Embodiments of the present disclosure generally relate to systems, tools, and methods for performing cementing operations in a wellbore to secure wellbore casing or lining tubulars in place.
Typically, when a borehole is drilled, at least a portion of the wellbore is lined with tubulars, commonly referred to as casing and liners. The term “casing” is used herein to refer to any such tubulars. The casing has an outer diameter that is smaller than the diameter of the borehole, and so there exists an annulus between the borehole and the casing. Usually, this annulus is at least partially filled with cement, which secures the casing in place and serves as a barrier to impede the migration of fluids within this annulus. Sometimes, cement is also placed in an annulus between concentric casing tubulars. Placement of cement into such annuli usually involves the pumping of a cement slurry that is then left to cure. Various tools may be used to facilitate the placement of the cement slurry. One such tool is a “stage tool” that is utilized as part of a string of joined-together casing tubulars. Stage tools typically are generally tubular in form, and have a port in a sidewall through which a cement slurry may be pumped into the annulus surrounding the string of casing. Such tools normally have an internal and/or external sleeve that may be manipulated to cover the port after the cement slurry has been pumped. Such tools usually form part of stage cementing systems that include additional tools that are used during the cementing operations.
In one embodiment, a stage cementing system includes a stage cementing assembly having a stage tool. The stage tool has an outer mandrel, an inner mandrel coupled to and disposed inside of the outer mandrel, an annular chamber between the outer mandrel and the inner mandrel, a first outer port through the outer mandrel, and longitudinally spaced first and second inner ports through the inner mandrel. The stage cementing system further includes an inner string assembly configured to be located inside the inner mandrel. The inner string assembly has a tubular body having a central throughbore and longitudinally spaced first and second side ports, a lower external seal element below the first and second side ports, a middle external seal element between the first and second side ports, and an upper external seal element above the first and second side ports.
In another embodiment, a stage cementing assembly includes a stage tool having an outer mandrel, an inner mandrel immovably disposed inside and coupled to the outer mandrel, an annular chamber between the outer mandrel and the inner mandrel, a first outer port through the outer mandrel, longitudinally spaced first and second inner ports through the inner mandrel, and a closing sleeve disposed in the annular chamber. The closing sleeve is movable between a first position in which the closing sleeve permits fluid communication between an interior of the stage cementing assembly and an exterior of the stage cementing assembly through the first inner port and the first outer port, and a second position in which the closing sleeve prevents fluid communication between the interior of the stage cementing assembly and the exterior of the stage cementing assembly through the first inner port and the first outer port. The closing sleeve prevents fluid communication between the interior of the stage cementing assembly and the exterior of the stage cementing assembly through the second inner port and the first outer port when the sleeve is in both the first and the second positions. The inner mandrel does not have an internal movable sleeve.
In another embodiment, a stage tool includes an outer mandrel, an inner mandrel immovably disposed inside and coupled to the outer mandrel, an annular chamber between the outer mandrel and the inner mandrel, a first outer port through the outer mandrel, a second outer port through the outer mandrel, the second outer port having a relief valve, longitudinally spaced first and second inner ports through the inner mandrel, and a barrier member. The barrier member has a first configuration in which the barrier member prevents fluid communication between an interior of the stage tool and an exterior of the stage tool through the first outer port, and a second configuration in which the barrier member permits fluid communication between the interior of the stage tool and the exterior of the stage tool through the first outer port. The stage tool further includes a closing sleeve disposed in the annular chamber. The closing sleeve is movable between a first position in which the closing sleeve permits fluid communication between the interior of the stage tool and the exterior of the stage tool through the first inner port and the first outer port, and a second position in which the closing sleeve prevents fluid communication between the interior of the stage tool and the exterior of the stage tool through the first inner port and the first outer port. The closing sleeve prevents fluid communication between the interior of the stage tool and the exterior of the stage tool through the second inner port and the first outer port when the sleeve is in both the first and the second positions.
In another embodiment, a tool for use in cementing a casing includes a tubular body having a central throughbore and longitudinally spaced first and second side ports, a lower external seal element below the first and second side ports, a middle external seal element between the first and second side ports, and an upper external seal element above the first and second side ports.
In another embodiment, there is provided a method of cementing a casing string that includes a stage tool. The method involves opening a first side port of an inner string located inside the casing string, pumping a cementing fluid through the first side port into a first annular space between the inner string and the casing string, through a first inner port of an inner mandrel of the stage tool, and through a first outer port of an outer mandrel of the stage tool. The method further involves opening a second side port of the inner string, applying a hydraulic pressure through the second side port into a second annular space between the inner string and the casing string, and through a second inner port of the inner mandrel of the stage tool, thereby moving a closing sleeve of the stage tool to a position preventing fluid flow through the first outer port.
So that the manner in which the above recited features of the present disclosure can be understood in detail, a more particular description of the disclosure, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only exemplary embodiments and are therefore not to be considered limiting of its scope, may admit to other equally effective embodiments.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is contemplated that elements and features of one embodiment may be beneficially incorporated in other embodiments without further recitation.
The present disclosure concerns tools and methods for performing cementing operations in a wellbore.
The stage cementing system 20 may include a stage cementing assembly 22. The stage cementing assembly 22 may include a stage tool 24 coupled to the casing 12. The stage cementing assembly 22 may include a packer 26 coupled to the casing 12. The packer 26 may be connected to, or part of, the stage tool 24. The stage cementing system 20 may also include an inner string assembly 40. The inner string assembly 40 may include a seal section 42 that seals one or more portions of the annular space 44 between the inner string assembly 40 and the stage cementing assembly 22. The inner string assembly 40 may include a locator 46 to provide for an appropriate juxtaposition between the seal section 42 and the stage tool 24. The inner string assembly 40 may include a time-delay releasable seat assembly 48 below the seal section 42 to facilitate the pressure testing of the stage tool 24 at the end of a cementing operation. The inner string assembly 40 may include a catcher 50 below the time-delay releasable seat assembly 48. The inner string may further include a stinger 52, a circulation port 54, a separable member 56, and one or more axial slip joints 58.
In some embodiments, there is no movable sleeve internal to the inner mandrel 64. In other embodiments, the inner mandrel 64 may have a movable sleeve internal to the inner mandrel 64.
