The present invention relates to a stacking unit enabling bottles, cans or other articles having circular cross sections to be safely and securely stacked in rows one above the other. More particularly, the invention relates to such a stacking unit which enables bottles or cans to be safely stacked in rows one above the other in a domestic refrigerator or cupboard so as to permit maximum use of the available storage space.
Cylindrical articles of similar diameter, such as bottles or cans of beer, need to be stacked both in and out of a refrigerator. Some bottles or cans are too tall to be stood upright in a refrigerator. Where adjustable height racks are provided in a refrigerator, it is often the case that when the racks are moved to accommodate tall cylindrical articles, the heights of the other compartments resulting from the change are too reduced to be useful.
Tall bottles or cans can be stacked on a refrigerator rack on their sides and will stay in place if the stack is braced by one side of the refrigerator and by other items on the other side. However, when an item bracing the stack is removed, the stack will collapse, which may cause damage or create spillage as the collapsing stack disturbs other items on the rack.
Some packs of cans/bottles of drink contain 24 units yet, when the pack is broken to open it, there is no effective means of stacking or storing the bottles/cans in or out of the refrigerator.
Known stacking devices, such as the device disclosed in U.S. Pat. No. 1,789,268, are designed to be used exclusively in packaging and are not self supporting. An object of the invention is to provide a self supporting stacking unit which holds bottles, cans or like articles side-by-side in a row and which can be used in conjunction with one or more similar units safely and securely to support a multiplicity of the articles in a stack of two or more rows. Another object is to provide such a stacking unit which may be readily packaged, either alone or with other identical units, together with articles intended to be stacked with the aid of the unit(s).
Accordingly, one aspect of the present invention consists in a stacking unit for storing bottles, cans or other articles having circular cross sections, comprising a strip of sheet material formed along one side of the strip with at least three part-circular cavities for holding the articles side-by-side in a row, the free end walls of the cavities at opposite ends of the strip being of sufficient rigidity to retain the articles in place in the unit under the weight of other articles stacked on the row in the unit, and the cavities respectively forming convex wall portions on the opposite side of the strip, whereby the stacking unit can be seated on a first row of articles in order to stack a second row of articles on the first row.
The stacking unit of the present invention allows articles to be stacked side by side in a row in a safe and secure manner and can be used in conjunction with one or more similar units to support a multiplicity of the articles stacked in two or more rows. Advantageously, the stacking unit of the present invention is self-supporting and can therefore be used easily on its own or in conjunction with other similar units without the need to assemble or disassemble parts.
According to another aspect, the present invention consists in a kit of parts for stacking bottles, cans or other articles having circular cross sections, comprising two or more stacking units of the aforementioned structure, whereby a first one of the stacking units can be seated on a horizontal shelf or other surface with its convex wall portions in contact with the surface and can be filled with a first row of articles, and a second one of the units can be seated on the first row of articles held in the first unit, with its convex wall portions disposed between mutually adjacent articles in the first row, and can be filled with a second row of articles, and so on, if there are more than two units, in order to stack the articles in rows one above the other.
The kit may be readily packaged together with articles intended to be stacked with the aid of the unit(s).
The or each strip may be of scalloped configuration in longitudinal section. The cavities of the or each unit may subtend less than a semi-circle. The free end walls of the cavities at the opposite ends of the or each unit may project above the bottoms of the cavities to a height substantially equivalent to the radius of each cavity.
Preferably, each cavity is integral with the or each adjacent cavity via a ridge, the ridges are disposed in a substantially horizontal plane which is spaced above the bottoms of the cavities by a height less than the radii of the cavities, and the free end walls of the cavities at opposite ends of each strip project above said plane.
Conveniently, the configuration is such that articles held in mutually adjacent cavities are in contact. Maximum use of the available storage space can be achieved because no frame is required to build the stacking unit(s) and the articles can be held side-by-side close together or in contact.
The or each unit may be moulded from rigid plastics material or be stamped from a stainless steel strip.
Advantageously, protrusions are disposed at or adjacent to the apices of the convex wall portions to prevent the unit(s) from sliding sideways when the unit is mounted on a storage rack, for example, in a refrigerator.
Embodiments of the invention will now be described, by way of example, with reference to the accompanying drawings, in which:
Referring to FIGS. 1 to 7 of the accompanying drawings, the stacking unit 1 comprises a strip of sheet material 2 which is of scalloped configuration in longitudinal cross section. It is formed along one side of the strip with three part circular cavities 3 having mutually parallel axes. These cavities are designed to hold bottles, cans or other articles 7 having circular cross-sections, side by side in a row. On the opposite side of the strip, the cavities 3 respectively form convex wall portions 4. The strip 2 is preferably injection moulded from rigid plastics material, such as a high-density, high impact polystyrene which is suitable for use in cold, damp or dry conditions such as those to expected in a domestic refrigerator.
