B2 |
8456257 | Fattinger | Jun 2013 | B1 |
20010045793 | Misu et al. | Nov 2001 | A1 |
20020000646 | Gooch et al. | Jan 2002 | A1 |
20020030424 | Iwata | Mar 2002 | A1 |
20020063497 | Panasik | May 2002 | A1 |
20020070463 | Chang et al. | Jun 2002 | A1 |
20020121944 | Larson, III et al. | Sep 2002 | A1 |
20020121945 | Ruby et al. | Sep 2002 | A1 |
20020126517 | Matsukawa et al. | Sep 2002 | A1 |
20020140520 | Hikita et al. | Oct 2002 | A1 |
20020152803 | Larson, III et al. | Oct 2002 | A1 |
20020153965 | Ruby et al. | Oct 2002 | A1 |
20020190814 | Yamada et al. | Dec 2002 | A1 |
20030001251 | Cheever et al. | Jan 2003 | A1 |
20030006502 | Karpman | Jan 2003 | A1 |
20030011285 | Ossmann | Jan 2003 | A1 |
20030011446 | Bradley | Jan 2003 | A1 |
20030051550 | Nguyen et al. | Mar 2003 | A1 |
20030087469 | Ma | May 2003 | A1 |
20030102776 | Takeda et al. | Jun 2003 | A1 |
20030111439 | Fetter et al. | Jun 2003 | A1 |
20030128081 | Ella et al. | Jul 2003 | A1 |
20030132493 | Kang et al. | Jul 2003 | A1 |
20030132809 | Senthilkumar et al. | Jul 2003 | A1 |
20030141946 | Ruby et al. | Jul 2003 | A1 |
20030179053 | Aigner et al. | Sep 2003 | A1 |
20030205948 | Lin et al. | Nov 2003 | A1 |
20030227357 | Metzger et al. | Dec 2003 | A1 |
20040016995 | Kuo et al. | Jan 2004 | A1 |
20040017130 | Wang et al. | Jan 2004 | A1 |
20040027216 | Ma et al. | Feb 2004 | A1 |
20040056735 | Nomura et al. | Mar 2004 | A1 |
20040092234 | Pohjonen | May 2004 | A1 |
20040099898 | Grivna et al. | May 2004 | A1 |
20040124952 | Tikka | Jul 2004 | A1 |
20040129079 | Kato et al. | Jul 2004 | A1 |
20040150293 | Unterberger | Aug 2004 | A1 |
20040150296 | Park et al. | Aug 2004 | A1 |
20040166603 | Carley | Aug 2004 | A1 |
20040195937 | Matsubara et al. | Oct 2004 | A1 |
20040212458 | Lee | Oct 2004 | A1 |
20040257171 | Park et al. | Dec 2004 | A1 |
20040257172 | Schmidhammer et al. | Dec 2004 | A1 |
20040263287 | Ginsburg et al. | Dec 2004 | A1 |
20050012570 | Korden et al. | Jan 2005 | A1 |
20050012716 | Mikulin et al. | Jan 2005 | A1 |
20050023931 | Bouche et al. | Feb 2005 | A1 |
20050030126 | Inoue et al. | Feb 2005 | A1 |
20050036604 | Scott et al. | Feb 2005 | A1 |
20050057117 | Nakatsuka et al. | Mar 2005 | A1 |
20050057324 | Onishi et al. | Mar 2005 | A1 |
20050068124 | Stoemmer | Mar 2005 | A1 |
20050093396 | Larson, III et al. | May 2005 | A1 |
20050093397 | Yamada et al. | May 2005 | A1 |
20050093653 | Larson, III | May 2005 | A1 |
20050093654 | Larson, III et al. | May 2005 | A1 |
20050093655 | Larson, III et al. | May 2005 | A1 |
20050093657 | Larson, III et al. | May 2005 | A1 |
20050093658 | Larson, III et al. | May 2005 | A1 |
20050093659 | Larson, III et al. | May 2005 | A1 |
20050104690 | Larson, III et al. | May 2005 | A1 |
20050110598 | Larson, III | May 2005 | A1 |
20050128030 | Larson, III et al. | Jun 2005 | A1 |
