Stacked bulk acoustic resonator

Information

  • Patent Grant
  • 8575820
  • Patent Number
    8,575,820
  • Date Filed
    Tuesday, March 29, 2011
    13 years ago
  • Date Issued
    Tuesday, November 5, 2013
    11 years ago
Abstract
A stacked bulk acoustic resonator includes a first piezoelectric layer stacked on a first electrode, a second electrode stacked on the first piezoelectric layer; a second piezoelectric layer stacked on the second electrode, and a third electrode stacked on the second piezoelectric layer. The stacked bulk acoustic resonator further includes an inner raised region formed in an inner portion on a surface of at least one of the first, second and third electrodes, and an outer raised region formed along an outer perimeter on the surface of the at least one of the first, second or third electrodes. The outer raised region surrounds the inner raised region and defines a gap between the inner raised region and the outer raised region.
Description
BACKGROUND

Transducers generally convert electrical signals to mechanical signals or vibrations, and/or mechanical signals or vibrations to electrical signals. Acoustic transducers, in particular, convert electrical signals to acoustic signals (sound waves) in a transmit mode and/or convert received acoustic waves to electrical signals in a receive mode. Acoustic transducers generally include acoustic resonators, such as thin film bulk acoustic resonators (FBARs), surface acoustic wave (SAW) resonators or bulk acoustic wave (BAW) resonators, and may be used in a wide variety of electronic applications, such as cellular telephones, personal digital assistants (PDAs), electronic gaming devices, laptop computers and other portable communications devices. For example, FBARs may be used for electrical filters and voltage transformers. Generally, an acoustic resonator has a layer of piezoelectric material between two conductive plates (electrodes), which may be formed on a thin membrane. FBAR devices, in particular, generate longitudinal acoustic waves and lateral (or transverse) acoustic waves when stimulated by an applied time-varying electric field, as well as higher order harmonic mixing products. The lateral modes and the higher order harmonic mixing products may have a deleterious impact on functionality.


A stacked bulk acoustic resonator, also referred to as a single cavity acoustic resonator, includes two layers of piezoelectric materials between three electrodes in a single stack, forming a single cavity. That is, a first layer of piezoelectric material is formed between a first (bottom) electrode and a second (middle) electrode, and a second layer of piezoelectric material is formed between the second (middle) electrode and a third (top) electrode. Generally, the stacked bulk acoustic resonator device allows reduction of the area of a single bulk acoustic resonator device by about half. Examples of stacked bulk acoustic resonators, as well as their materials and methods of fabrication, may be found in U.S. Patent App. Pub. No. 2010/0052815 to Bradley et al., published Mar. 4, 2010, which is hereby incorporated by reference.


Conventional solutions for reducing effects of spurious modes in the filter/duplexer response include increasing the path of the lateral acoustic wave until it reaches its lateral resonance condition. It could be implemented in the stacked acoustic resonator device either by increasing the area of resonators or by creating an apodized shape of the third (top) electrode. These solutions are capable of attenuating the effect of the spurious resonance in the filter response, but they cannot recover the energy in the lateral modes.


SUMMARY

In a representative embodiment, a stacked bulk acoustic resonator includes a first piezoelectric layer stacked on a first electrode, a second electrode stacked on the first piezoelectric layer, a second piezoelectric layer stacked on the second electrode, and a third electrode stacked on the second piezoelectric layer. An inner raised region is formed on an inner portion of a surface of one of the first, second or third electrodes, and an outer raised region is formed along an outer perimeter of the surface of the one of the first, second or third electrodes. The outer raised region surrounds the inner raised region, defining a gap between the inner raised region and the outer raised region.


In another representative embodiment, a stacked bulk acoustic resonator includes multiple piezoelectric layers and an electrode stacked on a top surface of one of the piezoelectric layers. The electrode has at least one of an inner raised region and an outer raised region extending from a top surface of the electrode. The inner raised region is formed in an inner portion of the top surface of the electrode and the outer raised region is formed along an outer perimeter of the top surface of the electrode.


In another representative embodiment, a stacked bulk acoustic resonator includes a first piezoelectric layer formed on a first electrode, a second electrode formed on the first piezoelectric layer, a second piezoelectric layer formed on the second electrode, an embedded protrusion formed on the second piezoelectric layer along an outer perimeter of the second piezoelectric layer, and a third electrode formed on the second piezoelectric layer and the embedded protrusion. A portion of the third electrode covers the embedded protrusion extending from the third electrode to form an outer raised region along an outer perimeter of the third electrode. An inner raised region is formed in an inner portion of the third electrode, and a gap is defined between the inner raised region and the outer raised region.





BRIEF DESCRIPTION OF THE DRAWINGS

The example embodiments are best understood from the following detailed description when read with the accompanying drawing figures. It is emphasized that the various features are not necessarily drawn to scale. In fact, the dimensions may be arbitrarily increased or decreased for clarity of discussion. Wherever applicable and practical, like reference numerals refer to like elements.



FIG. 1A is a cross-sectional diagram illustrating a stacked bulk acoustic resonator, according to a representative embodiment.



FIG. 1B is a top plan view illustrating the stacked bulk acoustic resonator of FIG. 1A, according to a representative embodiment.



FIG. 2 is a flow diagram illustrating a process of forming a stacked bulk acoustic resonator, according to a representative embodiment.



FIGS. 3A-3I are cross-sectional diagrams illustrating steps in a fabrication process of a stacked bulk acoustic resonator, according to a representative embodiment.



FIG. 4 is a cross-sectional diagram illustrating stacked bulk acoustic resonator, according to another representative embodiment.



FIG. 5 is a cross-sectional diagram illustrating a stacked bulk acoustic resonator, according to another representative embodiment.



FIG. 6 is a graph illustrating quality (Q) factor versus resonant frequency, including traces corresponding to a conventional stacked bulk acoustic resonator and a stacked bulk acoustic resonator, according to a representative embodiment.



FIG. 7 is a Smith Chart illustrating responses by a conventional stacked bulk acoustic resonator and a stacked bulk acoustic resonator, according to a representative embodiment.





DETAILED DESCRIPTION

In the following detailed description, for purposes of explanation and not limitation, representative embodiments disclosing specific details are set forth in order to provide a thorough understanding of the present teachings. However, it will be apparent to one having ordinary skill in the art having had the benefit of the present disclosure that other embodiments according to the present teachings that depart from the specific details disclosed herein remain within the scope of the appended claims. Moreover, descriptions of well-known apparatuses and methods may be omitted so as to not obscure the description of the representative embodiments. Such methods and apparatuses are clearly within the scope of the present teachings.


Generally, it is understood that the drawings and the various elements depicted therein are not drawn to scale. Further, relative terms, such as “above,” “below,” “top,” “bottom,” “upper,” “lower,” “left,” “right,” “vertical” and “horizontal,” are used to describe the various elements' relationships to one another, as illustrated in the accompanying drawings. It is understood that these relative terms are intended to encompass different orientations of the device and/or elements in addition to the orientation depicted in the drawings. For example, if the device were inverted with respect to the view in the drawings, an element described as “above” another element, for example, would now be “below” that element. Likewise, if the device were rotated 90 degrees with respect to the view in the drawings, an element described as “vertical,” for example, would now be “horizontal.”


The present teachings are directed to stacked bulk acoustic resonators and methods of fabricating the same, which stacked bulk acoustic resonators may be incorporated into electrical filters, duplexers, oscillators, and the like. Certain aspects of the present teachings build upon components of FBAR devices, FBAR-based filters, their materials and methods of fabrication. Many details of FBARs, materials thereof and their methods of fabrication may be found in one or more of the following U.S. patents and patent applications: U.S. Pat. No. 6,107,721 (Aug. 22, 2000) to Lakin; U.S. Pat. No. 5,587,620 (Dec. 24, 1996), U.S. Pat. No. 5,873,153 (Feb. 23, 1999) U.S. Pat. No. 6,507,983 (Jan. 21, 2003) and U.S. Pat. No. 7,388,454 (Jun. 17, 2008) to Ruby, et al.; U.S. Pat. No. 7,629,865 (Dec. 8, 2009) to Ruby; U.S. Pat. No. 7,280,007 (Oct. 9, 2007) to Feng et al.; U.S. Pat. App. Pub. No. 2007/0205850, entitled “Piezoelectric Resonator Structures and Electrical Filters having Frame Elements” to Jamneala et al.; U.S. Pat. App. Pub. No. 2010/0327697, entitled “Acoustic Resonator Structure Comprising a Bridge” to Choy et al.; U.S. Pat. App. Pub. No. 2010/0327994, entitled “Acoustic Resonator Structure having an Electrode with a Cantilevered Portion” to Choy et al.; and U.S. patent application Ser. No. 13/036,489, entitled “Coupled Resonator Filter Comprising a Bridge” to Burak filed on Feb. 28, 2011. The disclosures of these patents and patent applications are hereby incorporated by reference. It is emphasized that the components, materials and method of fabrication described in these patents and patent applications are representative and other methods of fabrication and materials within the purview of one of ordinary skill in the art are contemplated.



FIG. 1A is a cross-sectional diagram illustrating a cross-section of an acoustic resonator (along line A-A′ shown in FIG. 1B), and FIG. 1B is a top plan view of the acoustic resonator of FIG. 1A, according to a representative embodiment.


