1. Field of the Invention
The present invention relates to a semiconductor light emitting component, and more particularly to a light emitting diode (LED) module and a method for manufacturing the LED module.
2. Description of Related Art
U.S. Pat. No. 7,575,340 to Kung et al. (“Kung '340”), which is incorporated by reference as if fully set forth herein, describes conventional light projectors using gas discharge lamps as the optical engine of the projectors along with their deficiencies and how light source systems using light-emitting diode (LED) modules as the optical engine can overcome some of the problems. Conventional projectors (optical systems) that use gas discharge lamp light sources may be expensive and have short service lives. Gas discharge lamp light sources may also emit ultraviolet light, which requires isolation of the gas discharge lamp to inhibit damage due to the ultraviolet light. Gas discharge lamps are also not typically thought of as being environmentally friendly or a “green product” because of the energy usage of the lamps and the use of mercury in the lamps.
To overcome the problems with gas discharge lamps, Kung '340 describes light source system 10 using three LED modules 12, 14, 16 as the optical engine, shown in
In certain embodiments, a semiconductor light emitting device includes a substrate with a first epitaxial structure over the substrate. The first epitaxial structure includes a first doped layer, a first light emitting layer, and a second doped layer. The first doped layer includes a first dopant type and the second doped layer includes a second dopant type. A second epitaxial structure includes a third doped layer, a second light emitting layer, and a fourth doped layer. An adhesive layer is between the first epitaxial structure and the second epitaxial structure. One or more posts are located in the adhesive layer.
In certain embodiments, a method for forming a semiconductor light emitting device includes providing a first epitaxial structure over a first substrate. The first epitaxial structure includes a first doped layer, a first light emitting layer, and a second doped layer. The first doped layer includes a first dopant type and the second doped layer includes a second dopant type. One or more posts are formed over the first epitaxial structure. A second epitaxial structure is provided over a second substrate. The second epitaxial structure includes a third doped layer, a second light emitting layer, and a fourth doped layer. The second epitaxial structure is bonded to a third substrate. The second substrate is removed from the second epitaxial structure. The first epitaxial structure is bonded to the second epitaxial structure using an adhesive layer with the posts located in the adhesive layer.
In certain embodiments, a method for forming a semiconductor light emitting device includes providing a first epitaxial structure over a first substrate. The first epitaxial structure includes a first doped layer, a first light emitting layer, and a second doped layer. The first doped layer includes a first dopant type and the second doped layer includes a second dopant type. A second epitaxial structure is provided over a second substrate. The second epitaxial structure includes a third doped layer, a second light emitting layer, and a fourth doped layer. The second epitaxial structure is bonded to a third substrate. The second substrate is removed from the second epitaxial structure. One or more posts are formed over the second epitaxial structure. The first epitaxial structure is bonded to the second epitaxial structure using an adhesive layer with the posts located in the adhesive layer.
Features and advantages of the methods and apparatus of the present invention will be more fully appreciated by reference to the following detailed description of presently preferred but nonetheless illustrative embodiments in accordance with the present invention when taken in conjunction with the accompanying drawings in which:
While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail. The drawings may not be to scale. It should be understood that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but to the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the present invention as defined by the appended claims.
In the context of this patent, the term “coupled” means either a direct connection or an indirect connection (e.g., one or more intervening connections) between one or more objects or components.
In certain embodiments, during the epitaxy growth process, group-III nitride material is epitaxially grown up from substrate 102 to form n-type doped layer 108 and p-type doped layer 110. In certain embodiments, light emitting portion 112 is between n-type doped layer 108 and p-type doped layer 110. In some embodiments, epitaxial structure 104 includes undoped layer (not shown) between substrate 102 and n-type doped layer 108.
In some embodiments, a conducting layer is formed on top of p-doped layer 110. The conducting layer may be formed on top of p-doped layer 110 using, for example, a deposition process. In certain embodiments, the conducting layer is a substantially transparent conducting layer. The conducting layer may include, for example, indium tin oxide (ITO). In certain embodiments, the conducting layer provides current spreading for p-doped layer 110.