20050140466 | Larson, III et al. | Jun 2005 | A1 |
20050167795 | Higashi | Aug 2005 | A1 |
20050193507 | Ludwiczak | Sep 2005 | A1 |
20050206271 | Higuchi et al. | Sep 2005 | A1 |
20050206479 | Nguyen et al. | Sep 2005 | A1 |
20050206483 | Pashby et al. | Sep 2005 | A1 |
20050218488 | Matsuo | Oct 2005 | A1 |
20050248232 | Itaya et al. | Nov 2005 | A1 |
20050269904 | Oka | Dec 2005 | A1 |
20050275486 | Feng | Dec 2005 | A1 |
20060017352 | Tanielian | Jan 2006 | A1 |
20060071736 | Ruby et al. | Apr 2006 | A1 |
20060081048 | Mikado et al. | Apr 2006 | A1 |
20060087199 | Larson, III et al. | Apr 2006 | A1 |
20060103492 | Feng et al. | May 2006 | A1 |
20060114541 | Van Beek | Jun 2006 | A1 |
20060119453 | Fattinger et al. | Jun 2006 | A1 |
20060125489 | Feucht et al. | Jun 2006 | A1 |
20060132262 | Fazzio et al. | Jun 2006 | A1 |
20060164183 | Tikka et al. | Jul 2006 | A1 |
20060176126 | Wang et al. | Aug 2006 | A1 |
20060185139 | Larson, III et al. | Aug 2006 | A1 |
20060197411 | Hoen et al. | Sep 2006 | A1 |
20060238070 | Costa et al. | Oct 2006 | A1 |
20060284706 | Ginsburg et al. | Dec 2006 | A1 |
20060284707 | Larson, III et al. | Dec 2006 | A1 |
20060290446 | Aigner et al. | Dec 2006 | A1 |
20070035364 | Sridhar et al. | Feb 2007 | A1 |
20070037311 | Izumi et al. | Feb 2007 | A1 |
20070080759 | Jamneala et al. | Apr 2007 | A1 |
20070085447 | Larson, III | Apr 2007 | A1 |
20070085631 | Larson, III et al. | Apr 2007 | A1 |
20070085632 | Larson, III et al. | Apr 2007 | A1 |
20070086080 | Larson, III et al. | Apr 2007 | A1 |
20070086274 | Nishimura et al. | Apr 2007 | A1 |
20070090892 | Larson, III | Apr 2007 | A1 |
20070170815 | Unkrich | Jul 2007 | A1 |
20070171002 | Unkrich | Jul 2007 | A1 |
20070176710 | Jamneala et al. | Aug 2007 | A1 |
20070205850 | Jamneala et al. | Sep 2007 | A1 |
20070279153 | Ruby | Dec 2007 | A1 |
20070291164 | Goh et al. | Dec 2007 | A1 |
20080055020 | Handtmann et al. | Mar 2008 | A1 |
20080129414 | Lobl et al. | Jun 2008 | A1 |
20080143215 | Hara et al. | Jun 2008 | A1 |
20080258842 | Ruby et al. | Oct 2008 | A1 |
20080297278 | Handtmann et al. | Dec 2008 | A1 |
20080297279 | Thalhammer et al. | Dec 2008 | A1 |
20080297280 | Thalhammer et al. | Dec 2008 | A1 |
20090001848 | Umeda et al. | Jan 2009 | A1 |
20090079302 | Wall et al. | Mar 2009 | A1 |
20090096550 | Handtmann et al. | Apr 2009 | A1 |
20090102319 | Nakatsuka et al. | Apr 2009 | A1 |
20090127978 | Asai et al. | May 2009 | A1 |
20090153268 | Milson et al. | Jun 2009 | A1 |
20090201594 | Smith | Aug 2009 | A1 |
20090267457 | Barber et al. | Oct 2009 | A1 |
20100033063 | Nishihara et al. | Feb 2010 | A1 |
20100039000 | Milson et al. | Feb 2010 | A1 |
20100052815 | Bradley et al. | Mar 2010 | A1 |
20100091370 | Mahrt et al. | Apr 2010 | A1 |
20100107389 | Nessler et al. | May 2010 | A1 |
20100148637 | Satou | Jun 2010 | A1 |
