The subject matter herein relates generally to electrical connectors that may be stacked such that one of the connectors at least partially nests within a cavity of another connector.
Some electrical connectors and connector assemblies include multiple ports for electrically connecting to multiple mating connectors. Typically the multiple ports are packaged in a unitary, one-piece connector housing. However, some connectors are configured to be stacked on another connector to define a hybrid or dual connector system. Each of the connectors in the dual connector system may include one or more ports. Relative to unitary, one-piece multi-port connectors, the dual connector systems offer more flexibility in uses and applications. For example, the discrete connectors in the dual connector systems may be configured to be utilized individually (as independent and separate single port connectors) or together as the dual connector system.
In a hypothetical example, a system with one or more single port connectors mounted on a circuit board may require a multiple-port connection interface, such as if there is insufficient available space along an edge of the circuit board to add another single port connector adjacent to the existing connectors. Using a unitary, one-piece multi-port connector may be undesirable and costly because it requires replacing one of the existing single port connectors with a new one-piece multi-port connector. A dual connector system may be preferable in this hypothetical example because the upper or “stacking” connector of the dual connector system may be able to be mounted over an existing single port board-mounted connector as a retrofit without requiring purchase of a new one-piece multi-port connector and without replacing an existing connector.
The signal transmission performance of multi-port connectors, including both unitary multi-port connectors and dual connector systems, may suffer at high signal speeds due to electrical interference and insertion loss. For example, the signal conductors extending from the upper port(s) to the circuit board are longer than the signal conductors extending from the lower port(s) to the circuit board. The elongated signal conductors may be more susceptible to electrical interference, such as crosstalk, and return loss along the lengths of the signal conductors than the shorter signal conductors.
A need remains for providing a stacked dual connector system with improved signal transmission performance at high signal speeds.
With those needs in mind, one or more embodiments of the present disclosure provide an electrical connector that includes a housing and a plurality of electrical conductors. The housing includes a front wall and a mating shroud protruding forward from the front wall. The mating shroud defines a port configured to receive a mating circuit card therein. The electrical conductors are held within the housing and are secured in position relative to one another. Each of the electrical conductors includes a mating contact that is disposed within the mating shroud and a mounting contact that projects beyond a bottom end of the housing. The mounting contacts are located within a termination area of the electrical connector and are configured to electrically connect to a circuit board. The housing defines a nesting cavity extending rearward from the front wall along the bottom end. The nesting cavity is disposed between the mating shroud and the termination area along a longitudinal axis of the electrical connector. The nesting cavity is configured to accommodate a discrete, second connector that is mounted to the circuit board.
In one or more embodiments of the present disclosure, a stacked dual connector system is provided that includes a first connector and a second connector. The first connector includes a housing and a plurality of electrical conductors held within the housing. The housing includes a front wall and two side walls extending rearward from the front wall. The housing includes an upper mating shroud protruding forward from the front wall and defining a port configured to receive a first mating circuit card therein. Each of the electrical conductors includes a mating contact disposed within the upper mating shroud and a mounting contact that projects beyond a bottom end of the housing to electrically connect to a circuit board. The housing defines a nesting cavity disposed between the circuit board and the upper mating shroud. The nesting cavity extends rearward from the front wall along the bottom end of the housing. The second connector includes a housing and a plurality of electrical conductors held within the housing. The housing of the second connector includes a base portion and a lower mating shroud that extends from a front wall of the base portion. The lower mating shroud defines a port configured to receive a second mating circuit card therein. The base portion is disposed within the nesting cavity of the first connector, and the lower mating shroud is disposed outside of the nesting cavity.