Referring to FIG. 1A, stacked (or single cavity) bulk acoustic resonator 100 includes first electrode 111, first piezoelectric layer 141, second electrode 112, second piezoelectric layer 142 and third electrode 113, assembled in a stacked structure, forming a single cavity. The first, second and third electrodes 111, 112 and 113 are formed of electrically conductive materials, such as tungsten (W), molybdenum (Mo) or copper (Cu), and the first and second piezoelectric layers 141 and 142 are formed of a thin film of piezoelectric material, such as zinc oxide (ZnO), aluminum nitride (AlN) or lead zirconium titanate (PZT), although other materials may be incorporated without departing from the scope of the present teachings. In various configurations, the first and third electrodes 111 and 113 may be tied to a common voltage source (not shown), and the second electrode 112 may be connected to a time-varying voltage source (not shown). Alternatively, the first and third electrodes 111 and 113 may be connected to the time-varying voltage source and the second electrode 112 may be tied to another voltage source.


In various embodiments, the first, second and third electrodes 111, 112 and 113 may be formed of the same or different materials from one another, and likewise the first and second piezoelectric layers 141 and 142 may be formed of the same or different materials from one another. Also, in various embodiments, the first, second and third electrodes 111, 112 and 113 may have the same or different thicknesses from one another, and the first and second piezoelectric layers 141 and 142 may have the same or different thicknesses from one another. For example, the second electrode 112 may be approximately twice as thick as the first and third electrodes 111 and 113, as described for example in U.S. Patent App. Pub. No. 2010/0052815 to Bradley et al. The respective thicknesses of the first, second and third electrodes 111, 112 and 113, and the first and second piezoelectric layers 141 and 142, may vary to provide unique benefits for any particular situation or to meet application specific design requirements of various implementations.


The structure of the stacked bulk acoustic resonator 100 enables a reduction in area as compared to a conventional bulk acoustic resonator by about half mentioned above. However, the reduction in area also has certain negative repercussions, such as increasing the effects of spurious resonances caused by lateral modes.


Accordingly, the stacked bulk acoustic resonator 100 also includes inner raised region 116 and outer raised region 118 formed on the top surface of the third electrode 113, in the depicted representative embodiment. The inner raised region 116 is formed in an inner portion of the third electrode, for example, substantially in the center of the third electrode 113. The inner raised region 116 may be an additional thin layer of material or a protrusion from the third electrode 113, as discussed below. The outer raised region 118 is formed around an outer perimeter of the third electrode 113. Similar to the inner raised region 116, the outer raised region 118 may be an additional thin layer of material or a protrusion from the third electrode 113, as discussed below. The inner and outer raised regions 116 and 118 define a gap 125 between them. For example, referring to FIG. 1B, the stacked bulk acoustic resonator 100 may be apodized or irregular in shape, where the inner raised region 116 is surrounded by the gap 125, and the gap 125 is surrounded by the outer raised region 118, which follows the outer perimeter of the third electrode 113. Of course, the stacked bulk acoustic resonator 100 may be formed in alternative shapes, such as circular, square, rectangular, trapezoidal, etc., without departing from the scope of the present teachings. The inner raised region 116 and the outer raised region 118 have substantially the same shape as the stacked bulk acoustic resonator 100 in the depicted embodiment. However, in various embodiments, the inner raised region 116 and the outer raised region 118 may be shaped differently from one another and/or from the stacked bulk acoustic resonator 100.


The inner and outer raised regions 116 and 118 may be formed of electrically conductive materials, such as W, Mo or Cu, for example, and may be the same material as the third electrode 113. Alternatively, the inner and outer raised regions 116 and 118 may be formed of different materials than the third electrode 113 and/or different material from one another. Also, one or both of the inner and outer raised regions 116 and 118 may be formed of a dielectric material, such as silicon dioxide (SiO2), silicon nitride (SiN), silicon carbide (SiC), AlN, ZnO or PZT, for example. In the illustrative configuration depicted in FIG. 1A, the inner raised region 116 is thinner than the outer raised region 118. However, in alternative configurations, the inner raised region 116 may be thicker than the outer raised region 118, or the inner raised region 116 and the outer raised region 118 may have the same thickness.


The thicknesses may vary to provide unique benefits for any particular situation or to meet application specific design requirements of various implementations. Generally, application of the inner and outer raised regions 116 and 118 shifts the resonant frequency (“cut-off frequency”) of the corresponding region of stacked bulk acoustic resonator 100, and otherwise improves operation of the stacked bulk acoustic resonator 100, for example, by providing matching of boundary conditions. An increase in thickness of the inner raised region 116 causes the resonant frequency of the stacked bulk acoustic resonator 100 to shift lower, and conversely a decrease in the thickness of the inner raised region 116 causes the resonant frequency to shift higher. Likewise, an increase in thickness of the outer raised region 118 causes the resonant frequency of the stacked bulk acoustic resonator 100 to shift lower, and a decrease in the thickness of the outer raised region 118 causes the resonant frequency to shift higher. In an illustrative embodiment, the thickness of the outer raised region 118 may be approximately twice the thickness of the inner raised region 116. Also, in a non-limiting illustrative configuration, the inner raised region 116 may be about 500 Å to about 1000 Å in thickness, and the outer raised region 118 may be about 1000 Å to about 3000 Å in thickness.


The gap 125 is arranged between and otherwise defined by the inner and outer raised regions 116 and 118, and generally varies proportionately to the thickness of the inner raised region 116. That is, an increased thickness of the inner raised region 116 requires a smaller gap 125. For example, in a non-limiting illustrative configuration, the gap 125 may have a width of about 3 μm to about 8 μm for the illustrative range of the inner raised region 116 mentioned above. The arrangement of the inner and outer raised regions 116 and 118 and the gap 125 are therefore able to improve matching of the boundary acoustical conditions of the stacked bulk acoustic resonator 100. This modification of the boundary acoustical conditions significantly reduces and/or suppresses excitation of acoustic lateral modes, which results in reduction of the strength of spurious resonances and in improvement of the quality (Q) factor of the stacked bulk acoustic resonator 100, examples of which are shown in FIGS. 6 and 7, discussed below.


Although FIG. 1 depicts the gap 125 formed between the inner and outer raised regions 116 and 118 as having a relatively uniform size, in alternative embodiments, the inner and outer raised regions 116 and 118 may have different geometries or shapes, in which case the size of the gap 125 would vary depending on corresponding spaces between the inner and outer raised regions 116 and 118. Also, in alternative embodiments, only the inner raised region 116 or the outer raised region 118 is formed on the surface of the third electrode 113, in which case there is no gap 125.



FIG. 2 is a flow diagram illustrating a method of fabricating an acoustic resonator device, according to a representative embodiment. FIGS. 3A-3I are cross-sectional diagrams illustrating the steps of the fabrication process of the acoustic resonator device, substantially corresponding to the operations depicted in FIG. 2, according to a representative embodiment. More particularly, FIG. 2 and FIGS. 3A-3I illustrate a method of fabricating acoustic resonator device 300 (e.g., shown in FIG. 3I), containing illustrative stacked bulk acoustic resonator 100, discussed above with reference to FIGS. 1A and 1B, according to a representative embodiment.


For convenience of explanation, FIG. 2 and FIGS. 3A-3I begin with second piezoelectric layer 142, which is assumed to have been formed on a stack (not shown) of a first conductive layer (corresponding to first electrode 111), the first piezoelectric layer 141, and a second conductive layer (corresponding to second electrode 112). This is because various steps of forming the first conductive layer, the first piezoelectric layer 141, the second conductive layer, and the second piezoelectric layer 142 may be incorporated, as would be apparent to one of ordinary skill in the art. Notably, the first conductive layer of the stack may be formed over a substrate (not shown), made of a material compatible with semiconductor processes, such as silicon (Si), gallium arsenide (GaAs), indium phosphide (InP), glass, sapphire, alumina, or the like. Also, the stack may be positioned over a cavity formed in the substrate or over an acoustic mirror, such as a Bragg reflector, formed on the substrate. For example, various fabrication techniques of cavities in a substrate are described by U.S. Pat. No. 7,345,410 (Mar. 18, 2008), to Grannen et al., and various fabrication techniques of acoustic mirrors are described by in U.S. Pat. No. 7,358,831 (Apr. 15, 2008), to Larson III, et al. which are hereby incorporated by reference.


In step S211 of FIG. 2, a first thin layer 133 is formed on the second piezoelectric layer 142, as shown in FIG. 3A. The first thin layer 133 may be applied using a spin-on, sputtering, evaporation or chemical vapor disposition (CVD) technique, for example, although other application techniques may be incorporated. A portion of the first thin layer 133 will be embedded in the subsequently applied third electrode 113, as described below. Therefore, in an embodiment, the first thin layer 133 is formed of a conductive material, such as W, Mo or Cu, and may be the same material as the third electrode 113. In an alternative embodiment, the first thin layer 133 maybe a dielectric material, such as SiO2, SiN or SiC, for example.


In step S212, a first photoresist pattern 155 is formed on the surface of the first thin layer 133, as shown in FIG. 3B. For example, the first photoresist pattern 155 may be formed by machining or by chemically etching a photoresist layer (not shown), previously applied to the first thin layer 133, using photolithography, although various alternative techniques may be incorporated. An etching process 158 is performed in step S213, using the first photoresist pattern 155 as an etch mask, to form embedded protrusion 138 on the top surface of the second piezoelectric layer 142, as shown in FIGS. 3B and 3C. The etching process may include any dry or wet etching process compatible with semiconductor fabrication processes for the respective materials. For example, a sulfur hexafluoride (SF6)-based plasma etch may be used for etching W and Mo layers, although other types of etching and/or other materials may be incorporated without departing from the scope of the present teachings. The first photoresist pattern 155 is then removed in step S214, as shown in FIG. 3C. In an embodiment, the first photoresist pattern 155 is removed by wet etching using a solvent, such as N-methyl-pyrrolidone (NMP), for example, although other techniques for removing the first photoresist pattern 155 may be incorporated.