20100176899 | Schaufele et al. | Jul 2010 | A1 |
20100187948 | Sinha et al. | Jul 2010 | A1 |
20100187949 | Pahl et al. | Jul 2010 | A1 |
20100260453 | Block | Oct 2010 | A1 |
20100327697 | Choy et al. | Dec 2010 | A1 |
20100327994 | Choy et al. | Dec 2010 | A1 |
20110084779 | Zhang | Apr 2011 | A1 |
20110121916 | Barber et al. | May 2011 | A1 |
20110148547 | Zhang | Jun 2011 | A1 |
20110204996 | Gilbert et al. | Aug 2011 | A1 |
20120161902 | Feng et al. | Jun 2012 | A1 |
20120177816 | Larson et al. | Jul 2012 | A1 |
20120194297 | Choy | Aug 2012 | A1 |
20120218055 | Burak et al. | Aug 2012 | A1 |
20120218058 | Burak et al. | Aug 2012 | A1 |
20120218059 | Burak et al. | Aug 2012 | A1 |
20120218060 | Burak et al. | Aug 2012 | A1 |
20120280767 | Burak et al. | Nov 2012 | A1 |
20130038408 | Burak et al. | Feb 2013 | A1 |
20130082799 | Zuo et al. | Apr 2013 | A1 |
20130106534 | Burak et al. | May 2013 | A1 |
20130127300 | Umeda et al. | May 2013 | A1 |
20130205586 | Takada et al. | Aug 2013 | A1 |
20130235001 | Yun et al. | Sep 2013 | A1 |
20130241673 | Yokoyama et al. | Sep 2013 | A1 |
20140111288 | Nikkel et al. | Apr 2014 | A1 |
20140118088 | Burak et al. | May 2014 | A1 |
20140118091 | Burak et al. | May 2014 | A1 |
20140118092 | Burak et al. | May 2014 | A1 |
Number | Date | Country |
---|---|---|
10160617 | Jun 2003 | DE |
231892 | Aug 1987 | EP |
0637875 | Feb 1995 | EP |
689254 | Dec 1995 | EP |
0865157 | Sep 1998 | EP |
880227 | Nov 1998 | EP |
1047189 | Oct 2000 | EP |
1096259 | May 2001 | EP |
1100196 | May 2001 | EP |
1180494 | Feb 2002 | EP |
1249932 | Oct 2002 | EP |
1258989 | Nov 2002 | EP |
1258990 | Nov 2002 | EP |
1517443 | Mar 2005 | EP |
1517444 | Mar 2005 | EP |
1528674 | May 2005 | EP |
1528675 | May 2005 | EP |
1528676 | May 2005 | EP |
1528677 | May 2005 | EP |
1542362 | Jun 2005 | EP |
1557945 | Jul 2005 | EP |
1575165 | Sep 2005 | EP |
0973256 | Sep 2006 | EP |
2299593 | Mar 2011 | EP |
1207974 | Oct 1970 | GB |
2013343 | Aug 1979 | GB |
2411239 | Aug 2005 | GB |
2418791 | Apr 2006 | GB |
2427773 | Jan 2007 | GB |
59023612 | Feb 1984 | JP |
61054686 | Mar 1986 | JP |
6165507 | Apr 1986 | JP |
62-109419 | May 1987 | JP |
62-200813 | Sep 1987 | JP |
1-295512 | Nov 1989 | JP |
2-10907 | Jan 1990 | JP |
06005944 | Jan 1994 | JP |
8-330878 | Dec 1996 | JP |
09-027729 | Jan 1997 | JP |
9-83029 | Mar 1997 | JP |
10-32456 | Feb 1998 | JP |
2000-31552 | Jan 2000 | JP |
2000-232334 | Aug 2000 | JP |
2001-102901 | Apr 2001 | JP |
2001-508630 | Jun 2001 | JP |
2002217676 | Aug 2002 | JP |
2002217676 | Aug 2002 | JP |
2003017964 | Jan 2003 | JP |
2003017964 | Jan 2003 | JP |
2003124779 | Apr 2003 | JP |
2003124779 | Apr 2003 | JP |
2006-109472 | Apr 2006 | JP |
2006-295924 | Oct 2006 | JP |
2007-006501 | Jan 2007 | JP |
2007028669 | Feb 2007 | JP |
2007-208845 | Aug 2007 | JP |