In one or more embodiments of the present disclosure, an electrical connector is provided that includes a housing and a plurality of electrical conductors held within the housing. The housing includes a front wall and a mating shroud protruding forward from the front wall. The mating shroud defines a port configured to receive a mating circuit card therein. The housing defines a nesting cavity extending rearward from the front wall along a bottom end of the housing. The nesting cavity is spaced apart vertically from the mating shroud and is configured to accommodate a discrete, second connector therein such that the mating shroud is disposed above the second connector. Each of the electrical conductors includes a mating contact disposed within the mating shroud and a mounting contact that projects beyond the bottom end of the housing to electrically connect to a circuit board. The electrical conductors are arranged as outer conductors and inner conductors. The mating contacts of the outer and inner conductors are configured to engage opposite sides of the mating circuit card. The mounting contacts of the inner conductors are disposed between the nesting cavity and the mounting contacts of the outer conductors along a longitudinal axis of the electrical connector. A pitch defined between the outer conductors and the inner conductors increases along lengths of the electrical conductors from the mating contacts to the mounting contacts such that the pitch is greater at the mounting contacts than at the mating contacts.
Embodiments of the present disclosure provide a novel and non-obvious stacked dual connector system that remedies or at least diminishes the signal transmission issues associated with known multi-port connectors and stacked connector at high signal transmission speeds. For example, the upper or stacking connector in the dual connector system defines a nesting cavity that receives at least a portion of a lower or compact connector therein. The stacking connector according to one or more embodiments described herein may be more expansive relative to the size of the nesting cavity than known stacked dual connector systems. The expansive size of the stacking connector may allow the elongated signal conductors within the stacking connector to be more spaced apart from each other and from the signal conductors of the compact connector than known stacked dual connector systems. The increased space afforded to the elongated signal conductors may improve electrical performance of the dual connector system by increasing the electrical isolation of the signal conductors and/or providing more room to accommodate shielding components around the signal conductors.
The first connector 102 includes a mating end 108 and a mounting end 110. The second connector 104 also includes a respective mating end 112 and a respective mounting end 114. The mating ends 108, 112 of the connectors 102, 104 each include at least one mating interface configured to engage a corresponding mating connector. In the illustrated embodiment, the first connector 102 defines a first port 116 configured to receive a first mating circuit card 118 therein to electrically connect the first connector 102 to the first mating circuit card 118. The second connector 104 defines a second port 120 configured to receive a second mating circuit card 122 therein to electrically connect the second connector 104 to the second mating circuit card 122. The second port 120 is disposed between the circuit board 106 and the first port 116 along a height of the stacked dual connector system 100. As a result, the first port 116 is referred to herein as an upper port 116, and the second port 120 is referred to as a lower port 120. The mounting ends 110, 114 of the first and second connectors 102, 104 engage and mount to the circuit board 106.
Each of the first and second mating circuit cards 118, 122 may be a component of a corresponding mating connector (not shown), such as a cable-mounted plug connector. For example, the first mating circuit card 118 may be a component of a first input/output (I/O) transceiver module (not shown), and the second mating circuit card 122 may be a component of a second I/O transceiver module (not shown). The I/O transceiver modules may be configured to transmit information in the form of electrical signals and/or optical signals.
In one or more embodiments, the first and second connectors 102, 104 are right angle connectors. For example, the mating end 108 of the first connector 102 may be oriented perpendicular to the respective mounting end 110, and the mating end 112 of the second connector 104 is oriented perpendicular to the respective mounting end 114. The mating ends 108, 112 of the two connectors 102, 104 are disposed adjacent to the respective mounting ends 110, 114 in the illustrated embodiment. Since the connectors 102, 104 are right angle connectors, the upper and lower ports 116, 120 receive the corresponding first and second mating circuit cards 118, 122 therein along a loading direction 123 that is parallel to a top side 124 of the circuit board 106.
The first electrical connector 102 defines a nesting cavity 126 at a corner of the connector 102 defined generally by the mating end 108 and the mounting end 110. The second connector 104 is partially disposed within the nesting cavity 126 of the first connector 102 such that the second connector 104 is nested within the first connector 102. The first connector 102 is stacked over and around at least a portion of a perimeter of the second connector 104. As used herein, the first electrical connector 102 is referred to as a stacking connector 102, and the second electrical connector 104 is referred to as a nesting connector 104. The stacking connector 102 may or may not engage the nesting connector 104 within the nesting cavity 126.