The outer mandrel 62 may have a first outer port 74 providing for a fluidic connection between the annular chamber 66 and an exterior 82 of the stage cementing assembly 22. In some embodiments, during installation of the stage tool 24 in the wellbore 10, the first outer port 74 may be open to fluid transfer between the annular chamber 66 and the exterior 82 of the stage cementing assembly 22. In some embodiments, during installation of the stage tool 24 in the wellbore 10, the first outer port 74 may be closed to fluid transfer between the annular chamber 66 and the exterior 82 of the stage cementing assembly 22 by a barrier member 78. In some embodiments, the barrier member 78 may be a rupture disk that may be defeated by hydraulic pressure in order to open fluid communication through the first outer port 74. In another embodiment, the barrier member 78 may be a sleeve (not shown) external to the outer mandrel 62, the sleeve being movable by hydraulic pressure or a mechanical force to open fluid communication through the first outer port 74.
In some embodiments, the outer mandrel 62 may have a second outer port 76 providing for a fluidic connection between the annular chamber 66 and an exterior 82 of the stage cementing assembly 22. In some embodiments, the second outer port 76 may have a relief valve 80, such as a check valve. The relief valve 80 may permit fluid exterior to the outer mandrel 62 to enter the annular chamber 66, but prevent fluid in the annular chamber 66 from exiting the stage tool 24 to the exterior. In another embodiment, the first outer port 74 may be open to fluid transfer between the annular chamber 66 and the exterior during installation of the stage tool 24 in the wellbore 10, and the second outer port 76 may be absent or omitted. In another embodiment, the first outer port 74 may be open to fluid transfer between the annular chamber 66 and the exterior during installation of the stage tool 24 in the wellbore 10, and the second outer port 76 may be present and open to fluid transfer between the annular chamber 66 and the exterior during installation of the stage tool 24 in the wellbore 10. In another embodiment, the first outer port 74 may be open to fluid transfer between the annular chamber 66 and the exterior during installation of the stage tool 24 in the wellbore 10, and the second outer port 76 may be present but plugged closed to fluid transfer between the annular chamber 66 and the exterior during installation of the stage tool 24 in the wellbore 10.
A closing sleeve 84 may be disposed concentrically between the outer mandrel 62 and the inner mandrel 64 within the annular chamber 66. The closing sleeve 84 may divide the annular chamber 66 into upper and lower portions. The closing sleeve 84 may have seals that prevent fluid communication through an interface between the closing sleeve 84 and the outer mandrel 62 and/or prevent fluid communication through an interface between the closing sleeve 84 and the inner mandrel 64. In some embodiments, a first seal 86 prevents fluid communication through an interface between the closing sleeve 84 and the outer mandrel 62 and a second seal 88 prevents fluid communication through an interface between the closing sleeve 84 and the inner mandrel 64. In some embodiments, a third seal 90 prevents fluid communication through an interface between the closing sleeve 84 and the inner mandrel 64.
The closing sleeve 84 may be movable between first and second positions. In the first position, the closing sleeve 84 may permit fluid communication between the interior 72 of the stage cementing assembly 22 and the exterior 82 of the stage cementing assembly 22 through the first inner port 68 and the first outer port 74. In the first position, the closing sleeve 84 may prevent fluid communication between the interior 72 of the stage cementing assembly 22 and the exterior 82 of the stage cementing assembly 22 through the second inner port 70 and the first outer port 74 because of the first seal 86 and the second seal 88. In the second position, the closing sleeve 84 may prevent fluid communication between the interior 72 of the stage cementing assembly 22 and the exterior 82 of the stage cementing assembly 22 through the first inner port 68 and the first outer port 74 because of the first seal 86, the second seal 88, and the third seal 90. In the second position, the closing sleeve 84 may prevent fluid communication between the interior 72 of the stage cementing assembly 22 and the exterior 82 of the stage cementing assembly 22 through the second inner port 70 and the first outer port 74 because of the first seal 86 and the second seal 88.
The closing sleeve 84 may be temporarily restrained from moving from the first position to the second position. In some embodiments, the closing sleeve 84 may be temporarily held in the first position by a retaining member 92. The retaining member 92 may include a frangible member, such as a shear pin, shear screw, or shear ring. In some embodiments, the retaining member 92 may include a snap ring engaged with a detent or a collet. In some embodiments, the retaining member 92 may temporarily couple the closing sleeve 84 to the outer mandrel 62. In other embodiments, the closing sleeve 84 may be temporarily held in the first position by a biasing member (such as a spring). In other embodiments, the closing sleeve 84 may be temporarily held in the first position by a combination of any of a retaining member 92 and a biasing member.
Once in the second position, the closing sleeve 84 may be restrained from moving from the second position to the first position. In some embodiments, the closing sleeve 84 may have a snap ring 94. The snap ring 94 may be configured to mate with a detent 96 on an outer surface of the inner mandrel 64. Alternatively, the snap ring 94 may be configured to mate with a detent on an inner surface of the outer mandrel 62. In other embodiments, the closing sleeve 84 may be restrained from moving from the second position to the first position by a latch member, such as a locking dog.
Still with
In some embodiments, the packer 26 may be actuated by fluid passing through a valve assembly 100. The valve assembly 100 may regulate fluid transfer into the packer 26. The valve assembly 100 may regulate fluid transfer out of the packer 26. The valve assembly 100 may be located so as to regulate fluid transfer between the interior 72 of the stage cementing assembly 22 and an internal chamber 102 of the packer 26. In some embodiments, as illustrated in
The valve assembly 100 may prevent fluid transfer from the interior 72 of the stage cementing assembly 22 to the internal chamber 102 of the packer 26 until a pressure of the fluid in the interior 72 of the stage cementing assembly 22 exceeds a pressure of the fluid in the internal chamber 102 of the packer 26 by a first threshold magnitude. Upon the pressure of the fluid in the interior 72 of the stage cementing assembly 22 exceeding the pressure of the fluid in the internal chamber 102 of the packer 26 by the first threshold magnitude, the valve system may operate to permit fluid in the interior 72 of the stage cementing assembly 22 to enter the internal chamber 102 of the packer 26. The valve assembly 100 may permit fluid transfer from the interior 72 of the stage cementing assembly 22 to the internal chamber 102 of the packer 26 until a pressure of the fluid in the internal chamber 102 of the packer 26 exceeds a pressure of the fluid exterior 82 of the stage cementing assembly 22 by a second threshold magnitude. Upon the pressure of the fluid in the internal chamber 102 of the packer 26 exceeding the pressure of the fluid exterior 82 of the stage cementing assembly 22 by the second threshold magnitude, the valve system may operate to prevent fluid in the interior 72 of the stage cementing assembly 22 from entering the internal chamber 102 of the packer 26. The valve system may prevent fluid from exiting the internal chamber 102 of the packer 26.