As illustrated in FIGS. 1 to 3, the cavities 3 are less than semi-circular in cross section and extend transversely of the strip. The cross-sectional diameters of the cavities 3 are the same and chosen such that when articles are accommodated in mutually adjacent cavities, the articles 7 are held close to or in contact with one another. The width of the strip 2 can be considerably narrower than the length of the bottles because the bottles 7 are held in contact with or close to one another in the unit 1 and so they cannot therefore twist within the unit.
The centre cavity 3a is integral with the adjacent cavities 3b at opposite ends of the strip 2 via mutually parallel ridges 11 which extend transversely of the strip. The ridges 11 extend in a substantially horizontal plane which is spaced above the bottoms of the cavities 3a,b by a height less than the radii of the cavities. The free end walls 5 of the cavities 3b at opposite ends of the strip 2 project above this horizontal plane and hence the ridges 11, to a height substantially equivalent to the radii of the cavities. The free end walls 5 of the cavities 3b at opposite ends of the strip retain the articles 7 even under the weight of the other articles stacked on the row in the unit 1.
The stacking unit 1 can be filled with a row of articles 7 and then seated on other identical articles stacked side-by-side in a row or on a horizontal shelf or other surface to safely stack rows of articles. For example, as illustrated in
The rigidity of the free end walls 5 is sufficient to enable the articles 7 to be retained in place in the unit 1 under the weight of other articles 7 stacked in the row in the unit 1. The unit is of sufficient strength to prevent it from failing under the weight of rows of like articles 7 stacked one above the other on the row of articles 7 placed in the unit 1 and is flexible enough to permit the cavities 3a,b to accommodate articles having slightly different diameters. For example, when the diameters of the cavities are 59 mm the following articles can be satisfactorily accommodated in the cavities: 275 ml bottles of beer having diameters of 56 mm, 330 ml bottles of beer having diameters of 61 mm, and 440 ml cans of beer having diameters of 66 mm. For cavity diameters of 70-80 mm, articles having diameters of between 66 to 86 mm can be satisfactorily accommodated.
The thickness of the strip 2 depends on the required rigidity, strength and flexibility. For example, if the unit 1 is to be used to stack the 275 ml or 330 ml bottles of beer, a thickness of about 2 mm provides the required rigidity strength and flexlibility when using high-density polystyrene. For heavier and wider articles 7, such as a 750 ml bottle of wine having a diameter of 81 mm, a strip thickness of about 2.5 mm is preferred.
As illustrated particularly in
In a preferred embodiment, the plastic material is given an attractive high gloss finish using known injection-moulding techniques and the strip may be overprinted with logos, messages or other information.
According to another embodiment, the strip 2 is formed from machine pressed stainless steel and may be laser etched with logos etc or other decorative procedures may be used in the finishing process. In order to achieve the required rigidity, strength and flexibility when used with articles as described in the above examples, the thickness of the stainless steel should be about 0.75 mm.
The method of using the stacking unit 1 for the purpose of stacking articles 7 on a rack 6, for example, of a domestic refrigerator will now be described. As illustrated particularly in
Alternatively, as illustrated in
The stacking unit of the present invention allows articles 7 to be stacked side-by-side in a row in a safe and secure manner and can be used in conjunction with one or more similar units 1 to support a multiplicity of the articles 7 stacked in two or more rows 8,9. The stacking unit 1 is self-supporting and can therefore be used easily on its own or in conjunction with other similar units without the need to assemble or disassemble parts.
When not in use, the units 1 can be stacked in nested relation for storage purposes one above the other with the convex wall portions 4 of an upper stacked unit 1 seated in respective cavities 6 of the stacked unit below (not shown).
According to yet another embodiment, the present invention comprises a kit of parts comprising first and second identical stacking units 1 as described in the aforementioned embodiments which, may, for example, be packaged with a 6 pack of identical beer bottles 7. The stacking units 1 are filled with the bottles 7 and then packaged for transportation and storage with the rows of bottles side by side.
When the packaging is removed, the filled units 1 can be directly placed on the rack 6 of a refrigerator so as to stack the bottles 7 as described above.
Number | Date | Country | Kind |
---|---|---|---|
02032118 | Feb 2002 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/GB03/00685 | 2/11/2003 | WO |