2007-295306 | Nov 2007 | JP |
2008-131194 | Jun 2008 | JP |
2008-211394 | Sep 2008 | JP |
WO-9816957 | Apr 1998 | WO |
WO-9856049 | Dec 1998 | WO |
WO-9937023 | Jul 1999 | WO |
WO-0106646 | Jan 2001 | WO |
WO-0106647 | Jan 2001 | WO |
WO-0199276 | Dec 2001 | WO |
WO-02103900 | Dec 2002 | WO |
WO-03030358 | Apr 2003 | WO |
WO-03043188 | May 2003 | WO |
WO-03050950 | Jun 2003 | WO |
WO-03058809 | Jul 2003 | WO |
WO-2004034579 | Apr 2004 | WO |
WO-2004051744 | Jun 2004 | WO |
WO-2004102688 | Nov 2004 | WO |
WO-2005043752 | May 2005 | WO |
WO-2005043753 | May 2005 | WO |
WO-2005043756 | May 2005 | WO |
WO-2006018788 | Feb 2006 | WO |
2006079353 | Aug 2006 | WO |
2013065488 | May 2013 | WO |
Entry |
---|
Ohara et al.; “Suppression of Acoustic Energy Leakage in FBARs with Al Bottom Electrode: FEM Simulation and Experimental Results”; 2007 IEEE Ultrasonics Symposium, Oct. 28-31, 2007, pp. 1657-1660. |
IEEE Xplore Abstract for Suppression of Acoustic Energy Leakage in FBARs with Al Bottom Electrode: FEM Simulation and Experimental Results; Oct. 28-31, 2007, 2 pages. |
Machine Translation of JP 2008-211394, published Sep. 11, 2008, pp. 1-8. |
Machine Translation of JP 2007-208845, published Aug. 16, 2007, pp. 1-9. |
Co-pending U.S. Appl. No. 13/662,425, filed Oct. 27, 2012. |
Co-pending U.S. Appl. No. 13/662,460, filed Oct. 27, 2012. |
Co-pending U.S. Appl. No. 13/766,993, filed Feb. 14, 2013. |
Co-pending U.S. Appl. No. 13/767,754, filed Feb. 14, 2013. |
Co-pending U.S. Appl. No. 13/767,765, filed Feb. 14, 2013. |
Co-pending U.S. Appl. No. 13/955,744, filed Jul. 31, 2013. |
Co-pending U.S. Appl. No. 13/955,774, filed Jul. 31, 2013. |
Co-pending U.S. Appl. No. 14/092,077, filed Nov. 27, 2013. |
Aigner, Robert , “SAW, BAW and the Future of Wireless”, May 6, 2013, pp. 1-4 May 6, 2013. |
El Hassan, M. et al., “Techniques for Tuning BAW-SMR Resonators for the 4th Generation of Mobile Communications”, Intech 2013 , 421-442. |
Pineda, Humberto , “Thin-Film Bulk Acoustic Wave Resonators—FBAR”, Bellaterra, Monpelier Dec. 2007 , 1-241. |
Umeda, Keiichi et al., “Piezoelectric Properties of Scain Thin Films for Piezo-Mems Devices”, MEMS, 2013, Taipei, Taiwan, Jan. 20-24, 2013 pp. 733-736 2013. |
Co-pending U.S. Appl. No. 13/036,489, filed Feb. 28, 2011. |
Co-pending U.S. Appl. No. 13/074,262, filed Mar. 29, 2011. |
Co-pending U.S. Appl. No. 13/101,376, filed May 5, 2011. |
Pensala, et al., “Spurious resonance supression in gigahertz-range ZnO thin-film bulk acoustic wave resonators by the boundary frame method: modeling and experiment”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 56, No. 8 Aug. 2009 , 1731-1744. |
Pensala, , “Thin film bulk acoustic wave devices: performance optimization and modeling”, http://www.vtt.fi/inf/pdf/publications/2011/P756.pdf, Dissertation presented Feb. 25, 2011, pp. 1-97. |