In some embodiments, the stage cementing assembly 22 includes a stage tool 24 having an outer mandrel 62 with a first outer port 74 that provides fluid communication between the interior 72 of the stage cementing assembly 22 and an exterior 82 of the stage cementing assembly 22, and the stage cementing assembly 22 further includes a packer 26 having a valve assembly 100 that selectively enables fluid transfer between the interior 72 of the stage cementing assembly 22 and an internal chamber 102 of the packer 26. In such embodiments, the first outer port 74 may be initially closed to fluid transfer between the interior 72 of the stage cementing assembly 22 and the exterior 82 of the stage cementing assembly 22 by a barrier member 78, as described above. The valve assembly 100 may first permit fluid transfer from the interior 72 of the stage cementing assembly 22 into the internal chamber 102 of the packer 26 while the first outer port 74 is closed to fluid transfer. In some embodiments, the valve assembly 100 may then prevent fluid transfer from the interior 72 of the stage cementing assembly 22 into the internal chamber 102 of the packer 26 while the first outer port 74 is closed to fluid transfer. Alternatively, in some embodiments, the valve assembly 100 may then prevent fluid transfer from the interior 72 of the stage cementing assembly 22 into the internal chamber 102 of the packer 26 while the first outer port 74 is opening to fluid transfer. Alternatively, in some embodiments, the valve assembly 100 may then prevent fluid transfer from the interior 72 of the stage cementing assembly 22 into the internal chamber 102 of the packer 26 after the first outer port 74 is opened to fluid transfer.
In some embodiments, operation of the packer 26 may not involve a valve assembly and threshold pressure differentials. For example, the packer 26 may include a seal element that is configured to swell in size upon exposure to a specific type of fluid, such as a hydrocarbon or an aqueous fluid. In some embodiments, the packer 26 may include such a swellable seal element in addition to a valve assembly 100.
In some embodiments, the packer 26 may be omitted. The first outer port 74 of the outer mandrel 62 of the stage tool 24 may be open to fluid transfer between the annular chamber 66 and the exterior 82 of the stage cementing assembly 22 during installation of the stage tool 24 in the wellbore 10. In such an embodiment, the second outer port 76 of the outer mandrel 62 of the stage tool 24 may be omitted. Alternatively, the second outer port 76 of the outer mandrel 62 of the stage tool 24 may be present.
The stage cementing system 20 further includes an inner string assembly 40. The inner string assembly 40 may be coupled to a workstring, such as drill pipe, coiled tubing, or other tubulars, that extends from a drilling rig to the inner string assembly 40. The inner string assembly 40 may include a tubular body 104 having a central throughbore 106. The tubular body 104 may include a plurality of tubular components coupled together. Individual tubular components of the plurality of tubular components may be associated with different tools and/or different portions of the inner string assembly 40.
The inner string assembly 40 may include a locator 46. The locator 46 may have one or more locator dog housings 108 on the tubular body 104, with each locator dog housing 108 having a locator dog member 110. In one embodiment, as shown in
The inner string assembly 40 may further have a seal section 42. In some embodiments, the seal section 42 may have upper, middle, and lower seal elements (116, 118, and 120, respectively) that extend circumferentially around an outer surface of the tubular body 104. Each seal element 116, 118, 120 may be configured to contact and seal against an inner surface of the stage cementing assembly 22. The upper seal element 116 may be longitudinally separated from the middle seal element 118, which may be longitudinally separated from the lower seal element 120. Hence, the annular space 44 between the stage cementing assembly 22 and the inner string assembly 40 may be separated into a first annular compartment 122 below the lower seal element 120, a second annular compartment 124 between the lower seal element 120 and the middle seal element 118, a third annular compartment 126 between the middle seal element 118 and the upper seal element 116, and a fourth annular compartment 128 above the upper seal element 116. In use, the inner string may be positioned within the stage cementing assembly 22 such that when the locator dog member 110 is engaged with the internal location profile 60, the upper seal element 116 is located above the second inner port 70 (and hence also above the first inner port 68) of the inner mandrel 64 of the stage tool 24; the middle seal element 118 may be located between the first inner port 68 and the second inner port 70 of the inner mandrel 64 of the stage tool 24; and the lower seal element 120 may be positioned below the first inner port 68 (and hence also below the second inner port 70) of the inner mandrel 64 of the stage tool 24.
As shown in
As shown in
As shown in
In some embodiments, at least a portion of the second annular compartment 124 may contain a filler material so as to limit the amount of cement or other substances that may accumulate in the second annular compartment 124. In some embodiments, the filler material may be a plastic material and/or an elastomeric material and/or a composite material. In some embodiments, the filler material may be arranged so as not to obscure the first inner port 68 of the stage tool 24. In some embodiments, the filler material may be arranged so as not to obscure the first side port 140 of the inner string assembly 40. In some embodiments, the filler material may be arranged so as to not to substantially hinder the passage of fluid and/or the application of hydraulic pressure between the first side port 140 of the inner string assembly 40 and the first inner port 68 of the stage tool 24.
In some embodiments, at least a portion of the third annular compartment 126 may contain a filler material so as to limit the amount of cement or other substances that may accumulate in the third annular compartment 126. In some embodiments, the filler material may be a plastic material and/or an elastomeric material and/or a composite material. In some embodiments, the filler material may be arranged so as not to obscure the second inner port 70 of the stage tool 24. In some embodiments, the filler material may be arranged so as not to obscure the second side port 156 of the inner string assembly 40. In some embodiments, the filler material may be arranged so as to not to substantially hinder the passage of fluid and/or the application of hydraulic pressure between the second side port 156 of the inner string assembly 40 and the second inner port 70 of the stage tool 24.
The sleeve 178 may have an outward radial projection 188 that extends circumferentially around the sleeve 178 and into a pocket 190 in the first recess 184. In some embodiments, axial movement of the sleeve 178 may be limited by the extent of axial movement of the outward radial projection 188 between upper and lower sides (192, 194, respectively) of the pocket 190. In some embodiments, the pocket 190 also contains a fluid. In a further embodiment, the fluid may be relatively viscous. In some embodiments, the outward radial projection 188 has a fluid transfer bore 196 that fluidly connects a portion of the pocket 190 above the outward radial projection 188 with a portion of the pocket 190 below the outward radial projection 188. In some embodiments, the fluid transfer bore 196 may be sized so as to hinder fluid flow through the fluid transfer bore 196. In some embodiments, the fluid transfer bore 196 may contain a flow limiter 198 that is sized to hinder fluid flow through the fluid transfer bore 196. Examples of flow limiter 198 may include an orifice, venturi, or a device that provides a tortuous fluid path. The outward radial projection 188 may have a pocket seal 200 in contact with a circumferentially surrounding wall 202 of the pocket 190. In some embodiments, the pocket seal 200 may be omitted.