Conductive layer 113′, which corresponds to the third electrode 113, is applied to the top surface of the second piezoelectric layer 142 and the embedded protrusion 138 in step S215, as shown in FIG. 3D. The conductive layer 113′ may be applied using a spin-on, sputtering, evaporation or CVD technique, for example, although other application techniques may be incorporated. As shown, the conductive layer 113′ is applied substantially evenly, covering the embedded protrusion 138. As a result, a perimeter protrusion 118′ (corresponding to the outer raised region 118) of the conductive layer 113′ is formed over the embedded protrusion 138. Thus, the thickness and the location of the perimeter protrusion 118′, and ultimately the outer raised region 118, are determined by the corresponding thickness and location the previously formed embedded protrusion 138. As discussed above, the conductive layer 113′ is formed of a conductive material compatible with semiconductor fabrication processes, such as W, Mo or Cu, for example, and may be the same or different material as the embedded protrusion 138. Likewise, the embedded protrusion 138 may be formed of a conductive material, such as W, Mo or Cu, or a dielectric material, such as SiO2, SiN, or SiC, for example.


In step S216, a second photoresist pattern 165 is formed on the surface of the conductive layer 113′, as shown in FIG. 3E. For example, the second photoresist pattern 165 may be formed by machining or by chemically etching a photoresist layer (not shown), previously applied to the conductive layer 113′, using photolithography, although various alternative techniques may be incorporated. The second photoresist pattern 165 exposes a portion of the conductive layer 113′ through opening 166. In step S217, a second thin layer 136 is formed on the second photoresist pattern 165 and the exposed portion of the conductive layer 113′ though the opening 166, as shown in FIG. 3F. The second thin layer 136 may be applied using a spin-on, sputtering, evaporation or CVD technique, for example, although other application techniques may be incorporated. The second thin layer 136 is formed of a conductive material, such as W, Mo or Cu, and may be the same material as the conductive layer 113′. In an alternative embodiment, the second thin layer 136 may be a dielectric material, such as SiO2, SiN, or SiC, for example, as discussed above.


The second photoresist pattern 165 is removed, along with portions of the second thin layer 136 deposited on the surface of the second photoresist pattern 165, in step S218, as shown in FIG. 3G. In an embodiment, the second photoresist pattern 165 is removed by wet etching using a solvent, such as NMP, for example, although other techniques for removing the second photoresist pattern 165 may be incorporated. In addition, the portions of the second thin layer 136 that are on the second photoresist pattern 165 are lifted-off during the etching process, due to the solvent undercutting the second photoresist pattern 165, leaving only the center portion of the second thin layer 136 that is formed on the exposed surface of the conductive layer 113′. The remaining center portion of the second thin layer 136 thus becomes the inner raised region 116. In addition, removal of the second photoresist pattern 165 exposes the remaining portions of the conductive layer 113′, including the perimeter protrusion 118′.


In step S219, a third photoresist pattern 175 is formed over the perimeter protrusion 118′ and the inner raised region 116, exposing outer peripheral edges of the perimeter protrusion 118′, as shown in FIG. 3H. For example, the third photoresist pattern 175 may be formed by machining or by chemically etching a photoresist layer (not shown), previously applied to the conductive layer 113′, including the perimeter protrusion 118′, and the inner raised region 116, using photolithography. Of course, various alternative techniques may be incorporated. In step S220, an etching process 178 is performed using the third photoresist pattern 175 as an etch mask, to form the stacked bulk acoustic resonator 100, as shown in FIGS. 3H and 3I. The etching process may include any dry or liquid etching process compatible with semiconductor fabrication processes for the respective materials. For example, H2O2-based wet etching for W or PAN (Phosphoric-Acetic-Nitric acid mixture) wet etching for Mo, or SF6-based plasma etch for W and Mo may be used, although other types of etching and/or other materials may be incorporated without departing from the scope of the present teachings. The third photoresist pattern 175 is removed in step S221, as shown in FIG. 3I, by wet etching using a solvent, for example, such as NMP, although other techniques for removing the third photoresist pattern 175 may be incorporated.


As stated above, the stacked bulk acoustic resonator 100 may be part of an acoustic resonator device 300. In the depicted representative embodiment, the second piezoelectric layer 142 is shown extending beyond the boundaries of the stacked bulk acoustic resonator 100, indicated by the dashed lines. This is because the acoustic resonator device 300 may include multiple stacked bulk acoustic resonators, like the stacked bulk acoustic resonator 100, which share in common the first piezoelectric layer 141 (not shown in FIG. 3I) and the second piezoelectric layer 142.



FIGS. 4 and 5 are cross-sectional diagrams illustrating stacked bulk acoustic resonators, according to other representative embodiments, where the inner and outer raised regions are formed on electrodes other than the top or third electrode of the stacked bulk acoustic resonator. In other words, the inner and outer raised regions are buried, although corresponding topography is propagated through subsequently stacked piezoelectric layers and electrodes.


Referring to FIG. 4, stacked bulk acoustic resonator 400 includes first electrode 411, first piezoelectric layer 441, second electrode 412, second piezoelectric layer 442 and third electrode 413, assembled in a stacked structure, forming a single cavity. The first, second and third electrodes 411, 412 and 413 are formed of electrically conductive materials, such as W, Mo or Cu, and the first and second piezoelectric layers 441 and 142 are formed of a thin film of piezoelectric material, such as ZnO, AlN or PZT, although other materials may be incorporated without departing from the scope of the present teachings.


The stacked bulk acoustic resonator 400 also includes inner raised region 416 and outer raised region 418 formed on the top surface of the second electrode 412. The inner raised region 416 is formed substantially in the center portion of the second electrode 412 and the outer raised region 418 is formed around the outer edge or perimeter of the second electrode 412, defining a gap 425 between them. The various materials and dimensions of the inner raised region 416, the outer raised region 418 and the gap 425, as well as the methods of fabricating the same, may be substantially the same as the inner raised region 116, the outer raised region 118, the gap 125 and the fabrication methods, discussed above, and therefore will not be repeated herein.


The topography or shapes of the inner raised region 416 and outer raised region 418 formed on the top surface of the second electrode 412 propagate through the second piezoelectric layer 442 and the third electrode 413. Accordingly, the top surface of the third electrode 413 includes propagated inner raised region 416′ and propagated outer raised region 418′, as shown in FIG. 4. As discussed above with respect to the stacked bulk acoustic resonator 100, the resonant frequency of the stacked bulk acoustic resonator 400 varies inversely proportionally with respect to the thicknesses of the inner raised region 416 and the outer raised region 418, and thus the propagated inner raised region 416′ and the propagated outer raised region 418′. Also, the gap 425 may be adjusted to accommodate matching of the boundary conditions of the stacked bulk acoustic resonator 400.


Referring to FIG. 5, stacked bulk acoustic resonator 500 includes first electrode 511, first piezoelectric layer 541, second electrode 512, second piezoelectric layer 542 and third electrode 513, assembled in a stacked structure, forming a single cavity. The first, second and third electrodes 511, 512 and 513 are formed of electrically conductive materials, such as W, Mo or Cu, and the first and second piezoelectric layers 541 and 542 are formed of a thin film of piezoelectric material, such as ZnO, AlN or PZT, although other materials may be incorporated without departing from the scope of the present teachings.


The stacked bulk acoustic resonator 500 also includes inner raised region 516 and outer raised region 518 formed on the top surface of the first electrode 511. The inner raised region 516 is formed substantially in the center portion of the second electrode and the outer raised region 518 is formed around the outer edge or perimeter of the first electrode 511, defining a gap 525 between them. The various materials and dimensions of the inner raised region 516, the outer raised region 518 and the gap 525, as well as the methods of fabricating the same, may be substantially the same as the inner raised region 116, the outer raised region 118, the gap 125 and the fabrication methods, discussed above, and therefore will not be repeated herein.


The topography or shapes of the inner raised region 516 and outer raised region 518 formed on the top surface of the first electrode 511 propagate through the first and second piezoelectric layers 541 and 542, and the second and third electrodes 512 and 513. Accordingly, the top surface of the second electrode 512 includes first propagated inner raised region 516′ and first propagated outer raised region 518′, and the top surface of the third electrode 513 includes second propagated inner raised region 516″ and second propagated outer raised region 518″, as shown in FIG. 5. As discussed above, the resonant frequency of the stacked bulk acoustic resonator 500 varies inversely proportionally with respect to the thicknesses of the inner raised region 516 and the outer raised region 518, and thus the first and second propagated inner raised regions 516′, 516″ and the first and second propagated outer raised regions 518′, 518″. Also, the gap 525 may be adjusted to accommodate matching of the boundary conditions of the stacked bulk acoustic resonator 500.


It is understood that the specific configurations of the stacked bulk acoustic resonators 100, 400 and 500, discussed above, are illustrative, and that the various parameters and characteristics described herein may vary to provide unique benefits for any particular situation or to meet application specific design requirements. For example, the geometry, location and/or count of frames of each layer (piezoelectric and/or electrode) may differ from other layers.


Further, various combinations of inner and outer raised regions formed on the electrodes may be incorporated, without departing from the scope of the present teachings. For example, inner and outer raised regions may be formed on two of the three electrodes, where the inner and outer raised regions are formed on adjacent electrodes (e.g., on the first and second electrodes or on the second and third electrodes), or formed on every other electrode (e.g., on the first and third electrodes). Likewise, inner and outer raised regions may be formed on all three of the electrodes. Other examples include any combination of inner raised regions and outer raised regions formed on one or more of the electrodes. For example, the third electrode may include only an inner raised region, while the first and/or second electrodes include only outer raised regions.