Moriera, et al., “Aluminum Scandium Nitride Thin-Film Bulk Acoustic Resonators for Wide Band Applications”, Vacuum 86 (2011) 23-26. |
Tas, et al., “Reducing Anchor Loss in Micromechanical Extensional Mode Resonators”, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 57, No. 2, Feb. 2010, pp. 448-454. |
Pandey, et al., “Anchor Loss Reduction in Resonant MEMS using MESA Structures”, Proceedings of the 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Jan. 16-19, 2007, Bangkok, Thailand, pp. 880-885. |
Co-pending U.S. Appl. No. 13/074,094, filed Mar. 29, 2011. |
Co-pending U.S. Appl. No. 12/710,640, filed Feb. 23, 2010. |
U.S. Appl. No. 10/971,169, filed Oct. 22, 2004, Larson III, John D., et al. |
Akiyama, et al., “Enhancement of Piezoelectric Response in Scandium Aluminum Nitride Alloy Thin Films Prepared by Dual Reactive Cosputtering”, Adv. Mater 2009 , 593-596. |
Al-Ahmad, M. et al., “Piezoelectric-Based Tunable Microstrip Shunt Resonator”, Proceedings of Asia-Pacific Microwave Conference 2006. |
Aoyama, Takayuki et al., “Diffusion of Boron, Phosphorous, Arsenic and Antimony in Thermally Grown SiliconDioxide”, Journal of the Electrochemical Society, vol. 146, No. 5 1999 , 1879-1883. |
Auld, B. A. , “Acoustic Resonators”, Acoustic Fields and Waves in Solids, Second Edition, vol. II 1990 , 250-259. |
Bauer, L. O. et al., “Properties of Silicon Implanted with Boron Ions through Thermal Silicon Dioxide”, Solid State Electronics, vol. 16, No. 3 Mar. 1973 , 289-300. |
Bi, F.Z. , “Bulk Acoustic Wave RF Technology”, IEEE Microwave Magazine, vol. 9, Issue 5. 2008 , 65-80. |
Choi, Sungjin et al., “Design of Half-Bridge Piezo-Transformer Converters in the AC Adapter Applications”, APEC 2005, IEEE Mar. 2005 , 244-248. |
Coombs, Clyde F. , “Electronic Instrument Handbook”, Second Edition, McGraw-Hill, Inc. 1995 , pp. 5.1 to 5.29. |
Denisse, C.M.M. et al., “Plasma-Enhanced Growth and Composition of Silicon Oxynitride Films”, J. Appl. Phys., vol. 60, No. 7. Oct. 1, 1986 , 2536-2542. |
Fattinger, G. G. et al., “Coupled Bulk Acoustic Wave Resonator Filters: Key technology for single-to-balanced RF filters”, 0-7803-8331-1/4/W20.00; IEEE MTT-S Digest 2004 , 927-929. |
Fattinger, G.G. et al., “Single-To-Balance Filters for Mobile Phones Using Coupled Resonator BAW Technology”, 2004 IEEE Ultrasonics Symposium Aug. 2004 , 416-419. |
Fattinger, G. B. et al., “Spurious Mode Suppression in Coupled Resonator Filters”, IEEE MTT-S International Microwave Symposium Digest 2005 , 409-412. |
Gilbert, S. R. , “An Ultra-Miniature, Low Cost Single Ended to Differential Filter for ISM Band Applications”, Micro. Symp. Digest, 2008 IEEE MTT-S Jun. 2008 , 839-842. |
Grill, A. et al., “Ultralow-K Dielectrics Prepared by Plasma-Enhanced Chemical Vapor Deposition”, App. Phys. Lett, vol. 79 2001 , 803-805. |