In some embodiments, axial movement of the sleeve 178 from the first position to the second position causes axial movement of the outward radial projection 188. In some embodiments, during axial movement of the outward radial projection 188, the arrangement of the fluid transfer bore 196 and the pocket seal 200 causes at least a portion of the fluid within the pocket 190 to travel through the fluid transfer bore 196 from one side of the outward radial projection 188 to another side of the outward radial projection 188. In this way, the speed of axial movement of the outward radial projection 188, and hence the sleeve 178, may be controlled at least in part by appropriate selection of the number and sizes of the fluid transfer bore(s) 196 and/or the number and sizes of the flow limiter(s) 198 and/or the viscosity of the fluid in the pocket 190.
In some embodiments, the fluid transfer bore 196 and the pocket seal 200 may be omitted. In some embodiments, during axial movement of the outward radial projection 188, at least a portion of the fluid within the pocket 190 moves from one side of the outward radial projection 188 to another side of the outward radial projection 188 via an interface between the outward radial projection 188 and the circumferentially surrounding wall 202 of the pocket 190. In some embodiments, the interface between the outward radial projection 188 and the circumferentially surrounding wall 202 of the pocket 190 is sized to hinder fluid flow through the interface.
In some embodiments, the sleeve 178 may have an upper seal 204 in contact with a circumferentially surrounding wall 206 of the first recess 184 above the pocket 190. In some embodiments, the sleeve 178 may have a lower seal 208 in contact with a circumferentially surrounding wall 210 of the first recess 184 below the pocket 190. In embodiments in which the sleeve 178 has at least one upper seal 204 or least one lower seal 208, the speed of axial movement of the sleeve 178 from the first position to the second position may be controlled at least in part by the rate at which fluid within the pocket 190 moves from one side of the outward radial projection 188 to another side of the outward radial projection 188, as described above. In some embodiments, the upper seal 204 may be omitted. In some embodiments, an upper interface between the sleeve 178 and the circumferentially surrounding wall 206 of the first recess 184 above the pocket 190 may be sized to hinder fluid flow through the upper interface. In some embodiments, the lower seal 208 may be omitted. In some embodiments, a lower interface between the sleeve 178 and the circumferentially surrounding wall 210 of the first recess 184 below the pocket 190 may be sized to hinder fluid flow through the lower interface. In embodiments in which the sleeve 178 has no upper seal 204 and/or no lower seal 208, the speed of axial movement of the sleeve 178 from the first position to the second position may be controlled at least in part by the rate at which fluid moves into the pocket 190 from the central throughbore 106 of the tubular body 104 via the upper interface and/or the rate at which fluid moves into central throughbore 106 of the tubular body 104 from the pocket 190 via the lower interface.
Operation of the time-delay releasable seat assembly 48 may commence with the sleeve 178 in the first position, and may involve landing an actuating object on the seat 172. In some embodiments, the actuating object may be a ball, plug, or dart. In some embodiments, the actuating object may be an item that has been released from an upper part of the inner string assembly 40, such as the first sleeve 142, the first sleeve stop member 152, the second sleeve 158, or the second sleeve stop member 168. In some embodiments, the actuating object may include a combination of any of a ball, a plug, a dart, the first sleeve 142, the first sleeve stop member 152, the second sleeve 158, or the second sleeve stop member 168. The actuating object may impart an axial force on the seat 172. The axial force may be generated at least in part by a hydraulic pressure acting on the actuating object. The seat 172 may transfer at least a portion of the axial force to the collet dogs 174. The collet dogs 174 may transfer at least a portion of the axial force to the sleeve 178 via collet fingers 176. In embodiments in which the sleeve 178 is temporarily retained in the first position by a retaining member 180, the retaining member 180 may be defeated when the axial force acting on the sleeve 178 exceeds a threshold magnitude. When the retaining member 180 is defeated, the sleeve 178 may commence moving axially from the first position to the second position.
The speed of axial movement of the sleeve may be regulated by an interaction between the outward radial projection 188 and the fluid in the pocket 190, as described above. Thus, there may be a time delay between the moment at which the sleeve 178 commences movement away from the first position to the moment at which the sleeve 178 arrives at the second position. If the distance of travel between the first position and the second position is relatively long and/or the speed of axial movement of the sleeve 178 is relatively slow, for example, because of a significant interaction between the outward radial projection 188 and the fluid in the pocket 190, then the time delay may be relatively long. If the distance of travel between the first position and the second position is relatively short and/or the speed of axial movement of the sleeve 178 is relatively fast, for example, because of an insignificant interaction between the outward radial projection 188 and the fluid in the pocket 190, then the time delay may be relatively short. When the sleeve 178 arrives at the second position, the collet dogs 174 may move at least partially into the second recess 186, thereby releasing the seat 172. In some embodiments, the seat 172 may then move axially with respect to the sleeve 178. The seat 172 may move axially away from the sleeve 178. In some embodiments, the actuating object may move axially with the seat 172.
Still referring to
The catcher 50 may have a passage 220 between the upper inner catcher sleeve 216 and the tubular housing 212. The passage 220 may extend between the restriction 214 and the tubular housing 212. The passage 220 may extend between the lower inner catcher sleeve 218 and the tubular housing 212. In some embodiments, the catcher 50 may have a fluid flow path 222 between the central throughbore 106 of the tubular body 104 and the passage 220. In some embodiments, the fluid flow path 222 may be around an end of the upper inner catcher sleeve 216. In some embodiments, the fluid flow path 222 may be through one or more openings in a sidewall of the upper inner catcher sleeve 216. In some embodiments, the fluid flow path 222 may be around an end of the restriction 214. In some embodiments, the fluid flow path 222 may be through a sidewall of the restriction 214. In some embodiments, the fluid flow path 222 may be around an end of the lower inner catcher sleeve 218. In some embodiments, the fluid flow path 222 may be through one or more openings in a sidewall of the lower catcher sleeve 218. In some embodiments, the catcher 50 is configured to facilitate communication of at least some fluid in the central throughbore 106 of the tubular body 104 around an end of, or through a sidewall of, the upper inner catcher sleeve 216, through the passage 220 between the upper inner catcher sleeve 216 and the tubular housing 212, through an extension of the passage 220 between the restriction 214 and the tubular housing 212, and around an end of, or through a sidewall of, the lower inner catcher sleeve 218 back into the central throughbore 106 of the tubular body 104.