The stacking connector 102 includes a housing 130 and a plurality of signal conductors 128 (shown in
The nesting connector 104 includes a housing 140 and a plurality of signal conductors 138 (shown in
Although the connectors 102, 104 are shown in a nested configuration in
The housing 130 in the illustrated embodiment includes the front wall 132, the two side walls 133, and a top wall 202. The two side walls 133 and the top wall 202 each extend rearward from different corresponding edges of the front wall 132 to the rear end 135 of the housing 130. As used herein, relative or spatial terms such as “top,” “bottom,” “upper,” “lower,” “front,” and “rear” are only used to distinguish the referenced elements and do not necessarily require particular positions or orientations in the surrounding environment of the stacking connector 102 and/or the stacked dual connector system 100 (shown in
The two side walls 133 extend from opposite edges of the front wall 132. The top wall 202 extends between and is connected to both of the two side walls 133. The housing 130 includes a bottom end 206 at (or proximate to) the mounting end 110. The bottom end 206 is located at an opposite end of the housing 130 relative to the top wall 202. The bottom end 206 faces the circuit board 106, and optionally engages the top side 124 of the circuit board 106. The bottom end 206 of the housing 130 may be open to provide space for the signal conductors 128 to project out of the chamber 204 to engage and electrically connect (e.g., terminate) to the circuit board 106. Thus, the bottom end 206 may be defined by the two side walls 133. Alternatively, the housing 130 may include a bottom wall at the bottom end 206, and the signal conductors 128 may extend through openings in the bottom wall to terminate to the circuit board 106. Optionally, the rear end 135 of the housing 130 may also be open to provide space for loading the signal conductors 128 into the chamber 204. Alternatively, the housing 130 may include a rear wall at the rear end 135, such that the signal conductors 128 may be loaded into the chamber 204 through the bottom end 206.
The stacking connector 102 mounts to the circuit board 106 at a termination zone or area 210 along the mounting end 110 of the connector 102. For example, the signal conductors 128 (shown in
The nesting cavity 126 in the illustrated embodiment extends along both the front wall 132 and the bottom end 206 of the housing 130. For example, the nesting cavity 126 is a recess or cutout region at a would-be interface or corner between the front wall 132 and the bottom end 206. The nesting cavity 126 extends rearward from the front wall 132 (e.g., towards the rear end 135) and upward from the bottom end 206 (e.g., towards the top wall 202). The nesting cavity 126 may be referred to herein as extending “along” the bottom end 206 and/or “along” the front wall 132 because the nesting cavity 126 extends a depth along the bottom end 206 and a height along the front wall 132. In an embodiment, the nesting cavity 126 includes a ceiling 212 that extends rearward from the front wall 132 and defines an upper end of the nesting cavity 126. The nesting cavity 126 also includes a back end 214 that extends upward from the bottom end 206 to the ceiling 212. The ceiling 212 faces the circuit board 106. In an embodiment, the ceiling 212 is a discrete wall of the housing 130, and the back end 214 is not a discrete wall of the housing 130. For example, the back end 214 may be defined by front edges 216 of the side walls 133 and one or more dielectric bodies 218 within the chamber 204 between the side walls 133. The dielectric bodies 218 engage and hold the signal conductors 128 in place. In one or more alternative embodiments, the back end 214 may include a discrete wall and/or the ceiling 212 may lack a discrete wall.