Hadimioglu, B. et al., ““Polymer Films As Acoustic Matching Layers”.”, 1990 IEEE Ultrasonics Symposium Proceedings, vol. 3 PP. [Previously submitted as “Polymer Files as Acoustic Matching Layers, 1990 IEEE Ultrasonics Symposium Proceeding. vol. 4 pp. 1227-1340, Dec. 1990”. Considered by Examiner on Mar. 20, 2007 Dec. 1990 , 1337-1340. |
Hara, K. , “Surface Treatment of Quartz Oscillator Plate by Ion Implantation”, Oyo Buturi, vol. 47, No. 2 Feb. 1978 , 145-146. |
Holzlohner, Ronald et al., “Accurate Calculation of Eye Diagrams and Bit Error Rates in Optical Transmission Systems Using Linearization”, Journal of Lightwave Technology, vol. 20, No. 3. Mar. 2002 , pp. 389-400. |
Ivensky, Gregory et al., “A Comparison of Piezoelectric Transformer AC/DC Converters with Current Doubler and voltage Doubler Rectifiers”, IEEE Transactions on Power Electronics, vol. 19, No. 6. Nov. 2004. |
Jamneala, T. et al., “Coupled Resonator Filter with Single-Layer Acoustic Coupler”, IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 55 Oct. 2008 , 2320-2326. |
Jamneala, Tiberiu et al., “Ultra-Miniature Coupled Resonator Filter with Single-Layer Acoustic Coupler”, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 56, No. 11. Nov. 2009 , 2553-2558. |
Jiang, Yimin et al., “A Novel Single-Phase Power Factor Correction Scheme”, IEEE 1993 , 287-292. |
Jung, Jun-Phil et al., “Experimental and Theoretical Investigation on the Relationship Between AIN Properties and AIN-Based FBAR Characteristics”, 2003 IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum Sep. 3, 2003 , 779-784. |
Kaitila, J. et al., “Measurement of Acoustical Parameters of Thin Films”, 2006 IEEE Ultrasonics Symposium Oct. 2006 , 464-467. |
Krishnaswamy, S.V. et al., “Film Bulk Acoustic Wave Resonator Technology”, May 29, 1990 , 529-536. |
Lakin, K.M. , “Bulk Acoustic Wave Coupled Resonator Filters”, 2002 IEEE International Frequency Control Symposium and PDA Exhibition May 2002 , 8-14. |
Lakin, K.M. , “Coupled Resonator Filters”, 2002 IEEE Ultrasonics Symposium Mar. 2, 2002 , 901-908. |
Lakin, K.M. et al., “High Performance Stacked Crystal Filters for GPS and Wide Bandwidth Applications”, 2001 IEEE Ultrasonics Symposium Jan. 1, 2001 , 833-838. |
Lakin, K. M. et al., “Temperature Compensated Bulk Acoustic Thin Film Resonators”, IEEE Ultrasonics Symposium, San Juan, Puerto Rico Oct. 2000 , 855-858. |
Lakin, K.M. , “Thin Film BAW Filters for Wide Bandwidth and High Performance Applications”, IEEE Microwave Symposium Digest; vol. 2 Jun. 6-11, 2004 , 923-926. |
Lakin, K. M. , “Thin Film Resonators and Filters”, IEEE Untrasonics Symposium, Caesar's Tahoe, NV Oct. 1999 , 895-906. |
Lakin, et al., “Wide Bandwidth Thin Film BAW Filters”, 2004 IEEE Ultrasonics Symposium, vol. 1, Aug. 2004 , 407-410. |
Larson III, John D. et al., “Measurement of Effective Kt2,Q,Rp,Rs vs. Temperature for Mo/AIN FBAR Resonators”, IEEE Ultrasonics Symposium 2002 , 939-943. |