In some embodiments, the inner string assembly 40 includes a time-delay releasable seat assembly 48 and a catcher 50. In some embodiments, the inner string assembly 40 includes a time-delay releasable seat assembly 48, but the catcher 50 is omitted. In some embodiments, the inner string assembly 40 includes a catcher 50, but the time-delay releasable seat assembly 48 is omitted. In some embodiments, both the time-delay releasable seat assembly 48 and the catcher 50 are omitted from the inner string assembly 40.
Turning now to
In some embodiments, the inner string assembly 40 may include a circulation port 54 providing for a fluidic connection between the central throughbore 106 of the tubular body 104 and an exterior of the inner string assembly 40. In some embodiments, during installation of the inner string assembly 40 in the wellbore 10, the circulation port 54 may be open to fluid transfer between the central throughbore 106 of the tubular body 104 and an exterior of the inner string assembly 40. In some embodiments, during installation of the inner string assembly 40 in the wellbore 10, the circulation port 54 may be closed to fluid transfer between the central throughbore 106 of the tubular body 104 and an exterior of the inner string assembly 40 by a barrier member 78. In some embodiments, the barrier member 78 may be a rupture disk that may be defeated by hydraulic pressure in order to open fluid communication through the circulation port 54. In another embodiment, the barrier member 78 may be a sleeve (not shown) external to the inner string assembly 40, the sleeve being movable to open fluid communication through the circulation port 54. In some embodiments, the circulation port 54 may be omitted from the inner string assembly 40. In some embodiments, the circulation port 54 may include a circulation valve. The circulation valve may be configured to selectively open and close a fluid pathway through the circulation port 54. The circulation valve may be configured to permit fluid communication within the central throughbore 106 of the tubular body 104 from above the circulation port 54 to below the circulation port 54 when the circulation port 54 is closed. The circulation valve may be configured to inhibit fluid communication within the central throughbore 106 of the tubular body 104 from above the circulation port 54 to below the circulation port 54 when the circulation port 54 is open.
In some embodiments, the inner string assembly 40 may include a stinger 52 at a lower end thereof. In some embodiments, the stinger 52 may have a seal 234 that is configured to engage a receptacle 236 of a collar 38 installed as part of the casing 12. The collar 38 may be a landing collar. The collar 38 may be a float collar. The collar 38 may be a float shoe. In some embodiments, the stinger 52 may have a latch member 238 configured to engage the collar 38. In some embodiments, the stinger 52 is constructed out of a material that may be easier to disintegrate than regular casing material. In some embodiments, the stinger 52 is constructed out of aluminum. In some embodiments, the stinger 52 is constructed out of plastic. In some embodiments, the stinger 52 is constructed out of a composite material.
In some embodiments, installation of the inner string assembly 40 in the casing 12 includes latching the stinger 52 into the collar 38. The inner string assembly 40 above the axial slip joint 58 may then be moved axially in order to mate the locator dog members 110 with the internal location profile 60. Such axial movement of the inner string assembly 40 may be accommodated by the telescopic relative axial movement between the slip joint inner mandrel 226 and the slip joint outer mandrel 224. In other embodiments, the stinger 52 may be omitted from the inner string assembly 40.
In some embodiments, the inner string assembly 40 may include a separable member 56. In some embodiments, the separable member 56 may be installed in the inner string assembly 40 above the stinger 52. The separable member 56 may include a connection that is configured to separate upon experiencing a tensile load that exceeds a threshold. In some embodiments, the separable member 56 may be omitted from the inner string assembly 40.
Methods of operation of the stage cementing system 20 will now be described. In some embodiments, the methods of operation include the step of installing the stage cementing system 20 into the wellbore 10. During installation, fluids in the wellbore 10, and any fluids introduced into the stage cementing system 20 and/or into the wellbore 10 exert pressures on the internal and external portions of the casing 12 and the components of the stage cementing system 20. Referring back to
As shown in
Fluid may now be communicated from the central throughbore 106 of the tubular body 104 of the inner string assembly 40, through the second side port 156 into the third annular compartment 126, and into the annular chamber 66 between the stage tool outer mandrel 62 and the stage tool inner mandrel 64 through the second inner port 70 of the stage tool inner mandrel 64. In some embodiments, a hydraulic pressure applied through this communication route may not also be applied into the second annular compartment 124 and then through the first inner port 68 of the stage tool inner mandrel 64. The sealing provided by the third actuating object 248 within the central throughbore 106 of the tubular body 104 of the inner string assembly 40 blocks fluid access to the first side port 140. Additionally, the middle seal element 118 inhibits fluid communication between the third annular compartment 126 and the second annular compartment 124. Hence, a hydraulic pressure applied via the interior 72 of the stage cementing assembly 22 through the second inner port 70 of the stage tool inner mandrel 64 may not also be experienced through the first inner port 68 of the stage tool inner mandrel 64.
Thus, when the method entails the applying of a hydraulic pressure via the central throughbore 106 of the tubular body 104 of the inner string assembly 40, through the second side port 156 into the third annular compartment 126, and into the annular chamber 66 between the stage tool outer mandrel 62 and the stage tool inner mandrel 64 through the second inner port 70 of the stage tool inner mandrel 64, the closing sleeve 84 experiences a net downward force. When the applied pressure exceeds a threshold, the net downward force on the closing sleeve 84 is sufficient to defeat the retaining member 92 and/or the biasing member that heretofore had been holding the closing sleeve 84 in place, and the closing sleeve 84 may now be moved. The method may further include applying such pressure via the central throughbore 106 of the tubular body 104 of the inner string assembly 40, through the second side port 156 into the third annular compartment 126, and into the annular chamber 66 between the stage tool outer mandrel 62 and the stage tool inner mandrel 64 through the second inner port 70 of the stage tool inner mandrel 64 to defeat the retaining member 92 and/or (if present) the biasing member (not shown) and move the closing sleeve 84 to the position illustrated in
In some embodiments, the method may involve additional subsequent steps. For example, if it is desired to reestablish a circulation path through the circulation port 54 of the inner string assembly 40, and/or to pressure test the stage tool 24 while the inner string assembly 40 remains in place, the method may involve the moving of the second actuating object 242 and the third actuating object 248 to locations in which they do not interfere with such operations. The method may involve applying hydraulic pressure to the third actuating object 248 via the central throughbore 106 of the tubular body 104 of the inner string assembly 40 so as to impart a force onto the second sleeve 158 and onto the second sleeve stop member 168. When the pressure exceeds a threshold magnitude, the force may be sufficient to defeat the retaining member 170 that holds the second sleeve stop member 168 in position. Thus, the second sleeve stop member 168, the second sleeve 158, and the third actuating object 248 may travel down the central throughbore 106 of the tubular body 104 of the inner string assembly 40 until encountering the second actuating object 242, the first sleeve 142, and the first sleeve stop member 152. This situation is illustrated in
The method may involve applying hydraulic pressure to the third actuating object 248 via the central throughbore 106 of the tubular body 104 of the inner string assembly 40 so as to impart a force onto the second sleeve 158, the second sleeve stop member 168, the second actuating object 242, the first sleeve 142, the first sleeve stop member 152, and the seat 172 of the time-delay releasable seat assembly 48. The force is also applied from the seat 172 of the time-delay releasable seat assembly 48 to the sleeve 178 of the time-delay releasable seat assembly 48 via the collet dogs 174 and collet fingers 176. When the pressure exceeds a threshold magnitude, the force may be sufficient to defeat the retaining member 180 that holds the sleeve 178 of the time-delay releasable seat assembly 48 in position. Thus, the sleeve 178, collet fingers 176, collet dogs 174, and seat 172 of the time-delay releasable seat assembly 48, plus the first sleeve stop member 152, the first sleeve 142, the second actuating object 242, the second sleeve stop member 168, the second sleeve 158, and the third actuating object 248 may travel down the central throughbore 106 of the tubular body 104 of the inner string assembly 40.