The housing 130 may include one or more dielectric materials, such as one or more plastics. In one or more embodiments, the stacking connector 102 may lack metallic ground shields along or proximate to the nesting cavity 126, such as along the ceiling 212 or the back end 214. Alternatively, the stacking connector 102 may include one or more metallic ground shields along or proximate to the nesting cavity 126 to provide electrical shielding between the stacking connector 102 and the nesting connector 104 (
In one or more embodiments, the stacking connector 102 may be elongated vertically and/or longitudinally relative to the nesting cavity 126 to allow the signal conductors 128 to be spread out. The space between the signal conductors 128 may provide electrical isolation between the signal conductors 128, which may reduce electrical interference, such as cross-talk, and insertion loss. The size of the nesting cavity 126 may be relatively small compared to the overall size of the stacking connector 102. For example, in the illustrated embodiment, the nesting cavity 126 extends a depth 302 (e.g., parallel to the longitudinal axis 191) from the front wall 132 to the back end 214 of the nesting cavity 126. The depth 302 of the nesting cavity 126 may be less than half of a longitudinal length 304 of the housing 130 from the front wall 132 to the rear end 135. For example, the depth 302 in an embodiment may be less than one-third of the length 304 of the housing 130. The length 304 excludes the length of the upper mating shroud 134 extending forward from the front wall 132. A majority of the length of the connector 102 may be devoted to providing space for spreading out the signal conductors 128 to improve electrical signal transmission performance of the connector 102.
The nesting cavity 126 extends a height 306 (e.g., parallel to the vertical axis 192) from the bottom end 206 of the housing 130 to the ceiling 212. In an embodiment, the height 306 may be less than half of a height 308 of the housing 130 from the bottom end 206 to the top wall 202. The upper mating shroud 134 is spaced apart vertically from the ceiling 212 of the nesting cavity 126 such that an intervening section 310 of the front wall 132 extends from the ceiling 212 to the upper mating shroud 134. Optionally, the intervening section 310 may have a height 312 along the vertical axis 192 that is at least as tall as the height 306 of the nesting cavity 126.
The signal conductors 128 of the stacking connector 102 include mating contacts 225 and mounting contacts 226. The mating contacts 225 are disposed within the upper mating shroud 134, and engage and electrically connect to corresponding conductors, such as contact pads (not shown), on the circuit card 118. In the illustrated embodiment, the mating contacts 225 are deflectable spring beams that movably engage the circuit card 118. The mounting contacts 226 project from the chamber 204 beyond the bottom end 206 of the housing 130 and are terminated to the circuit board 106 within the termination area 210. In the illustrated embodiment, the mounting contacts 226 are pins that are press-fit into corresponding holes 314 (e.g., vias and/or thru-holes) in the circuit board 106 to electrically connect the signal conductors 128 to the circuit board 106. For example, the mounting contacts 226 are compliant, eye-of-the-needle pin contacts in the illustrated embodiment that allow for solderless attachment to the circuit board 106. In an alternative embodiment, the mounting contacts 226 may be soldered thru-hole pin contacts or soldered surface-mount tails instead of being press-fit. Each of the signal conductors 128 includes an intermediary segment 316 that extends through the chamber 204 from the respective mating contact 225 to the respective mounting contact 226. The signal conductors 128 may be one-piece, unitary stamped metal conductors such that the mating contacts 225 and the mounting contacts 226 are integral with the intermediary segments 316.
The signal conductors 128 may be arranged as outer signal conductors 318 and inner signal conductors 320. The mating contacts 225 of the outer and inner signal conductors 318, 320 engage opposite sides of the mating circuit card 118. For example, the mating contacts 225 of the outer signal conductors 318 engage a top side 322 of the mating circuit card 118, and the mating contacts 225 of the inner signal conductors 320 engage a bottom side 324 of the mating circuit card 118. The outer signal conductors 318 are spaced apart from the inner signal conductors 320 along the respective lengths of the conductors 318, 320. The outer signal conductors 318 are disposed along an outer perimeter of the inner signal conductors 320 relative to a curved path of the inner signal conductors 320, such that the outer signal conductors 318 may be at least slightly longer than the inner signal conductors 320. The mounting contacts 226 of the inner signal conductors 320 are disposed between the nesting cavity 126 and the mounting contacts 226 of the outer signal conductors 318 along the longitudinal axis 191.