When electrical energy is applied to epitaxial structure 104, light emitting portion 112 at junction of n-type doped layer 108 and p-type doped layer 110 generates an electron-hole capture phenomenon. As a result, the electrons of light emitting portion 112 will fall to a lower energy level and release energy with a photon mode. In certain embodiments, light emitting portion 112 is a single quantum well (SQW) or a multiple quantum well (MQW) structure capable of restricting a spatial movement of the electrons and the holes. Thus, a collision probability of the electrons and the holes is increased so that the electron-hole capture phenomenon occurs easily, thereby enhancing light emitting efficiency.
When a voltage is applied between n-type doped layer 108 and p-type doped layer 110, an electric current flows between electrodes coupled to the n-type doped layer and the p-type doped layer through epitaxial substrate 102 and is horizontally distributed in epitaxial structure 104. Thus, a number of photons are generated by a photoelectric effect in epitaxial structure 104. LED 100 emits light from epitaxial structure 104 due to the horizontally distributed electric current.
In certain embodiments described herein, two LEDs 100 may be combined (e.g., stacked) to form an LED module emitting light beams with the same wavelengths. In certain embodiments described herein, two LEDs 100 may be combined (e.g., stacked) to form an LED module emitting two separate light beams with different wavelengths. For example, a green light emitting LED may be stacked with a blue light emitting LED in a single LED module such that the LED emits the green light beam separately from the blue light beam.
In certain embodiments, one or more posts 116 are formed on top of epitaxial structure 104A (e.g., on top of p-doped layer 110A), as shown in
In some embodiments, the top surface of bottom LED 100A is flat. Posts 116 may be formed with substantially similar heights on the flat top surface of bottom LED 100A. In such embodiments, substrate 102A of bottom LED 100A may be a patterned substrate and/or the bottom surface of n-doped layer 108A or undoped layer 114 may be patterned. Patterning substrate 102A and/or the bottom surface of n-doped layer 108A, or undoped layer 114, may increase light extraction from the stacked LED module.
In some embodiments, the top surface of bottom LED 100A is roughened (e.g., the top surface of p-doped layer 110A is roughened). Roughening the top surface of bottom LED 100A may increase light extraction from the stacked LED module. Having a rough top surface may, however, produce varying heights for posts 116 formed on p-doped layer 110A.
In certain embodiments, to form the LED module, the top surface of the top LED may be bonded to a temporary substrate.
In certain embodiments, the top surface (the surface opposite substrate 102B) of top LED 100B is coupled (e.g., bonded) to temporary substrate 120 with adhesive layer 122. Temporary substrate 120 may be a glass or ceramic substrate. Adhesive layer 122 may include materials such as, but not limited to, epoxy glue, wax, SOG (spin-on-glass), photoresist, monomer, polymer (e.g., polyimide), benzocyclobutene (BCB), or any glue type material known in the art for bonding GaN layers to ceramic or glass layers.
Following bonding of top LED 100B to temporary substrate 120, substrate 102B is removed from the bottom of the top LED to expose the bottom surface of the top LED, as shown in
Following removal of substrate 102B, top LED 100B is bonded to bottom LED 100A, as shown in
Posts 116 may have a height that is the desired (selected) thickness of adhesive layer 124. Posts 116 (formed on p-doped layer 110A) contact the surface of n-doped layer 108B of top LED 100B such that the posts define the distance between the doped layers. Posts 116 maintain the distance between p-doped layer 110A and n-doped layer 108B during the bonding process using adhesive layer 124. In certain embodiments, posts 116 maintain the distance between the conducting layer formed on top of p-doped layer 110A and n-doped layer 108B during the bonding process using adhesive layer 124. Thus, the height of posts 116 determines the thickness of adhesive layer 124. In certain embodiments, surface roughness on n-doped layer 108B provides a plurality of peaks that increase the contact area between the n-doped layer and posts 116. In some embodiments, posts 116 are formed on the bonding surface of top LED 100B instead of bottom LED 100A. For example, posts 116 may be formed on the bonding surface of top LED 100B after removal of substrate 102B. In some embodiments, posts 116 are formed from substrate 102B (e.g., by removing portions of the substrate).