Referring back to
In some embodiments, there are further steps of the method, as illustrated in
At this point, the seat 172 of the time-delay releasable seat assembly 48 and the items that had been traveling along with it become contained within the catcher 50. Fluid circulation may now be established via the central throughbore 106 of the tubular body 104 of the inner string assembly 40 above the catcher 50, the fluid flow path 222 through or around the upper inner catcher sleeve 216 of the catcher 50, the passage 220 of the catcher 50, the fluid flow path 222 through or around the lower inner catcher sleeve 218 of the catcher 50, back into the central throughbore 106 of the tubular body 104 of the inner string assembly 40 below the catcher 50. Fluid circulation may continue out through the circulation port 54 of the inner string assembly 40, through the first annular compartment 122, and through the bypass 130 into the fourth annular compartment 128, as before.
In some embodiments, there are still further steps of the method, as illustrated in
In some embodiments, the items of the inner string assembly 40 remaining in the wellbore 10 may be left in place. In some embodiments, the items of the inner string assembly 40 remaining in the wellbore 10 may be drilled through, milled through, or otherwise disintegrated in subsequent operations.
The present disclosure provides, among others, the following embodiments, each of which may be considered as optionally including any alternative embodiments.
Embodiment 1. A stage cementing system, comprising: a stage cementing assembly having a stage tool, the stage tool comprising: an outer mandrel, an inner mandrel coupled to and disposed inside of the outer mandrel, an annular chamber between the outer mandrel and the inner mandrel, a first outer port through the outer mandrel, and longitudinally spaced first and second inner ports through the inner mandrel; and an inner string assembly configured to be located inside the inner mandrel, the inner string assembly comprising: a tubular body having a central throughbore and longitudinally spaced first and second side ports, a lower external seal element below the first and second side ports, a middle external seal element between the first and second side ports, and an upper external seal element above the first and second side ports.
Embodiment 2. The stage cementing system of Embodiment 1, wherein the stage tool further comprises a closing sleeve disposed in the annular chamber.
Embodiment 3. The stage cementing system of Embodiment 2, wherein the closing sleeve is movable between: a first position in which the closing sleeve permits fluid communication between an interior of the stage cementing assembly and an exterior of the stage cementing assembly through the first inner port and the first outer port, and a second position in which the closing sleeve prevents fluid communication between the interior of the stage cementing assembly and the exterior of the stage cementing assembly through the first inner port and the first outer port.
Embodiment 4. The stage cementing system of Embodiment 3, wherein the closing sleeve prevents fluid communication between the interior of the stage cementing assembly and the exterior of the stage cementing assembly through the second inner port and the first outer port when the closing sleeve is in both the first and the second positions.
Embodiment 5. The stage cementing system of Embodiment 2, wherein the closing sleeve is actuated to the second position by an application of hydraulic pressure through the second inner port.
Embodiment 6. The stage cementing system of Embodiment 1, wherein in use, the middle external seal element is located between the first and second inner ports of the stage tool.
Embodiment 7. The stage cementing system of Embodiment 6, wherein in use, the lower external seal element is located below the first and second inner ports of the stage tool.
Embodiment 8. The stage cementing system of Embodiment 7, wherein in use, the upper external seal element is located above the first and second inner ports of the stage tool.
Embodiment 9. The stage cementing system of Embodiment 1, wherein an interior of the inner mandrel does not include an internal movable sleeve.
Embodiment 10. The stage cementing system of Embodiment 1, wherein the stage tool further comprises a second outer port through the outer mandrel, the second outer port having a relief valve.
Embodiment 11. The stage cementing system of Embodiment 10, wherein the relief valve selectively permits fluid communication from an exterior of the stage cementing assembly to an interior of the stage cementing assembly through the second outer port, and prevents fluid communication from the interior of the stage cementing assembly to the exterior of the stage cementing assembly through the second outer port.
Embodiment 12. The stage cementing system of Embodiment 10, wherein the relief valve is a check valve.
Embodiment 13. The stage cementing system of Embodiment 1, wherein the stage tool further comprises a barrier member having a first configuration in which the barrier member prevents fluid communication between an interior of the stage cementing assembly and an exterior of the stage cementing assembly through the first outer port, and a second configuration in which the barrier member permits fluid communication between the interior of the stage cementing assembly and the exterior of the stage cementing assembly through the first outer port.
Embodiment 14. The stage cementing system of Embodiment 13, wherein the barrier member is a rupture disk.
Embodiment 15. The stage cementing system of Embodiment 1, wherein the stage cementing assembly further comprises a packer coupled to the stage tool.
Embodiment 16. The stage cementing system of Embodiment 15, further comprising a packer valve configured to selectively open to permit fluid communication between an interior of the stage cementing assembly and an internal chamber of the packer.
Embodiment 17. The stage cementing system of Embodiment 16, wherein the packer valve is configured to selectively close to prevent fluid communication between the interior of the stage cementing assembly and the internal chamber of the packer.
Embodiment 18. The stage cementing system of Embodiment 16, wherein the stage tool further comprises a barrier member having a first configuration in which the barrier member prevents fluid communication between the interior of the stage cementing assembly and the exterior of the stage cementing assembly through the first outer port, and a second configuration in which the barrier member permits fluid communication between the interior of the stage cementing assembly and the exterior of the stage cementing assembly through the first outer port.