In the illustrated embodiment, the cross-section line extends through one outer signal conductor 318A and one inner signal conductor 320A that aligns with the outer signal conductor 318A. Optionally, the intermediary segments 316 of the conductors 318A, 320A may be jogged or stepped proximate to the mounting contacts 226. Although the intermediary segments 316 of the two conductors 318A, 320A are jogged away from each other, other aligned sets of outer and inner signal conductors 318, 320 of the stacking connector 102 may be jogged towards each other. For example, the jogged portions of two outer and inner signal conductors 318B, 320B behind the signal conductors 318A, 320A are shown in phantom in
In the illustrated embodiment, the two signal conductors 318A, 320A are held within a common dielectric body 218. For example, the dielectric body 218 may be a vertically-oriented wafer or contact module. The dielectric body 218 holds the signal conductors 318A, 320A in fixed positions relative to one another. For example, the dielectric body 218 may be overmolded onto the signal conductors 318A, 320A. The mating contacts 225 of the signal conductors 318A, 320A protrude from the dielectric body 218 to extend into the upper mating shroud 134. The mounting contacts 226 of the signal conductors 318A, 320A protrude from the dielectric body 218 at the mounting end 110 to terminate to the circuit board 106.
The outer signal conductors 318 are spaced apart from the corresponding inner signal conductors 320 that align with the outer signal conductors 318 via a pitch, which is the distance between midpoints or center points of the signal conductors 318, 320. The pitch optionally may vary along the lengths of the signal conductors 318, 320. For example, as shown in
It is noted that the pitch 330 between the mounting contacts 226 is measured between the non-jogged portions of the intermediary segments 316 adjacent to the jogged portions. The midpoint 334 of the inner signal conductors 320 at the mounting contacts 226 is located at a midpoint between the mounting contact 226 of the inner conductor 320A and the mounting contact 226 of the inner conductor 320B shown in phantom. Similarly, the midpoint 336 of the outer signal conductors 318 at the mounting contacts 226 is located at a midpoint between the mounting contact 226 of the outer conductor 318A and the mounting contact 226 of the outer conductor 318B shown in phantom.
As shown in
Each of the contact modules 404 may include a plurality of the signal conductors 128 and a respective dielectric body 218 that holds the signal conductors 128 in place. For example, the dielectric bodies 218 may surround and engage the intermediary segments 316 (
The ground shields 406 provide shielding between adjacent contact modules 404. The ground shield 406 may be oriented parallel to the contact modules 404. The ground shields 406 include a metallic plate 448 that is optionally at least partially covered by a cover material 450 composed of one or more plastics, one or more metals, or a combination thereof (e.g., an electrically lossy material). The ground shields 406 may include mating contacts 452 that align with the mating contacts 225 of the signal conductors 128. The mating contacts 452 of the ground shields 406 may be deflectable spring beams, similar to the mating contacts 225 of the signal conductors 128. The mating contacts 452 may engage ground elements (not shown) of the mating circuit card 118 to establish a ground path between the circuit card 118 and the stacking connector 102. The ground shields 406 may also include mounting contacts 454 that are mounted to ground elements of the circuit board 106 (
In an alternative embodiment, the dielectric bodies 218 may be oriented to extend laterally along the lateral axis 193 instead of longitudinally along the longitudinal axis 191. For example, multiple dielectric bodies 218 may be stacked vertically and/or longitudinally instead of stacking the dielectric bodies 218 side by side along the lateral axis 193. In one alternative embodiment, all of the outer signal conductors 318 may be molded within a single dielectric body as a first sub-assembly, and all of the inner signal conductors may be molded within a different dielectric body as a second sub-assembly.