FIG. 6 is a graph illustrating Q factor versus resonant frequency, in which trace 610 corresponds to a conventional stacked bulk acoustic resonator (without inner and outer raised regions), and trace 620 corresponds to a stacked bulk acoustic resonator, according to a representative embodiment, such as stacked bulk acoustic resonator 100 shown in FIG. 1. Trace 620 shows that the Q factor is strongly enhanced by inclusion of the inner and outer raised regions, in comparison to trace 610.



FIG. 7 is a Smith Chart, in which trace 710 corresponds to responses of a conventional stacked bulk acoustic resonator (without inner and outer raised regions), and trace 720 corresponds to responses a stacked bulk acoustic resonator, according to a representative embodiment, such as stacked bulk acoustic resonator 100 shown in FIG. 1. Trace 710 shows resonances caused by spurious modes in the southwest quadrant of the Smith Chart, while trace 720 shows suppression of such spurious modes in the same position on the Smith Chart. Further, trace 720 is in closer proximity to the outer edge of the Smith Chart than trace 710, indicating a higher Q factor of the stacked bulk acoustic resonator having the inner and outer raised regions.


Notably, the teachings of the incorporated patents and patent applications are intended to be illustrative of methods, materials and structures useful to the present teachings, but in no way limiting to the present teachings. The various components, materials, structures and parameters are included by way of illustration and example only and not in any limiting sense. In view of this disclosure, those skilled in the art can implement the present teachings in determining their own applications and needed components, materials, structures and equipment to implement these applications, while remaining within the scope of the appended claims.