Lee, Jiunn-Homg et al., “Optimization of Frame-Like Film Bulk Acoustic Resonators for Suppression of Spurious Lateral Modes Using Finite Element Method”, IEEE Ultrasonic Symposium, vol. 1, 2004 , 278-281. |
Li, Yunxiu et al., “AC-DC Converter with Worldwide Range Input Voltage by Series and Parallel Piezoelectric Transformer Connection”, 35th Annual IEEE Power Electronics Specialists Conference 2004. |
Lobl, H.P. et al., “Piezoelectric Materials for BAW Resonators and Filters”, 2001 IEEE Ultrasonics Symposium Jan. 1, 2001 , 807-811. |
Loboda, M. J. , “New Solutions for Intermetal Dielectrics Using Trimethylsilane-Based PECVD Processes”, Microelectronics Eng., vol. 50. 2000 , 15-23. |
Martin, Steven J. et al., “Development of a Low Dielectric Constant Polymer for the Fabrication of Integrated Circuit Interconnect”, 12 Advanced Materials Dec. 23, 2000 , 1769-1778. |
Martinez, et al., “High confinement suspended micro-ring resonators in silicon-on-insulator”, Optics Express, Vo. 14, No. 13 Jun. 26, 2006 , 6259-6263. |
Merriam-Webster, , “Collegiate Dictionary”, tenth edition 2000 , 2 pages. |
Navas, J. et al., “Miniaturised Battery Charger using Piezoelectric Transformers”, IEEE 2001 , 492-496. |
Ng, J. et al., “The Diffusion Ion-Implanted Boron in Silicon Dioxide”, AIP Conf. Proceedings, No. 122 1984 , 20-33. |
Ohta, S. et al., “Temperature Characteristics of Solidly Mounted Piezoelectric Thin Film Resonators”, IEEE Ultrasonics Symposium, Honolulu, HI Oct. 2003 , 2011-2015. |
Pang, W. et al., “High Q Single-Mode High-Tone Bulk Acoustic Resonator Integrated With Surface-Machined FBAR Filter”, Microwave Symposium Digest. IEEE MTT-S International 2005 , 413-416. |
Parker, T. E. et al., “Temperature-Compensated Surface Acoustic-Wave Devices with SiO2 Film Overlays”, J. Appl. Physics, vol. 50 1360-1369 , Mar. 1979. |
Reinhardt, Alexandre et al., “Design of Coupled Resonator Filters Using Admittance and Scattering Matrices”, 2003 IEEE Ultrasonics Symposium May 3, 2003 , 1428-1431. |
Ruby, R. C. , “MicroMachined Thin Film Bulk Acoustic Resonators”, IEEE International Frequency Control Symposium 1994 , 135-138. |
Ruby, R. et al., “The Effect of Perimeter Geometry on FBAR Resonator Electrical Performance”, Microwave Symposium Digest, 2005 IEEE MTT-S International Jun. 12, 2005 , 217-221. |
Sanchez, A.M. et al., “Mixed Analytical and Numerical Design Method for Piezoelectric Transformers”, IEEE Xplore 2003 , 841-846. |
Schoenholz, J.E. et al., “Plasma-Enhanced Deposition of Silicon Oxynitride Films”, Thin Solid Films 1987 , 285-291. |
Schuessler, Hans H. , “Ceramic Filters and Resonators”, Reprinted from IEEE Trans. Sonics Ultrason., vol. SU-21 Oct. 1974 , 257-268. |
Shirakawa, A. A. et al., “Bulk Acoustic Wave Coupled Resonator Filters Synthesis Methodology”, 2005 European Microwave Conference, vol. 1 Oct. 2005. |
