Stage profiles for operations of hydraulic systems and associated methods

Information

  • Patent Grant
  • 11952878
  • Patent Number
    11,952,878
  • Date Filed
    Wednesday, November 30, 2022
    2 years ago
  • Date Issued
    Tuesday, April 9, 2024
    7 months ago
Abstract
A system and method of enhancing operation of hydraulic fracturing equipment at a hydraulic fracturing wellsite may include determining if a hydraulic fracturing stage profiles are available for use for hydraulic fracturing equipment at a wellsite. The method may include prompting an acceptance or amendment of one of the hydraulic fracturing stage profiles for a hydraulic fracturing pumping stage. The method may include, in response to an amendment of one of the hydraulic fracturing stage profiles, prompting acceptance of the amended hydraulic fracturing stage profile as the current hydraulic fracturing stage profile for use in association with the controller. The method may include, when a hydraulic fracturing stage profile is not available, prompting configuration of hydraulic fracturing pumping stage parameters for the current hydraulic fracturing stage profile. The method may include storing the current hydraulic fracturing stage profile as the previous hydraulic fracturing stage profile in association with the controller.
Description
TECHNICAL FIELD

The present disclosure relates to methods and systems for enhancing operation of hydraulic fracturing equipment at a hydraulic fracturing wellsite.


BACKGROUND

Hydrocarbon exploration and energy industries employ various systems and operations to accomplish activities including drilling, formation evaluation, stimulation and production. Hydraulic fracturing may be utilized to produce oil and gas economically from low permeability reservoir rocks or other formations, for example, shale, at a wellsite. During a hydraulic fracturing stage, slurry may be pumped, via hydraulic fracturing pumps, under high pressure to perforations, fractures, pores, faults, or other spaces in the reservoir rocks or formations. The slurry may be pumped at a rate faster than the reservoir rocks or formation may accept. As the pressure of the slurry builds, the reservoir rocks or formation may fail and begin to fracture further. As the pumping of the slurry continues, the fractures may expand and extend in different directions away from a well bore. Once the reservoir rocks or formations are fractured, the hydraulic fracturing pumps may remove the slurry. As the slurry is removed, proppants in the slurry may be left behind and may prop or keep open the newly formed fractures, thus preventing the newly formed fractures from closing or, at least, reducing contracture of the newly formed fractures. Further, after the slurry is removed and the proppants are left behind, production streams of hydrocarbons may be obtained from the reservoir rocks or formation.


For a wellsite, a plurality of hydraulic fracturing stages may be performed. Further, each hydraulic fracturing stage may require configuration of many and various hydraulic fracturing equipment. For example, prior to a next hydraulic fracturing stage, an operator or user may enter multiple data points for that next hydraulic fracturing stage for each piece of equipment, such as, for hydraulic fracturing pumps, a blender, a chemical additive unit, a hydration unit, a conveyor, and/or other hydraulic fracturing equipment located at the wellsite. As each hydraulic fracturing stage arises, data entry or other inputs at each piece of hydraulic fracturing equipment may not be performed efficiently and effectively; thus, such tasks may be considered time consuming and may result in user error.


Accordingly, Applicant has recognized a need for methods and system to enhance operation of hydraulic fracturing equipment at a hydraulic fracturing wellsite. The present disclosure may address one or more of the above-reference drawbacks, as well as other potential drawbacks.


SUMMARY

Accordingly, Applicant has recognized a need for methods and system to enhance operation of hydraulic fracturing equipment at a hydraulic fracturing wellsite. The present disclosure may address one or more of the above-reference drawbacks, as well as other potential drawbacks.


As referenced above, due to a large number of hydraulic fracturing stages and the large number of hydraulic fracturing equipment associated with the hydraulic fracturing stages, setting hydraulic fracturing stage parameters may be difficult, complex, and time-consuming and may introduce error into the process. Further, the manual input of each data point for the hydraulic fracturing stages at each piece of the hydraulic fracturing equipment may result in longer periods of time between hydraulic fracturing stages, thus resulting in a longer overall period of time for entire hydraulic fracturing operations.


The present disclosure generally is directed to methods and systems for operating hydraulic fracturing equipment at a hydraulic fracturing wellsite. In some embodiments, the methods and systems may provide for efficient and enhanced operation of the hydraulic fracturing equipment, for example, during setup or as hydraulic fracturing equipment stages through various operations.