Claims
  • 1. A stacked bulk acoustic resonator, comprising: a first piezoelectric layer stacked on a first electrode;a second electrode stacked on the first piezoelectric layer;a second piezoelectric layer stacked on the second electrode;a third electrode stacked on the second piezoelectric layer;an inner raised region formed on an inner portion of a surface of at least one of the first, second and third electrodes; andan outer raised region formed along an outer perimeter of the surface of the at least one of the first, second and third electrodes, the outer raised region surrounding the inner raised region and defining a gap between the inner raised region and the outer raised region.
  • 2. The stacked bulk acoustic resonator of claim 1, wherein a corresponding resonant frequency varies inversely proportionately with a thickness of at least one of the inner raised region and the outer raised region.
  • 3. The stacked bulk acoustic resonator of claim 1, wherein each of the inner raised region and the outer raised region comprises a conductive material.
  • 4. The stacked bulk acoustic resonator of claim 3, wherein the conductive material of the inner raised region and the outer raised region is the same as a conductive material of the at least one of the first, second and third electrodes.
  • 5. The stacked bulk acoustic resonator of claim 3, wherein the conductive material of the inner raised region and the outer raised region comprises one of tungsten (W), molybdenum (Mo) and copper (Cu).
  • 6. The stacked bulk acoustic resonator of claim 1, wherein each of the inner raised region and the outer raised region comprises a dielectric material.
  • 7. The stacked bulk acoustic resonator of claim 6, wherein the dielectric material of the inner raised region and the outer raised region comprises one of silicon dioxide (SiO2), silicon nitride (SiN) and silicon carbide (SiC).
  • 8. The stacked bulk acoustic resonator of claim 1, wherein each of the inner raised region and the outer raised region comprises a piezoelectric material.
  • 9. The stacked bulk acoustic resonator of claim 1, wherein the inner raised region has a thickness of about 500 Å to about 1000 Å, and the outer raised region has a thickness of about 1000 Å to about 3000 Å, and the gap has a width of about 3 μm to about 8 μm.
  • 10. The stacked bulk acoustic resonator of claim 1, wherein the inner raised region and the outer raised region are formed on the surface of the third electrode.
  • 11. The stacked bulk acoustic resonator of claim 1, wherein the inner raised region and the outer raised region are formed on the surface of the second electrode, and wherein the third electrode includes a propagated inner raised region and a propagated outer raised region corresponding to the inner raised region and the outer raised region.
  • 12. The stacked bulk acoustic resonator of claim 1, wherein the inner raised region and the outer raised region are formed on the surface of the first electrode, and wherein the second electrode includes a first propagated inner raised region and a first propagated outer raised region corresponding to the inner raised region and the outer raised region, and the third electrode includes a second propagated inner raised region and a second propagated outer raised region corresponding to the inner raised region and the outer raised region.
  • 13. The stacked bulk acoustic resonator of claim 1, wherein a thickness of the inner raised region is less than a thickness of the outer raised region.
  • 14. A bulk acoustic resonator device comprising the stacked bulk acoustic resonator of claim 1, wherein the first and second piezoelectric layers are shared in common with at least one other stacked bulk acoustic resonator configured the same as the bulk acoustic resonator of claim 1.
  • 15. A stacked bulk acoustic resonator, comprising: a plurality of piezoelectric layers; andan electrode stacked on a top surface of one of the plurality of piezoelectric layers, the electrode having at least one of an inner raised region and an outer raised region extending from a top surface of the electrode, wherein the inner raised region is formed in an inner portion of the top surface of the electrode and the outer raised region is formed along an outer perimeter of the top surface of the electrode.
  • 16. The stacked bulk acoustic resonator of claim 15, wherein the outer raised region surrounds the inner raised region, defining a gap between the inner raised region and the outer raised region.
  • 17. The stacked bulk acoustic resonator of claim 15, wherein the electrode has an apodized shape.
  • 18. A stacked bulk acoustic resonator, comprising: a first piezoelectric layer formed on a first electrode;a second electrode formed on the first piezoelectric layer;a second piezoelectric layer formed on the second electrode;an embedded protrusion formed on the second piezoelectric layer along an outer perimeter of the second piezoelectric layer;a third electrode formed on the second piezoelectric layer and the embedded protrusion, a portion of the third electrode covering the embedded protrusion extending from the third electrode to form an outer raised region along an outer perimeter of the third electrode; andan inner raised region formed in an inner portion of the third electrode, wherein a gap is defined between the inner raised region and the outer raised region.
  • 19. The stacked bulk acoustic resonator of claim 18, wherein the embedded protrusion comprises a conductive material.
  • 20. The stacked bulk acoustic resonator of claim 18, wherein the embedded protrusion comprises a dielectric material or a piezoelectric material.
US Referenced Citations (454)
Number Name Date Kind
3174122 Fowler et al. Mar 1965 A
3189851 Fowler Jun 1965 A
3321648 Kolm May 1967 A
3422371 Poirier at al. Jan 1969 A
3568108 Poirier et al. Mar 1971 A
3582839 Pim et al. Jun 1971 A
3590287 Berlincourt et al. Jun 1971 A
3610969 Clawson et al. Oct 1971 A
3826931 Hammond Jul 1974 A
3845402 Nupp Oct 1974 A
4084217 Brandli et al. Apr 1978 A
4172277 Pinson Oct 1979 A
4272742 Lewis Jun 1981 A
4281299 Newbold Jul 1981 A
4320365 Black et al. Mar 1982 A
4344004 Okubo Aug 1982 A
4355408 Scarrott Oct 1982 A
4456850 Inoue et al. Jun 1984 A
4529904 Hattersley Jul 1985 A
4608541 Moriwaki et al. Aug 1986 A
4625138 Ballato Nov 1986 A
4640756 Wang et al. Feb 1987 A
4719383 Wang et al. Jan 1988 A
4769272 Byrne et al. Sep 1988 A
4798990 Henoch Jan 1989 A
4819215 Yokoyama et al. Apr 1989 A
4836882 Ballato Jun 1989 A
4841429 McClanahan et al. Jun 1989 A
4906840 Zdeblick et al. Mar 1990 A
4975892 Defranould et al. Dec 1990 A
5048036 Scifres et al. Sep 1991 A
5048038 Brennan et al. Sep 1991 A
5066925 Freitag Nov 1991 A
5075641 Weber et al. Dec 1991 A
5111157 Komiak May 1992 A
5118982 Inoue et al. Jun 1992 A
5129132 Zdeblick et al. Jul 1992 A
5162691 Mariani et al. Nov 1992 A
5166646 Avanic et al. Nov 1992 A
5185589 Krishnaswamy et al. Feb 1993 A
5214392 Kobayashi et al. May 1993 A
5233259 Krishnaswamy et al. Aug 1993 A
5241209 Sasaki Aug 1993 A
5241456 Marcinkiewicz et al. Aug 1993 A
5262347 Sands Nov 1993 A
5270492 Fukui Dec 1993 A
5294898 Dworsky et al. Mar 1994 A
5361077 Weber Nov 1994 A
5382930 Stokes et al. Jan 1995 A
5384808 Van Brunt et al. Jan 1995 A
5448014 Kong et al. Sep 1995 A
5465725 Seyed-Bolorforosh Nov 1995 A
5475351 Uematsu et al. Dec 1995 A
5548189 Williams Aug 1996 A
5567334 Baker et al. Oct 1996 A
5587620 Ruby et al. Dec 1996 A
5589858 Kadowaki et al. Dec 1996 A
5594705 Connor et al. Jan 1997 A
5603324 Oppelt et al. Feb 1997 A
5633574 Sage May 1997 A
5671242 Takiguchi et al. Sep 1997 A
5692279 Mang et al. Dec 1997 A
5704037 Chen Dec 1997 A
5705877 Shimada Jan 1998 A
5714917 Ella Feb 1998 A
5729008 Blalock et al. Mar 1998 A
5789845 Wadaka et al. Aug 1998 A
5835142 Nakamura et al. Nov 1998 A
5853601 Krishaswamy et al. Dec 1998 A
5864261 Weber Jan 1999 A
5866969 Shimada et al. Feb 1999 A
5872493 Ella Feb 1999 A
5873153 Ruby et al. Feb 1999 A
5873154 Ylilammi et al. Feb 1999 A
5894184 Furuhashi et al. Apr 1999 A
5894647 Lakin Apr 1999 A
5910756 Ella Jun 1999 A
5932953 Drees et al. Aug 1999 A
5936150 Kobrin et al. Aug 1999 A
5953479 Zhou et al. Sep 1999 A
5955926 Uda et al. Sep 1999 A
5962787 Okada et al. Oct 1999 A
5969463 Tomita et al. Oct 1999 A
5982297 Welle Nov 1999 A
6001664 Swirhun et al. Dec 1999 A
6016052 Vaughn Jan 2000 A
6040962 Kanazawa et al. Mar 2000 A
6051907 Ylilammi Apr 2000 A
6060818 Ruby et al. May 2000 A
6087198 Panasik Jul 2000 A
6090687 Merchant et al. Jul 2000 A
6107721 Lakin Aug 2000 A
6111341 Hirama Aug 2000 A
6111480 Iyama et al. Aug 2000 A
6114795 Tajima et al. Sep 2000 A
6118181 Merchant et al. Sep 2000 A
6124678 Bishop et al. Sep 2000 A
6124756 Yaklin et al. Sep 2000 A
6131256 Dydyk Oct 2000 A