Optionally, the lower mating shroud 144 may be located closer to the circuit board 106 than to the upper mating shroud 134 above the lower mating shroud 144. For example, the vertical distance between the top side 124 of the circuit board 106 and the lower mating shroud 144 may be less than the vertical distance between the upper and lower mating shrouds 134, 144, as shown in
In the illustrated embodiment, the signal conductors 138 of the nesting connector 104 are arranged as outer signal conductors 518 and inner signal conductors 520. The mating contacts 502 of the outer signal conductors 518 engage a top side 530 of the second mating circuit card 120, and the mating contacts 502 of the inner signal conductors 520 engage a bottom side 532 of the circuit card 120. Optionally, all of the outer signal conductors 518 are held together by an upper dielectric body 534 that engages and surrounds portions of the outer signal conductors 518. Likewise, all of the inner signal conductors 520 are held together by a lower dielectric body 536 that engages and surrounds portions of the inner signal conductors 520. In an alternative embodiment, the outer and inner signal conductors 518, 520 may be held within vertically-oriented and laterally-stacked dielectric bodies, which may be similar to the dielectric bodies 218 of the stacking connector 102, as shown in
The nesting connector 104 is nested within the nesting cavity 126 of the stacking connector 102 in
The inner and outer signal conductors 520, 518 of the nesting connector 104 are spaced apart from one another by a pitch. As shown in
In an embodiment, as shown in
It is to be understood that the above description is intended to be illustrative, and not restrictive. For example, the above-described embodiments (and/or aspects thereof) may be used in combination with each other. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from its scope. Dimensions, types of materials, orientations of the various components, and the number and positions of the various components described herein are intended to define parameters of certain embodiments and are by no means limiting and are merely example embodiments. Many other embodiments and modifications within the spirit and scope of the claims will be apparent to those of ordinary skill in the art upon reviewing the above description. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects. Further, the limitations of the following claims are not written in means-plus-function format and are not intended to be interpreted based on 35 U.S.C. § 112(f), unless and until such claim limitations expressly use the phrase “means for” followed by a statement of function void of further structure.
This application is a continuation of U.S. application Ser. No. 16/831,983, filed 27 Mar. 2020 (now U.S. Pat. No. 11,223,147, issued 11 Jan. 2022) which is a continuation of U.S. application Ser. No. 15/867,163, which was filed 10 Jan. 2018 (now U.S. Pat. No. 10,630,010, issued 21 Apr. 2020), the entire disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5030115 | Regnier et al. | Jul 1991 | A |
6099349 | Boutros | Aug 2000 | A |
6179651 | Huang | Jan 2001 | B1 |
6244896 | Boutros | Jun 2001 | B1 |
6375496 | Casey et al. | Apr 2002 | B1 |
6554641 | Wu | Apr 2003 | B1 |
6612867 | Wu | Sep 2003 | B1 |
6663423 | Belopolsky | Dec 2003 | B2 |
6666717 | Choy | Dec 2003 | B1 |
6672899 | Morita et al. | Jan 2004 | B2 |
6682365 | Walker et al. | Jan 2004 | B1 |
6821144 | Choy | Nov 2004 | B2 |
7249966 | Long | Jul 2007 | B2 |
7402077 | Shindo | Jul 2008 | B2 |
7651371 | Yi et al. | Jan 2010 | B2 |
7824197 | Westman et al. | Nov 2010 | B1 |
8342881 | Lang et al. | Jan 2013 | B2 |
9028281 | Kirk et al. | May 2015 | B2 |
20120196477 | Nichols et al. | Aug 2012 | A1 |
Number | Date | Country |
---|---|---|
10193915 | Dec 2007 | CN |
Entry |
---|
Chinese Search Report for Application No. 2019100186446 dated Oct. 27, 2021 (3 pages). |
Number | Date | Country | |
---|---|---|---|
20220131294 A1 | Apr 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16831983 | Mar 2020 | US |
Child | 17569767 | US | |
Parent | 15867163 | Jan 2018 | US |
Child | 16831983 | US |