Embodiment 19. The stage cementing system of Embodiment 18, wherein the barrier member is a rupture disk.
Embodiment 20. The stage cementing system of Embodiment 19, wherein the rupture disk is configured to break before the packer valve closes.
Embodiment 21. The stage cementing system of Embodiment 1, wherein the stage cementing assembly has an internal location profile.
Embodiment 22. The stage cementing system of Embodiment 21, wherein the inner string assembly has a locator configured for engagement with the internal location profile.
Embodiment 23. A stage cementing assembly comprising: a stage tool comprising: an outer mandrel, an inner mandrel immovably disposed inside and coupled to the outer mandrel, an annular chamber between the outer mandrel and the inner mandrel, a first outer port through the outer mandrel, longitudinally spaced first and second inner ports through the inner mandrel, and a closing sleeve disposed in the annular chamber, the closing sleeve movable between a first position in which the closing sleeve permits fluid communication between an interior of the stage cementing assembly and an exterior of the stage cementing assembly through the first inner port and the first outer port, and a second position in which the closing sleeve prevents fluid communication between the interior of the stage cementing assembly and the exterior of the stage cementing assembly through the first inner port and the first outer port; wherein the closing sleeve prevents fluid communication between the interior of the stage cementing assembly and the exterior of the stage cementing assembly through the second inner port and the first outer port when the sleeve is in both the first and the second positions; and wherein an interior of the inner mandrel does not include an internal movable sleeve.
Embodiment 24. The stage cementing assembly of Embodiment 23, wherein the closing sleeve is actuated to the second position by an application of hydraulic pressure through the second inner port.
Embodiment 25. The stage cementing assembly of Embodiment 23, further comprising a second outer port through the outer mandrel, the second outer port having a relief valve.
Embodiment 26. The stage cementing assembly of Embodiment 25, wherein the relief valve selectively permits fluid communication from the exterior of the stage cementing assembly to the interior of the stage cementing assembly through the second outer port, and prevents fluid communication from the interior of the stage cementing assembly to the exterior of the stage cementing assembly through the second outer port.
Embodiment 27. The stage cementing assembly of Embodiment 23, further comprising a barrier member having a first configuration in which the barrier member prevents fluid communication between the interior of the stage cementing assembly and the exterior of the stage cementing assembly through the first outer port, and a second configuration in which the barrier member permits fluid communication between the interior of the stage cementing assembly and the exterior of the stage cementing assembly through the first outer port.
Embodiment 28. The stage cementing assembly of Embodiment 23, wherein the barrier member is a rupture disk.
Embodiment 29. The stage cementing assembly of Embodiment 27, further comprising a packer below the first outer port.
Embodiment 30. The stage cementing assembly of Embodiment 29, further comprising a packer valve configured to selectively open to permit fluid communication between the interior of the stage cementing assembly and an internal chamber of the packer.
Embodiment 31. The stage cementing assembly of Embodiment 30, wherein the packer valve is configured to selectively close to prevent fluid communication between the interior of the stage cementing assembly and the internal chamber of the packer.
Embodiment 32. The stage cementing assembly of Embodiment 30, wherein the barrier member is a rupture disk configured to break before the packer valve closes.
Embodiment 33. The stage cementing assembly of Embodiment 30, wherein the barrier member is a rupture disk configured to break when the packer valve closes.
Embodiment 34. The stage cementing assembly of Embodiment 30, wherein the barrier member is a rupture disk configured to break after the packer valve closes.
Embodiment 35. The stage cementing assembly of Embodiment 23, further comprising an internal location profile.
Embodiment 36. The stage cementing assembly of Embodiment 35, wherein the internal location profile is configured for engagement with a corresponding locator of an inner string.
Embodiment 37. A stage tool comprising: an outer mandrel; an inner mandrel immovably disposed inside and coupled to the outer mandrel; an annular chamber between the outer mandrel and the inner mandrel; a first outer port through the outer mandrel; a second outer port through the outer mandrel, the second outer port having a relief valve; longitudinally spaced first and second inner ports through the inner mandrel; a barrier member having a first configuration in which the barrier member prevents fluid communication between an interior of the stage tool and an exterior of the stage tool through the first outer port, and a second configuration in which the barrier member permits fluid communication between the interior of the stage tool and the exterior of the stage tool through the first outer port; a closing sleeve disposed in the annular chamber, the closing sleeve movable between a first position in which the closing sleeve permits fluid communication between the interior of the stage tool and the exterior of the stage tool through the first inner port and the first outer port, and a second position in which the closing sleeve prevents fluid communication between the interior of the stage tool and the exterior of the stage tool through the first inner port and the first outer port; wherein the closing sleeve prevents fluid communication between the interior of the stage tool and the exterior of the stage tool through the second inner port and the first outer port when the sleeve is in both the first and the second positions.
Embodiment 38. The stage tool of Embodiment 37, wherein the relief valve selectively permits fluid communication from the exterior of the stage tool to the interior of the stage tool through the second outer port, and prevents fluid communication from the interior of the stage tool to the exterior of the stage tool through the second outer port.
Embodiment 39. The stage tool of Embodiment 37, wherein the barrier member is a rupture disk.
Embodiment 40. The stage tool of Embodiment 37, further comprising an internal location profile.
Embodiment 41. The stage tool of Embodiment 40, wherein the internal location profile is configured for engagement with a corresponding locator of an inner string.
Embodiment 42. A tool for use in cementing a casing, the tool comprising: a tubular body having a central throughbore and longitudinally spaced first and second side ports; a lower external seal element below the first and second side ports; a middle external seal element between the first and second side ports; and an upper external seal element above the first and second side ports.
Embodiment 43. The tool of Embodiment 42, wherein the lower external seal element defines an upper boundary of a first annular compartment surrounding the tubular body.
Embodiment 44. The tool of Embodiment 43, wherein the lower external seal element and the middle external seal element define respective lower and upper boundaries of a second annular compartment surrounding the tubular body.
Embodiment 45. The tool of Embodiment 44, wherein the middle external seal element and the upper external seal element define respective lower and upper boundaries of a third annular compartment surrounding the tubular body.
Embodiment 46. The tool of Embodiment 45, wherein the upper external seal element defines a lower boundary of a fourth annular compartment surrounding the tubular body.
Embodiment 47. The tool of Embodiment 46, further comprising a bypass fluidly connecting the first and fourth annular compartments.
Embodiment 48. The tool of Embodiment 47, further comprising a relief port fluidly connecting the third annular compartment with the bypass.