6150703 Cushman et al. Nov 2000 A
6187513 Katakura Feb 2001 B1
6198208 Yano et al. Mar 2001 B1
6215375 Larson, III et al. Apr 2001 B1
6219032 Rosenberg et al. Apr 2001 B1
6219263 Wuidart Apr 2001 B1
6228675 Ruby et al. May 2001 B1
6229247 Bishop May 2001 B1
6252229 Hays et al. Jun 2001 B1
6262600 Haigh et al. Jul 2001 B1
6262637 Bradley et al. Jul 2001 B1
6263735 Nakatani et al. Jul 2001 B1
6265246 Ruby et al. Jul 2001 B1
6278342 Ella Aug 2001 B1
6284121 Reid Sep 2001 B1
6292336 Horng et al. Sep 2001 B1
6306755 Zheng Oct 2001 B1
6307447 Barber et al. Oct 2001 B1
6307761 Nakagawa Oct 2001 B1
6335548 Roberts et al. Jan 2002 B1
6355498 Chan et al. Mar 2002 B1
6366006 Boyd Apr 2002 B1
6376280 Ruby et al. Apr 2002 B1
6377137 Ruby Apr 2002 B1
6384697 Ruby May 2002 B1
6396200 Misu et al. May 2002 B2
6407649 Tikka et al. Jun 2002 B1
6414569 Nakafuku Jul 2002 B1
6420820 Larson, III Jul 2002 B1
6424237 Ruby et al. Jul 2002 B1
6429511 Ruby et al. Aug 2002 B2
6434030 Rehm et al. Aug 2002 B1
6437482 Shibata Aug 2002 B1
6441539 Kitamura et al. Aug 2002 B1
6441702 Ella et al. Aug 2002 B1
6462631 Bradley et al. Oct 2002 B2
6466105 Lobl et al. Oct 2002 B1
6466418 Horng et al. Oct 2002 B1
6469597 Ruby et al. Oct 2002 B2
6469909 Simmons Oct 2002 B2
6472954 Ruby et al. Oct 2002 B1
6476536 Pensala Nov 2002 B1
6479320 Gooch Nov 2002 B1
6483229 Larson, III et al. Nov 2002 B2
6486751 Barber et al. Nov 2002 B1
6489688 Baumann et al. Dec 2002 B1
6492883 Liang et al. Dec 2002 B2
6496085 Ella et al. Dec 2002 B2
6498604 Jensen Dec 2002 B1
6507983 Ruby et al. Jan 2003 B1
6515558 Ylilammi Feb 2003 B1
6518860 Ella et al. Feb 2003 B2
6525996 Miyazawa Feb 2003 B1
6528344 Kang Mar 2003 B2
6530515 Glenn et al. Mar 2003 B1
6534900 Aigner et al. Mar 2003 B2
6542055 Frank et al. Apr 2003 B1
6548942 Panasik Apr 2003 B1
6548943 Kaitila et al. Apr 2003 B2
6549394 Williams Apr 2003 B1
6550664 Bradley et al. Apr 2003 B2
6559487 Kang et al. May 2003 B1
6559530 Hinzel et al. May 2003 B2
6564448 Oura et al. May 2003 B1
6566956 Ohnishi et al. May 2003 B2
6566979 Larson, III et al. May 2003 B2
6580159 Fusaro et al. Jun 2003 B1
6583374 Knieser et al. Jun 2003 B2
6583688 Klee et al. Jun 2003 B2
6593870 Dummermuth et al. Jul 2003 B2
6594165 Duerbaum et al. Jul 2003 B2
6600390 Frank Jul 2003 B2
6601276 Barber Aug 2003 B2
6603182 Low et al. Aug 2003 B1
6617249 Ruby et al. Sep 2003 B2
6617750 Dummermuth et al. Sep 2003 B2
6617751 Sunwoo et al. Sep 2003 B2
6621137 Ma et al. Sep 2003 B1
6630753 Malik et al. Oct 2003 B2
6635509 Ouellet Oct 2003 B1
6639872 Rein Oct 2003 B1
6651488 Larson, III et al. Nov 2003 B2
6657363 Aigner Dec 2003 B1
6668618 Larson, III et al. Dec 2003 B2
6670866 Ella et al. Dec 2003 B2
6677929 Gordon et al. Jan 2004 B2
6693500 Yang et al. Feb 2004 B2
6710508 Ruby et al. Mar 2004 B2
6710681 Figueredo et al. Mar 2004 B2
6713314 Wong et al. Mar 2004 B2
6714102 Ruby et al. Mar 2004 B2
6720844 Lakin Apr 2004 B1
6720846 Iwashita et al. Apr 2004 B2
6724266 Plazza et al. Apr 2004 B2
6738267 Navas Sabater et al. May 2004 B1
6750593 Iwata Jun 2004 B2
6774746 Whatmore et al. Aug 2004 B2
6777263 Gan et al. Aug 2004 B1
6787048 Bradley et al. Sep 2004 B2
6788170 Kaitila et al. Sep 2004 B1
6803835 Frank Oct 2004 B2
6812619 Kaitila et al. Nov 2004 B1
6820469 Adkins et al. Nov 2004 B1
6828713 Bradley et al. Dec 2004 B2
6842088 Yamada et al. Jan 2005 B2
6842089 Lee Jan 2005 B2
6849475 Kim Feb 2005 B2
6853534 Williams Feb 2005 B2
6861920 Ishikawa et al. Mar 2005 B2
6872931 Liess et al. Mar 2005 B2
6873065 Haigh et al. Mar 2005 B2
6873529 Ikuta Mar 2005 B2
6874211 Bradley et al. Apr 2005 B2
6874212 Larson, III Apr 2005 B2
6888424 Takeuchi et al. May 2005 B2
6900705 Nakamura et al. May 2005 B2
6903452 Ma et al. Jun 2005 B2
6906451 Yamada et al. Jun 2005 B2
6911708 Park Jun 2005 B2
6917261 Unterberger Jul 2005 B2
6924583 Lin et al. Aug 2005 B2
6924717 Ginsburg et al. Aug 2005 B2
6927651 Larson, III et al. Aug 2005 B2
6936837 Yamada et al. Aug 2005 B2
6936928 Hedler et al. Aug 2005 B2
6936954 Peczalski Aug 2005 B2
6941036 Lucero Sep 2005 B2
6943647 Aigner Sep 2005 B2
6943648 Maiz et al. Sep 2005 B2
6946928 Larson, III et al. Sep 2005 B2
6954121 Bradley et al. Oct 2005 B2
6963257 Ella et al. Nov 2005 B2
6970365 Turchi Nov 2005 B2
6975183 Aigner et al. Dec 2005 B2
6977563 Komuro et al. Dec 2005 B2
6985051 Nguyen et al. Jan 2006 B2
6985052 Tikka Jan 2006 B2
6987433 Larson, III et al. Jan 2006 B2
6989723 Komuro et al. Jan 2006 B2
6998940 Metzger Feb 2006 B2
7002437 Takeuchi et al. Feb 2006 B2
7019604 Gotoh et al. Mar 2006 B2
7019605 Larson, III Mar 2006 B2
7026876 Esfandiari et al. Apr 2006 B1
7053456 Matsuo May 2006 B2
7057476 Hwu Jun 2006 B2
7057478 Korden et al. Jun 2006 B2
7064606 Louis Jun 2006 B2
7084553 Ludwiczak Aug 2006 B2
7091649 Larson, III et al. Aug 2006 B2
7098758 Wang et al. Aug 2006 B2
7102460 Schmidhammer et al. Sep 2006 B2
7109826 Ginsburg et al. Sep 2006 B2
7128941 Lee Oct 2006 B2
7129806 Sato Oct 2006 B2
7138889 Lakin Nov 2006 B2
7148466 Eckman et al. Dec 2006 B2
7158659 Baharav et al. Jan 2007 B2
7161448 Feng et al. Jan 2007 B2
7170215 Namba et al. Jan 2007 B2
7173504 Larson, III et al. Feb 2007 B2
7179392 Robert et al. Feb 2007 B2
7187254 Su et al. Mar 2007 B2
7209374 Noro Apr 2007 B2
7212083 Inoue et al. May 2007 B2
7212085 Wu May 2007 B2
7230509 Stoemmer Jun 2007 B2
7230511 Onishi et al. Jun 2007 B2
7233218 Park et al. Jun 2007 B2
7242270 Larson, III et al. Jul 2007 B2
7259498 Nakatsuka et al. Aug 2007 B2
7268647 Sano et al. Sep 2007 B2
7275292 Ruby et al. Oct 2007 B2
7276994 Takeuchi et al. Oct 2007 B2
7280007 Feng et al. Oct 2007 B2
7281304 Kim et al. Oct 2007 B2
7294919 Bai Nov 2007 B2
7301258 Tanaka Nov 2007 B2
7310861 Aigner et al. Dec 2007 B2
7313255 Machida et al. Dec 2007 B2
7332985 Larson, III et al. Feb 2008 B2
7345410 Grannen et al. Mar 2008 B2
7358831 Larson, III et al. Apr 2008 B2
7367095 Larson, III et al. May 2008 B2
7368857 Tanaka May 2008 B2
7369013 Fazzio et al. May 2008 B2
7385467 Stoemmer et al. Jun 2008 B2
7388318 Yamada et al. Jun 2008 B2
7388454 Ruby et al. Jun 2008 B2
7388455 Larson, III Jun 2008 B2
7391286 Jamneala et al. Jun 2008 B2
7400217 Larson, III et al. Jul 2008 B2
7408428 Larson, III Aug 2008 B2
7414349 Sasaki Aug 2008 B2
7414495 Iwasaki et al. Aug 2008 B2
7420320 Sano et al. Sep 2008 B2
7423503 Larson, III et al. Sep 2008 B2
7425787 Larson, III Sep 2008 B2
7439824 Aigner Oct 2008 B2
7463118 Jacobsen Dec 2008 B2
7466213 Lobl et al. Dec 2008 B2
7482737 Yamada et al. Jan 2009 B2
7508286 Ruby et al. Mar 2009 B2
7515018 Handtmann et al. Apr 2009 B2
7535324 Fattinger et al. May 2009 B2
7545532 Muramoto Jun 2009 B2
7561009 Larson, III et al. Jul 2009 B2
7576471 Solal Aug 2009 B1
7602101 Hara et al. Oct 2009 B2
7619493 Uno et al. Nov 2009 B2
7629865 Ruby Dec 2009 B2
7649304 Umeda et al. Jan 2010 B2
7655963 Sadaka et al. Feb 2010 B2
7684109 Godshalk et al. Mar 2010 B2
7768364 Hart et al. Aug 2010 B2
7795781 Barber et al. Sep 2010 B2
7869187 McKinzie et al. Jan 2011 B2
7889024 Bradley et al. Feb 2011 B2
7978025 Yokoyama et al. Jul 2011 B2
20010045793 Misu et al. Nov 2001 A1
20020000646 Gooch et al. Jan 2002 A1
20020030424 Iwata Mar 2002 A1
20020063497 Panasik May 2002 A1
20020070463 Chang et al. Jun 2002 A1
20020121944 Larson, III et al. Sep 2002 A1
20020121945 Ruby et al. Sep 2002 A1
20020126517 Matsukawa et al. Sep 2002 A1
20020140520 Hikita et al. Oct 2002 A1
20020152803 Larson, III et al. Oct 2002 A1
20020190814 Yamada et al. Dec 2002 A1
20030001251 Cheever et al. Jan 2003 A1
20030006502 Karpman Jan 2003 A1
20030011285 Ossmann Jan 2003 A1
20030011446 Bradley Jan 2003 A1
20030051550 Nguyen et al. Mar 2003 A1
20030087469 Ma May 2003 A1
20030102776 Takeda et al. Jun 2003 A1
20030111439 Fetter et al. Jun 2003 A1
20030128081 Ella et al. Jul 2003 A1
20030132493 Kang et al. Jul 2003 A1
20030132809 Senthilkumar et al. Jul 2003 A1
20030141946 Ruby et al. Jul 2003 A1
20030179053 Aigner et al. Sep 2003 A1
20030205948 Lin et al. Nov 2003 A1
20030227357 Metzger et al. Dec 2003 A1
20040016995 Kuo et al. Jan 2004 A1
20040017130 Wang et al. Jan 2004 A1
20040027216 Ma et al. Feb 2004 A1
20040056735 Nomura et al. Mar 2004 A1
20040092234 Pohjonen May 2004 A1
20040099898 Grivna et al. May 2004 A1
20040124952 Tikka Jul 2004 A1
20040129079 Kato et al. Jul 2004 A1
20040150293 Unterberger Aug 2004 A1
20040150296 Park et al. Aug 2004 A1
20040166603 Carley Aug 2004 A1
20040195937 Matsubara et al. Oct 2004 A1
20040212458 Lee Oct 2004 A1
20040246075 Bradley et al. Dec 2004 A1
20040257171 Park et al. Dec 2004 A1
20040257172 Schmidhammer et al. Dec 2004 A1
20040263287 Ginsburg et al. Dec 2004 A1
20050012570 Korden et al. Jan 2005 A1
20050012716 Mikulin et al. Jan 2005 A1
20050023931 Bouche et al. Feb 2005 A1
20050030126 Inoue et al. Feb 2005 A1
20050036604 Scott et al. Feb 2005 A1
20050057117 Nakatsuka et al. Mar 2005 A1