Following bonding of top LED 100B to bottom LED 100A, temporary substrate 120 and adhesive layer 122 are removed from the top LED to form stacked LED module 150, as shown in
In certain embodiments, stacked LED module 150 is formed to emit light at a single wavelength. For example, in some embodiments, bottom LED 100A and top LED 100B emit light with the same wavelength to provide a high voltage stacked LED module. In some embodiments, light from bottom LED 100A and top LED 100B is combined to emit light at the single wavelength. In such embodiments, bottom LED 100A and top LED 100B are stacked and provided power in series with two electrodes. Posts 116 in adhesive layer 124 may be conductive posts (e.g., metal posts or ITO posts) that provide electrical coupling between p-doped layer 110A and n-doped layer 108B.
In certain embodiments, stacked LED module 150 is formed to emit light at multiple wavelengths. Thus, bottom LED 100A and top LED 100B may emit light with different wavelengths. For example, light emitting layer 112A may emit light with a longer wavelength (e.g., green light) than light emitted from light emitting layer 112B (e.g., blue light). In such embodiments, bottom LED 100A and top LED 100B are stacked and are provided powered in parallel with two sets of electrodes that are physically and electrically isolated such that the sets of electrodes can be independently biased. Posts 116 in adhesive layer 124 may be insulating posts (e.g., silicon oxide) to inhibit electrical coupling between p-doped layer 110A and n-doped layer 108B through the posts.
In certain embodiments, electrodes 156, 158, 160, 162 are formed such that the electrodes face the same direction, as shown in
In certain embodiments, electrodes 156, 158 are physically and electrically isolated from electrodes 160, 162 to allow for independent control of bottom LED 100A and top LED 100B. For example, each electrode 156, 158, 160, 162 may be located at or near one of the four corners of stacked LED module 150.
As shown in
Locating the electrodes for each of bottom LED 100A and top LED 100B on separate diagonals that cross each other allows for independent control of the epitaxial structures of the bottom and top LEDs. For example, epitaxial structure 104A of bottom LED 100A may be biased independently from epitaxial structure 104B of top LED 100B. Independent biasing of epitaxial structure 104A and epitaxial structure 104B provides independent control of light emitting layers 112A, 112B. Thus, in certain embodiments, light emitting layer 112A and light emitting layer 112B emit different wavelengths of light that are independently controllable. In certain embodiments, light emitting layer 112A emits light with a longer wavelength than light emitted from light emitting layer 112B. For example, light emitting layer 112A may emit green light and be independently controlled from light emitting layer 112B that emits blue light.
Because bottom LED 100A and top LED 100B can be controlled independently, stacked LED module 150 can emit light in a range of wavelengths between the wavelength emitted by the bottom LED and the wavelength emitted by the top LED. For example, at any point during use, stacked LED module 150 may emit light at the wavelength of bottom LED 100A, the wavelength of top LED 100B, or a combination of the wavelengths of the bottom LED and the top LED depending on the biases applied to the bottom LED and the top LED.
In certain embodiments, stacked LED module 150 includes three LEDs (e.g., a bottom LED, a middle LED, and a top LED). The three LEDs may emit light with the same wavelength or with different wavelengths (e.g., red, blue, and/or green wavelengths). The three LEDs may be provided power in series or parallel to provide either a high voltage LED module emitting light at a single wavelength (powered in series) or a multiple wavelength emitting LED module (powered in parallel).
As shown in
In certain embodiments, posts 116 in adhesive layers 124A, 124B are conductive posts (e.g., ITO or metal) that increase current spreading in p-doped layers 110A and 110C. In certain embodiments, conducting layers (e.g., ITO) are formed on top of p-doped layers 110A and 110C. Using both conductive posts and conducting layers may further increase current spreading in p-doped layers 110A and 110C. Forming stacked LED module 150′ with posts 116 in adhesive layers 124A, 124B provides a high alignment tolerance (even without alignment) during the bonding/stacking process steps. For example, the alignment tolerance may be improved with respect to processes that stack LEDs using pad-to-pad bonding techniques.