Embodiment 49. The tool of Embodiment 48, further comprising a relief valve associated with the relief port, the relief valve configured to permit fluid flow from the bypass into the third annular compartment, and prevent fluid flow from the third annular compartment into the bypass.
Embodiment 50. The tool of Embodiment 42, further comprising a locator configured for engagement with a corresponding internal location profile associated with a stage cementing assembly.
Embodiment 51. The tool of Embodiment 42, further comprising a first sleeve having a first position in which the first sleeve prevents fluid communication through the first side port and a second position in which the first sleeve permits fluid communication through the first side port.
Embodiment 52. The tool of Embodiment 51, further comprising a second sleeve having a first position in which the second sleeve prevents fluid communication through the second side port and a second position in which the second sleeve permits fluid communication through the second side port.
Embodiment 53. The tool of Embodiment 52, further comprising a time-delay releasable seat below the first sleeve.
Embodiment 54. The tool of Embodiment 52, further comprising a dart catcher below the first sleeve, the dart catcher having a fluid bypass.
Embodiment 55. The tool of Embodiment 42, further comprising a stinger below the lower external seal element, the stinger having a stinger seal configured to sealingly engage a seal receptacle of a surrounding casing.
Embodiment 56. The tool of Embodiment 55, wherein the stinger is configured to latch into the seal receptacle of the surrounding casing.
Embodiment 57. The tool of Embodiment 55, further comprising a slip joint above the stinger.
Embodiment 58. The tool of Embodiment 57, further comprising a releasable connection between the slip joint and the stinger.
Embodiment 59. The tool of Embodiment 55, further comprising a circulation port fluidly connecting the central throughbore with an exterior of the tubular body through a sidewall of the tubular body.
Embodiment 60. The tool of Embodiment 59, wherein the circulation port has a closed configuration and an open configuration.
Embodiment 61. The tool of Embodiment 60, wherein the circulation port has a rupture disk, and wherein when the rupture disk is intact, the circulation port is in the closed configuration, and when the rupture disk is defeated, the circulation port is in the open configuration.
Embodiment 62. A method of cementing a casing string including a stage tool, the method comprising: opening a first side port of an inner string located inside the casing string; pumping a cementing fluid through the first side port, into a first annular space between the inner string and the casing string, through a first inner port of an inner mandrel of the stage tool, and a first outer port of an outer mandrel of the stage tool; then opening a second side port of the inner string; and applying a hydraulic pressure through the second side port into a second annular space between the inner string and the casing string, and through a second inner port of the inner mandrel of the stage tool, thereby moving a closing sleeve of the stage tool to a position preventing fluid flow through the first outer port.
Embodiment 63. The method of Embodiment 62, further comprising engaging a locator of the inner string with an internal location profile of the casing string.
Embodiment 64. The method of Embodiment 62, further comprising setting a packer coupled to the stage tool after opening the first side port and before causing the cementing fluid to flow through the first outer port of the outer mandrel of the stage tool.
Embodiment 65. The method of Embodiment 62, further comprising defeating a barrier member before causing the cementing fluid to flow through the first outer port of the outer mandrel of the stage tool.
Embodiment 66. The method of Embodiment 65, wherein defeating the barrier member comprises rupturing a disk associated with the first outer port of the outer mandrel of the stage tool.
Embodiment 67. The method of Embodiment 62, further comprising applying a test pressure to the stage tool after moving the closing sleeve of the stage tool to the position preventing fluid flow through the first outer port.
Embodiment 68. The method of Embodiment 62, wherein opening the first side port further comprises landing a first actuation object in a first seat associated with the first side port, and applying a first opening pressure to the first actuation object.
Embodiment 69. The method of Embodiment 68, wherein opening the second side port further comprises landing a second actuation object in a second seat associated with the second side port, and applying a second opening pressure to the second actuation object.
Embodiment 70. The method of Embodiment 69, further comprising displacing the first and second actuating objects to a time-delay releasable seat after moving the closing sleeve of the stage tool to the position preventing fluid flow through the first outer port and before pressure testing the stage tool.
Embodiment 71. The method of Embodiment 70, further comprising applying the test pressure to the second actuating object, thereby moving a sleeve of the time-delay releasable seat from a seat-retaining position to a seat-releasing position.
Embodiment 72. The method of Embodiment 71, wherein the sleeve of the time-delay releasable seat includes an outward radial projection having a fluid transfer bore, and moving the sleeve of the time-delay releasable seat causes a fluid to flow through the fluid transfer bore.
Embodiment 73. The method of Embodiment 72, wherein the fluid transfer bore has a restriction hindering the flow of fluid through the fluid transfer bore.
Embodiment 74. The method of Embodiment 71, further comprising causing the first and second actuating objects to move to a catcher after the sleeve of the time-delay releasable seat moves to the seat-releasing position.
Embodiment 75. The method of Embodiment 67, further comprising applying an upward axial force to the inner string after applying the test pressure to the stage tool, thereby separating an upper portion of the inner string from a lower portion of the inner string.
Embodiment 76. The method of any of Embodiments 62 to 75, further comprising retrieving the inner string from the casing string.
While the foregoing is directed to embodiments of the present disclosure, other and further embodiments of the disclosure may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
Number | Name | Date | Kind |
---|---|---|---|
3768562 | Baker | Oct 1973 | A |
3948322 | Baker | Apr 1976 | A |
4042014 | Scott | Aug 1977 | A |
4105069 | Baker | Aug 1978 | A |
4286658 | Baker et al. | Sep 1981 | A |
4299397 | Baker et al. | Nov 1981 | A |
4334582 | Baker et al. | Jun 1982 | A |
4450912 | Callihan | May 1984 | A |
4703813 | Sieler | Nov 1987 | A |
5137087 | Szarka et al. | Aug 1992 | A |
5279370 | Brandell et al. | Jan 1994 | A |
5299640 | Streich et al. | Apr 1994 | A |
7798225 | Giroux et al. | Sep 2010 | B2 |
7857052 | Giroux et al. | Dec 2010 | B2 |
8042616 | Giroux et al. | Oct 2011 | B2 |
8066069 | Giroux et al. | Nov 2011 | B2 |
9316091 | Symms | Apr 2016 | B2 |
9328579 | Wilson | May 2016 | B2 |
9382769 | Wilson et al. | Jul 2016 | B2 |
9856714 | Giroux | Jan 2018 | B2 |
20020174986 | Szarka | Nov 2002 | A1 |
20150159466 | Themig | Jun 2015 | A1 |
20170145784 | Zhou | May 2017 | A1 |