20050057324 Onishi et al. Mar 2005 A1
20050068124 Stoemmer Mar 2005 A1
20050093396 Larson, III et al. May 2005 A1
20050093397 Yamada et al. May 2005 A1
20050093653 Larson, III May 2005 A1
20050093654 Larson, III et al. May 2005 A1
20050093655 Larson, III et al. May 2005 A1
20050093657 Larson, III et al. May 2005 A1
20050093658 Larson, III et al. May 2005 A1
20050093659 Larson, III et al. May 2005 A1
20050104690 Larson, III et al. May 2005 A1
20050110598 Larson, III May 2005 A1
20050128030 Larson, III et al. Jun 2005 A1
20050140466 Larson, III et al. Jun 2005 A1
20050167795 Higashi Aug 2005 A1
20050193507 Ludwiczak Sep 2005 A1
20050206271 Higuchi et al. Sep 2005 A1
20050206479 Nguyen et al. Sep 2005 A1
20050206483 Pashby et al. Sep 2005 A1
20050218488 Matsuo Oct 2005 A1
20050248232 Itaya et al. Nov 2005 A1
20050269904 Oka Dec 2005 A1
20050275486 Feng Dec 2005 A1
20060017352 Tanielian Jan 2006 A1
20060071736 Ruby et al. Apr 2006 A1
20060081048 Mikado et al. Apr 2006 A1
20060087199 Larson, III et al. Apr 2006 A1
20060103492 Feng et al. May 2006 A1
20060114541 Van Beek Jun 2006 A1
20060119453 Fattinger et al. Jun 2006 A1
20060125489 Feucht et al. Jun 2006 A1
20060132262 Fazzio et al. Jun 2006 A1
20060164183 Tikka et al. Jul 2006 A1
20060164186 Stoemer et al. Jul 2006 A1
20060176126 Wang et al. Aug 2006 A1
20060185139 Larson, III et al. Aug 2006 A1
20060197411 Hoen et al. Sep 2006 A1
20060238070 Costa et al. Oct 2006 A1
20060284706 Ginsburg et al. Dec 2006 A1
20060284707 Larson, III et al. Dec 2006 A1
20060290446 Aigner et al. Dec 2006 A1
20070035364 Sridhar et al. Feb 2007 A1
20070037311 Izumi et al. Feb 2007 A1
20070080759 Jamneala et al. Apr 2007 A1
20070085447 Larson, III Apr 2007 A1
20070085631 Larson, III et al. Apr 2007 A1
20070085632 Larson, III et al. Apr 2007 A1
20070086080 Larson, III et al. Apr 2007 A1
20070086274 Nishimura et al. Apr 2007 A1
20070090892 Larson, III Apr 2007 A1
20070170815 Unkrich Jul 2007 A1
20070171002 Unkrich Jul 2007 A1
20070176710 Jamneala et al. Aug 2007 A1
20070205850 Jamneala et al. Sep 2007 A1
20070279153 Ruby Dec 2007 A1
20070291164 Goh et al. Dec 2007 A1
20080055020 Handtmann et al. Mar 2008 A1
20080143215 Hara et al. Jun 2008 A1
20080297278 Handtmann et al. Dec 2008 A1
20080297279 Thalhammer et al. Dec 2008 A1
20080297280 Thalhammer et al. Dec 2008 A1
20090001848 Umeda et al. Jan 2009 A1
20090064498 Mok et al. Mar 2009 A1
20090079302 Wall et al. Mar 2009 A1
20090096550 Handtmann et al. Apr 2009 A1
20090127978 Asai et al. May 2009 A1
20090153268 Milson et al. Jun 2009 A1
20090201594 Smith Aug 2009 A1
20090267457 Barber et al. Oct 2009 A1
20100033063 Nishihara et al. Feb 2010 A1
20100052176 Kamada et al. Mar 2010 A1
20100052815 Bradley et al. Mar 2010 A1
20100091370 Mahrt et al. Apr 2010 A1
20100102358 Lanzieri et al. Apr 2010 A1
20100148637 Satou Jun 2010 A1
20100176899 Schaufele et al. Jul 2010 A1
20100187948 Sinha et al. Jul 2010 A1
20100207011 Smith Aug 2010 A1
20100260453 Block Oct 2010 A1
20100327697 Choy et al. Dec 2010 A1
20100327994 Choy et al. Dec 2010 A1
20110121916 Barber et al. May 2011 A1
20120161902 Feng et al. Jun 2012 A1
20120194297 Choy Aug 2012 A1
20120218058 Burak et al. Aug 2012 A1
20120218059 Burak et al. Aug 2012 A1
20120280767 Burak et al. Nov 2012 A1
Foreign Referenced Citations (78)
Number Date Country
10160617 Jun 2003 DE
10239317 Mar 2004 DE
231892 Aug 1987 EP
0637875 Feb 1995 EP
689254 Dec 1995 EP
0865157 Sep 1998 EP
880227 Nov 1998 EP
1047189 Oct 2000 EP
1096259 May 2001 EP
1100196 May 2001 EP
1180494 Feb 2002 EP
1249932 Oct 2002 EP
1258989 Nov 2002 EP
1258990 Nov 2002 EP
1517443 Mar 2005 EP
1517444 Mar 2005 EP
1528674 May 2005 EP
1528676 May 2005 EP
1528677 May 2005 EP
1542362 Jun 2005 EP
1557945 Jul 2005 EP
1575165 Sep 2005 EP
0973256 Sep 2006 EP
2299593 Mar 2011 EP
1528675 May 2005 ER
1207974 Oct 1970 GB
2013343 Aug 1979 GB
2411239 Aug 2005 GB
2418791 Apr 2006 GB
2427773 Jan 2007 GB
59023612 Feb 1984 JP
61054686 Mar 1986 JP
6165507 Apr 1986 JP
62-109419 May 1987 JP
62-200813 Sep 1987 JP
1-295512 Nov 1989 JP
2-10907 Jan 1990 JP
06005944 Jan 1994 JP
8-330878 Dec 1996 JP
09-027729 Jan 1997 JP
9-83029 Mar 1997 JP
10-32456 Feb 1998 JP
2000-31552 Jan 2000 JP
2000-232334 Aug 2000 JP
2000-295065 Oct 2000 JP
2001-102901 Apr 2001 JP
2001-508630 Jun 2001 JP
2002217676 Aug 2002 JP
2002217676 Aug 2002 JP
2003017964 Jan 2003 JP
2003-505905 Feb 2003 JP
2003124779 Apr 2003 JP
2003-332872 Nov 2003 JP
2006-109472 Apr 2006 JP
2006-295924 Oct 2006 JP
2006-319796 Nov 2006 JP
2007-006501 Jan 2007 JP
2007028669 Feb 2007 JP
2007-295306 Nov 2007 JP
WO-9816957 Apr 1998 WO
WO-9838736 Sep 1998 WO
WO-9856049 Dec 1998 WO
WO-9937023 Jul 1999 WO
WO-0106646 Jan 2001 WO
WO-0106647 Jan 2001 WO
WO-0199276 Dec 2001 WO
WO-02103900 Dec 2002 WO
WO-03030358 Apr 2003 WO
WO-03043188 May 2003 WO
WO-03050950 Jun 2003 WO
WO-03058809 Jul 2003 WO
WO-2004034579 Apr 2004 WO
WO-2004051744 Jun 2004 WO
WO-2004102688 Nov 2004 WO
WO-2005043752 May 2005 WO
WO-2005043753 May 2005 WO
WO-2005043756 May 2005 WO
WO-2006018788 Feb 2006 WO
Non-Patent Literature Citations (89)
Entry
U.S. Appl. No. 10/971,169, filed Oct. 22, 2004, Larson III, John D., et al.
“A partial GB Search Report for” Application No. GB0522393.8 Jan. 9, 2006, 4 pages.
“A partial GB Search Report for Application No.”, GB0525884.3 Feb. 2, 2006, 4 pgs.
“British Search Report Application No.”, 0605222.9 Jul. 11, 2006.
“Co-pending U.S. Appl. No. 12/710,640, filed Feb. 23, 2010”.
“Co-pending U.S. Appl. No. 13/036,489, filed Feb. 28, 2011”.
“Co-pending U.S. Appl. No. 13/074,094, filed Mar. 29, 2011”.
“Co-pending U.S. Appl. No. 13/101,376, filed May 5, 2011”.
“Examination report corresponding to application No.”, GB0605770.7 Aug. 25, 2006.
“Examination Report from UK for application”, GB 0605971.1 Aug. 24, 2006.
“Search Report for Great Britain Patent Application”, No. 0617742.2 Mar. 29, 2007.
“Search Report for Great Britain Patent Application”, No. 0617742.2 Dec. 13, 2006.
“Search Report from corresponding application”, No. GB0605225.2 Jun. 26, 2006.
“Search report from corresponding application No.”, GB0620152.9 Nov. 15, 2006.
“Search report from corresponding application No.”, GB0620653.6 Nov. 17, 2006.
“Search report from corresponding application No.”, GB0620655.1 Nov. 17, 2006.
“Search Report from corresponding application No.”, GB0620657.7 Nov. 23, 2006.
“Search Report from corresponding application No.”, GB 0605779.8 Aug. 23, 2006.
“Search Report in the Great Britian Patent Application”, No. 0619698.4 Nov. 30, 2006.
Akiyama, et al., “Enhancement of Piezoelectric Response in Scandium Aluminum Nitride Alloy Thin Films Prepared by Dual Reactive Cosputtering”, Adv. Mater 2009 , 593-596.
Al-Ahmad, M. et al., “Piezoelectric-Based Tunable Microstrip Shunt Resonator”, Proceedings of Asia-Pacific Microwave Conference 2006.
Aoyama, Takayuki et al., “Diffusion of Boron, Phosphorous, Arsenic and Antimony in Thermally Grown SiliconDioxide”, Journal of the Electrochemical Society, vol. 146, No. 5 1999 , 1879-1883.
Auld, B. A. , “Acoustic Resonators”, Acoustic Fields and Waves in Solids, Second Edition, vol. II 1990 , 250-259.
Bauer, L. O, et al., “Properties of Silicon implanted with Boron Ions through Thermal Silicon Dioxide”, Solid State Electronics, vol. 16, No. 3 Mar. 1973 , 289-300.
Chen, , “Fabrication and Characterization of ALN Thin Film Bulk Acoustic Wave Resonator”, Dissertation, University of Pittsburgh School of Engineering 2006.
Choi, Sungjin at al., “Design of Half-Bridge Piezo-Transformer Converters in the AC Adapter Applications”, APEC 2005, IEEE Mar. 2005 , 244-248.
Coombs, Clyde F. , “Electronic instrument Handbook”, Second Edition, McGraw-Hill Inc. 1995 , pp. 5.1 to 5.29.
C-S Lee, et al., “Copper-Airbridged Low-Noise GaAs PHEMT With Ti/WNX/Ti Diffusion Barrier for High-Frequency”, IEEE Transactions on Electron Devices, vol. 53 , Issue: 8. 2006 , 1753-1758.
Denisse, C.M.M. et al., “Plasma-Enhanced Growth and Composition of Silicon Oxynitride Films”, J. Appl. Phys. vol. 60, No. 7. Oct. 1, 1986 , 2536-2542.
Fattinger, G. G. et al., “Coupled Bulk Acoustic Wave Resonator Filters: Key technology for single-to-balanced RF filters”, 0-7803-8331-1/4/W20.00: IEEE MTT-S Digest 2004 , 927-929.
Fattinger, G.G. et al., “Single-To-Balance Filters for Mobile Phones Using Coupled Resonator BAW Technology”, 2004 IEEE Ultrasonics Symposium Aug. 2004 , 416-419.
Fattinger, G. B, et al., “Spurious Mode Suppression in Coupled Resonator Filters”, IEEE MTT-S International Microwave Symposium Digest 2005 , 409-412.
Gilbert, S. R. , “An Ultra-Miniature, Low Cost Single Ended to Differential Filter for ISM Band Applications”, Micro. Symp. Digest, 2008 IEEE MTT-S Jun. 2008 , 839-842.
Grill, A. et al., “Ultralow-K Dielectrics Prepared by Plasma-Enhanced Chemical Vapor Deposition”, App. Phys. Lett, vol. 79 2001 , 803-805.