In certain embodiments, stacked LED module 150, formed in the process embodiment described and depicted in
In certain embodiments, to form the NPNP stacked LED module, the top surface of the top LED is bonded to a conductive substrate.
In certain embodiments, the top surface (the surface of p-doped layer 110B) of top LED 100B is coupled (e.g., bonded) to conductive substrate 180. Conductive substrate 180 may be, for example, a metal or a silicon substrate. Conductive substrate 180 may be bonded to p-doped layer 110B using, for example, eutectic bonding. In some embodiments, conductive substrate 180 is formed on p-doped layer 110B using, for example, an electroplating process.
Following coupling of top LED 100B to conductive substrate 180, substrate 102B is removed from the bottom of the top LED to expose the bottom surface of the top LED, as shown in
Following removal of substrate 102B, top LED 100B is bonded to bottom LED 100A (shown in
Following bonding of top LED 100B to bottom LED 100A, substrate 102A may be removed from the bottom LED to form stacked LED module 150″, as shown in
In some embodiments, stacked LED module 150″ is formed to emit light at multiple wavelengths. Bottom LED 100A and top LED 100B may emit light with different wavelengths. For example, light emitting layer 112A may emit light with a longer wavelength (e.g., green light) than light emitted from light emitting layer 112B (e.g., blue light). In such embodiments, bottom LED 100A and top LED 100B are stacked and are provided powered in parallel with two sets of electrodes that are physically and electrically isolated such that the sets of electrodes can be independently biased. Posts 116 in adhesive layer 124 may be insulating posts (e.g., silicon oxide) to inhibit electrical coupling between p-doped layer 110A and n-doped layer 108B through the posts.
In some embodiments described herein, either bottom LED 100A or top LED 100B may be flipped before bonding the LEDs to form a stacked LED module with either PNNP structure or NPPN structure. For example, either bottom LED 100A or top LED 100B may be flipped and bonded to a temporary substrate before being bonded to the other LED. It is to be understood that the process for forming either the PNNP structure or the NPPN structure may include other elements not described herein but known in the art. The resulting PNNP structure or NPPN structure may, however, include at least one adhesive layer with posts (e.g., posts 116) in the adhesive layer. In certain embodiments, the posts in the adhesive layer of either the PNNP structure or the NPPN structure are insulating posts (e.g., silicon oxide posts) to inhibit electrical coupling between the bonded layers and to allow for providing power in parallel to the individual LEDs in the structure. In certain embodiments, the posts in the adhesive layer of either the PNNP structure or the NPPN structure are conductive posts to allow electrical coupling between the bonded layers and to allow for providing common electrodes.
In certain embodiments described herein, posts 116 are positioned under an electrode patterned formed on top LED 100B.
While
In some embodiments, one or more of the stacked LED modules described herein are used in a light projector system. For example, stacked LED modules that provide power to the LEDs in parallel may be used as the optical engine, or as part of the optical engine, in a light projector (source) system similar to light source system 10, depicted in
It is to be understood the invention is not limited to particular systems described which may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting. As used in this specification, the singular forms “a”, “an” and “the” include plural referents unless the content clearly indicates otherwise. Thus, for example, reference to “a device” includes a combination of two or more devices and reference to “a material” includes mixtures of materials.
Further modifications and alternative embodiments of various aspects of the invention will be apparent to those skilled in the art in view of this description. Accordingly, this description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the general manner of carrying out the invention. It is to be understood that the forms of the invention shown and described herein are to be taken as the presently preferred embodiments. Elements and materials may be substituted for those illustrated and described herein, parts and processes may be reversed, and certain features of the invention may be utilized independently, all as would be apparent to one skilled in the art after having the benefit of this description of the invention. Changes may be made in the elements described herein without departing from the spirit and scope of the invention as described in the following claims.