Small, M. K. et al., “A De-Coupled Stacked Bulk Acoustic Resonator (DSBAR) Filter with 2 dB Bandwidth >4%”, 2007 IEEE Ultrasonics Symposium Oct. 2007 , 604-607. |
Spangenberg, B. et al., “Dependence of the Layer Resistance of Boron Implantation in Silicon and the Annealing Conditions”, Comptus Rendus de l'Academic Bulgare des Sciences, vol. 33, No. 3 1980 , 325-327. |
Thomsen, C. et al., “Surface Generation and Detection of Phonons by Picosecond Light Pulses”, Phys. Rev. B, vol. 34 1986 , 4129. |
Tiersten, H. F. et al., “An Analysis of Thickness-Extensional Trapped Energy Resonant Device Structures with Rectangular Electrodes in the Piezoelectric Thin Film on Silicon Configuration”, J. Appl. Phys. 54 (10) Oct. 1983 , 5893-5910. |
Topich, J. A. et al., “Effects of Ion Implanted Fluorine in Silicon Dioxide”, Nuclear Instr. and Methods, Cecon Rec, Cleveland OH May 1978 , 70-73. |
Tsubbouchi, K. et al., “Zero Temperature coefficient Surface Acoustic Wave Devices using Epitaxial AIN Films”, IEEE Ultrasonic symposium, San Diego, CA, 1082 1982 , 240-245. |
Vasic, D et al., “A New Method to Design Piezoelectric Transformer Used in MOSFET & IGBT Drive Circuits”, IEEE 34th Annual Power Electronics Specialists Conference, 2003 vol. 1 Jun. 15-19, 2003, 307-312. |
Vasic, D et al., “A New MOSFET & IGBT Gate Drive Insulated by a Piezoelectric Transformer”, IEEE 32 nd Annual Power Electronics Specialists Conference, 2001 vol. 3 2001 , 1479-1484. |
Yanagitani, et al., “Giant Shear Mode Electromechanical Coupling Coefficient k15 in C-Axis Tilted Slain Films”, IEEE International Ultrasonics Symposium 2010. |
Yang, C.M. et al., “Highly C Axis Oriented AIN Film Using MOCVD for 5GHx Band FBAR Filter”, 2003 IEEE Ultrasonics Symposium Oct. 5, 2003 , pp. 170-173. |
Co-pending U.S. Appl. No. 13/161,946, filed Jun. 16, 2011. |
Co-pending U.S. Appl. No. 13/286,038, filed Oct. 31, 2011. |
Co-pending U.S. Appl. No. 13/654,718, filed Oct. 18, 2012. |
Co-pending U.S. Appl. No. 13/658,024, filed Oct. 23, 2012. |
Co-pending U.S. Appl. No. 13/660,941, filed Oct. 25, 2012. |
Co-pending U.S. Appl. No. 13/663,449, filed Oct. 29, 2012. |
Co-pending U.S. Appl. No. 13/781,491, filed Feb. 28, 2013. |
Lee, et al., “Development of High-Auality FBAR Devices for Wireless Applications Employing Two-Step Annealing Treatments”, IEEE Microwave and Wireless Components Letters, vol. 21, No. 11 Nov. 2011. |
Tang, et al., “Micromachined Bulk Acoustic Resonator With a Raised Frame”, 16th International Conference on Mechatronics Technology, Oct. 16-19, 2012, Tianjin, China. |
Number | Date | Country | |
---|---|---|---|
20120218059 A1 | Aug 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13074262 | Mar 2011 | US |
Child | 13208883 | US | |
Parent | 13036489 | Feb 2011 | US |
Child | 13074262 | US |