Hadimioglu, B, et al., ““Polymer Films As Acoustic Matching Layers”.”, 1990 IEEE Ultrasonics Symposium Proceedings, vol. 3 PP. [Previously submitted as “Polymer Files As Acoustic Matching Layers, 1990 IEEE Ultrasonics Symposium Proceeding. vol. 4 pp. 1227-1340, Dec. 1990”. Considered by Examiner on Mar. 20, 2007 Dec. 1990 , 1337-1340.
Hara, K. , “Surface Treatment of Quartz Oscillator Plate by Ion Implantation”, Oyo Buturi, vol. 47, No. 2 Feb. 1978 , 145-146.
Holzlohner, Ronald et al., “Accurate Calculation of Eye Diagrams and Bit Error Rates in Optical Transmission Systems Using Linearization”, Journal of Lightwave Technology, vol. 20, No. 3, Mar. 2002 , pp. 389-400.
Ivensky, Gregory et al., “A Comparison of Piezoelectric Transformer AC/DC Converters with Current Doubler and voltage Doubler Rectifiers”, IEEE Transactions on Power Electronics, vol. 19, No. 6. Nov. 2004.
Jamneala, T. et al., “Coupled Resonator Filter with Single-Layer Acoustic Coupler”, IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 55 Oct. 2008 , 2320-2326.
Jamneala, Tiberiu et al., “Ultra-Miniature Coupled Resonator Filter with Single-Layer Acoustic Coupler”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 56, No. 11. Nov. 2009 , 2553-2558.
Jiang, Yimin et al., “A Novel Single-Phase Power Factor Correction Scheme”, IEEE 1993 , 287-292.
Jung, Jun-Phil et al., “Experimental and Theoretical Investigation on the Relationship Between AIN Properties and AIN-Based FBAR Characteristics”, 2003 IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum Sep. 3, 2003 , 779-784.
Kaitila, J. et al., “Measurement of Acoustical Parameters of Thin Films”, 2006 IEEE Ultrasonics Symposium Oct. 2006 , 464-467.
Krishnaswamy, S.V. et al., “Film Bulk Acoustic Wave Resonator Technology”, May 29, 1990 , 529-536.
Lakin, K.M. , “Bulk Acoustic Wave Coupled Resonator Filters”, 2002 IEEE International Frequency Control Symposium and PDA Exhibition May 2002 , 8-14.
Lakin, K.M. , “Coupled Resonator Filters”, 2002 IEEE Ultrasonics Symposium Mar. 2, 2002 , 901-908.
Lakin, K.M. et al., “High Performance Stacked Crystal Filters for GPS and Wide Bandwidth Applications”, 2001 IEEE Ultrasonics Symposium Jan. 1, 2001 , 833-838.
Lakin, K. M. et al., “Temperature Compensated Bulk Acoustic Thin Film Resonators”, IEEE Ultrasonics Symposium, San Juan, Puerto Rico Oct. 2000 , 855-858.
Lakin, K.M. “Thin Film BAW Filters for Wide Bandwidth and High Performance Applications”, IEEE Microwave Symposium Digest; vol. 2 Jun. 6-11, 2004 , 923-926.
Lakin, K. M. , “Thin Film Resonators and Filters”, IEEE Untrasonics Symposium, Caesar's Tahoe, NV Oct. 1999 , 895-906.
Lakin, et al,, “Wide Bandwidth Thin Film BAW Filters”, 2004 IEEE Ultrasonics Symposium, vol. 1, Aug. 2004 , 407-410.
Larson III, John D. et al., “Measurement of Effective Kt2,Q,Rp,Rs vs. Temperature for Mo/AIN FBAR Resonators”, IEEE Ultrasonics Symposium 2002 , 939-943.
Li, Yunxiu et al., “AC-DC Converter with Worldwide Range Input Voltage by Series and Parallel Piezoelectric Transformer Connection”, 35th Annual IEEE Power Electronics Specialists Conference 2004.
Lobl, H.P. et al., “Piezoelectric Materials for BAW Resonators and Filters”, 2001 IEEE Ultrasonics Symposium Jan. 1, 2001 , 807-811.
Loboda, M. J. , “New Solutions for Intermetal Dielectrics Using Trimethylsilane-Based PECVD Processes”, Microelectronics Eng., vol. 50. 2000, 15-23.
Martin, Steven J. et al., “Development of a Low Dielectric Constant Polymer for the Fabrication of Integrated Circuit Interconnect”, 12 Advanced Materials Dec. 23, 2000 , 1769-1778.
Martin, et al., “Re-growth of C-Axis Oriented AIN Thin Films”, IEEE Ultrasonics Symposium 2006 , 169-172.
Martin, et al., “Shear Mode Coupling and Tilted Gram Growth of AIN Thin Films in BAW Resonators”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 53, No. 7 Jul. 2006 , 1339-1343.
Martinez, et al., “High confinement suspended micro-ring resonators in silicon-on-insulator”, Optics Express, Vo. 14, No. 13 Jun. 26, 2006 , 6259-6263.
Merriam-Webster, “Collegiate Dictionary”, tenth edition 2000 , 2 pages.
Navas, J. et al., “Miniaturised Battery Charger using Piezoelectric Transformers”, IEEE 2001 , 492-496.
Ng, J. et al., “The Diffusion Ion-Implanted Boron in Silicon Dioxide”, AIP Conf Proceedings, No. 122 1984 , 20-33.
Ohta, S. et al., “Temperature Characteristics of Solidly Mounted Piezoelectric Thin Film Resonators”, IEEE Ultrasonics Symposium, Honolulu, HI Oct. 2003 , 2011-2015.
Pandey, et al., “Anchor Loss Reduction in Resonant MEMS using MESA Structures”, Proceedings of the 2nd IEEE International Conference on.Nano/Micro Engineered and Molecular Systems, Bangkok, Thailand Jan. 16-19, 2007 , 880-885.
Pang, W. et al., “High Q Single-Mode High-Tone Bulk Acoustic Resonator Integrated With Surface-Machined FBAR Filter”, Microwave Symposium Digest, IEEE MTT-S International 2005 , 413-416.
Parker, T. E. et al., “Temperature-Compensated Surface Acoustic-Wave Devices with SiO2 Film Overlays”, J. Appl. Physics, vol. 50 1360-1369 , Mar. 1979.
Pensala, et al., “Spurious resonance supression in gigahertz-range ZnO thin-film bulk acoustic wave resonators by the boundary frame method: modeling and experiment”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 56, No. 8 Aug. 2009 , 1731-1744.
Pensala, “Thin film bulk acoustic wave devices: performance optimization and modeling”, http://www.vtt.fi/inf/pdf/publications/2011/P756.pdf.
Reinhardt, Alexandre et al., “Design of Coupled Resonator Filters Using Admittance and Scattering Matrices”, 2003 IEEE Ultrasonics Symposium May 3, 2003 , 1428-1431.
Ruby, R. C. “MicroMachined Thin Film Bulk Acoustic Resonators”, IEEE International Frequency Control Symposium 1994 , 135-138.
Ruby, R. et al., “The Effect of Perimeter Geometry on FBAR Resonator Electrical Performance”, Microwave Symposium Digest, 2005 IEEE MTT-S International Jun. 12, 2005 , 217-221.
Sanchez, A.M. et al., “Mixed Analytical and Numerical Design Method for Piezoelectric Transformers”, IEEE Xplore 2003 , 841-846.
Schoenholz, J.E. et al., “Plasma-Enhanced Deposition of Silicon Oxynitride Films”, Thin Solid Films 1987 , 285-291.
Schuessler, Hans H. , “Ceramic Filters and Resonators”, Reprinted from IEEE Trans. Sonics Ultrason., vol. SU-21 Oct. 1974 , 257-268.
Shirakawa, A. A. et al., “Bulk Acoustic Wave Coupled Resonator Filters Synthesis Methodology”, 2005 European Microwave Conference, vol. 1 Oct. 2005.
Small, M. K. et al., “A De-Coupled Stacked Bulk Acoustic Resonator (DSBAR) Filter with 2 dB Bandwidth >4%”, 2007 IEEE Ultrasonics Symposium Oct. 2007 , 604-607.
Spangenberg, B. et al., “Dependence of the Layer Resistance of Boron Implantation in Silicon and the Annealing Conditions”, Comptus Rendus de l'Academic Bulgare des Sciences, vol. 33, No. 3 1980 , 325-327.
Tas, et al., “Reducing Anchor Loss in Micromechanical Extensional Mode Resonators”, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 57, No. 2. Feb. 2010 , 448-454.
Thomsen, C. et al., “Surface Generation and Detection of Phonons by Picosecond Light Pulses”, Phys. Rev. B, vol. 34 1986 , 4129.
Tiersten, H. F. et al,, “An Analysis of Thickness-Extensional Trapped Energy Resonant Device Structures with Rectangular Electrodes in the Piezoelectric Thin Film on Silicon Configuration”, J. Appl. Phys. 54 (10) Oct. 1983 , 5893-5910.
Topich, J, A. et al., “Effects of Ion Implanted Fluorine in Silicon Dioxide”, Nuclear Instr. And Methods, Cecon Rec, Cleveland, OH May 1978 , 70-73.
Tsubbouchi, K. et al., “Zero Temperature coefficient Surface Acoustic Wave Devices using Epitaxial AIN Films”, IEEE Ultrasonic symposium, San Diego, CA, 1082 1982 , 240-245.
Vasic, D et al., “A New Method to Design Piezoelectric Transformer Used in MOSFET & IGBT Drive Circuits”, IEEE 34th Annual Power Electronics Specialists Conference, 2003 vol. 1 15-19 Jun. 3 , 307-312.
Vasic, D et al., “A New MOSFET & IGBT Gate Drive Insulated by a Piezoelectric Transformer”, IEEE 32 nd Annual Power Electronics Specialists Conference, 2001 vol. 3 2001 , 1479-1484.
Yanagitani, et al., “Giant Shear Mode Electromechanical Coupling Coefficient k15 in C-Axis Tilted ScAIN Films”, IEEE International Ultrasonics Symposium 2010.
Yang, C,M. et al., “Highly C Axis Oriented AIN Film Using MOCVD for 5GHx Band FBAR Filter”, 2003 IEEE Ultrasonics Symposium Oct. 5, 2003 , pp. 170-173.
F.Z. Bi et al., “Bulk acoustic wave RF technology,” IEEEMicrowave Magazine, vol. 9 , Issue: 5, Publication Year: 2008, pp. 65-80.
Jiunn-Horng Lee et al., “Optimization of frame-like film bulk acoustic resonators for suppression of spurious lateral modes using finite element method”, 2004 IEEE Ultrasonics Symposium, vol. 1, Publication Year: 2004 , pp. 278-281.
Co-pending U.S. Appl. No. 13/036,489, filed Feb. 28, 2011.
Related Publications (1)
Number Date Country
20120248941 A1 Oct 2012 US