An embodiment of the disclosure provides a method of enhancing operation of hydraulic fracturing equipment at a hydraulic fracturing wellsite. The method may include determining if a previous hydraulic fracturing stage profile or one or more hydraulic fracturing stage profiles may be available for use in association with a controller for hydraulic fracturing equipment at a hydraulic fracturing wellsite. The one or more profiles may include hydraulic fracturing pumping stage parameters for a hydraulic fracturing fleet and a plurality of hydraulic fracturing pumping stages at a fracturing wellsite during hydrocarbon production. The method may include, in response to a determination that the previous hydraulic fracturing stage profile is available for use by the controller, prompting, at a display, a user to accept or amend the previous hydraulic fracturing stage profile as a current hydraulic fracturing stage profile for a hydraulic fracturing pumping stage. The method may further include, in response to a reception of an amendment of the previous hydraulic fracturing stage profile, prompting, at the display, the user to accept the amended previous hydraulic fracturing stage profile as the current hydraulic fracturing stage profile, and storing the current hydraulic fracturing stage profile in memory as another previous hydraulic fracturing stage profile for use in association with the controller. The method may further include, in response to a determination that the previous hydraulic fracturing stage profile is not available for use in association with the controller, prompting, at the display, a user to configure hydraulic fracturing pumping stage parameters for the current hydraulic fracturing stage profile, storing the current hydraulic fracturing stage profile in memory as the previous hydraulic fracturing stage profile for use in association with the controller, and verifying that the hydraulic fracturing pumping stage parameters in the current hydraulic fracturing stage profile are correct.


Another embodiment of the disclosure provides a method of enhancing operation of hydraulic fracturing equipment at a hydraulic fracturing wellsite. The method may include building a new or a first hydraulic fracturing stage profile for a new hydraulic fracturing stage at the hydraulic fracturing wellsite, based, at least, in part on one or more hydraulic fracturing stage profiles, data from a hydraulic fracturing fleet, and hydraulic fracturing fleet alarm history. The one or more hydraulic fracturing stage profiles may include hydraulic fracturing pumping stage parameters for the hydraulic fracturing fleet and a plurality of hydraulic fracturing pumping stages at the hydraulic fracturing wellsite during hydrocarbon production. The method may include, in response to completion of the new hydraulic fracturing stage profile, prompting, at a display, a user to accept or amend the new hydraulic fracturing stage profile as a current hydraulic fracturing stage profile for the new hydraulic fracturing pumping stage. The method may further include, in response to a reception of an amendment of the new hydraulic fracturing stage profile, prompting, at the display, the user to accept the amended new hydraulic fracturing stage profile as the current hydraulic fracturing stage profile, and storing the current hydraulic fracturing stage profile in memory as another previous hydraulic fracturing stage profile for use in association with the controller. The method may further include verifying that the hydraulic fracturing pumping stage parameters in the current hydraulic fracturing stage profile are correct.


According to another embodiment of the disclosure, a wellsite hydraulic fracturing system may include a plurality of hydraulic fracturing pumps. The plurality of hydraulic fracturing pumps, when positioned at a hydraulic fracturing wellsite, may be configured to provide a slurry to a wellhead in hydraulic fracturing pumping stages. The wellsite hydraulic fracturing system also may include a blender configured to provide a slurry to the plurality of hydraulic fracturing pumps. The slurry may include fluid, chemicals, and proppant. The wellsite hydraulic fracturing system also may include a hydration unit to provide fluid to the blender. The wellsite hydraulic fracturing system further may include a chemical additive unit to provide chemicals to the blender. The wellsite hydraulic fracturing system also may include a conveyor or auger, for example, to provide proppant to the blender. The wellsite hydraulic fracturing system further may include one or more controllers to control the hydraulic fracturing pumps, blender, hydration unit, chemical additive unit, and conveyor or auger. The one or more controllers may be positioned in signal communication with a terminal, a computing device, and sensors included on the plurality of hydraulic fracturing pumps, the blender, the hydration unit, the chemical additive unit, and the conveyor or auger. The one or more controllers may include a processor and a memory. The memory may store instructions or computer programs, as will be understood by those skilled in the art. The instructions or computer programs may be executed by the processor. The instructions, when executed, may determine if hydraulic fracturing stage profiles are available for use in the hydraulic fracturing pumping stages, and may, in response to a determination that the hydraulic fracturing stage profiles are not available for use, communicate a prompt at the terminal to enter hydraulic fracturing stage parameters for a current hydraulic fracturing stage profile and for a new or current hydraulic fracturing stage. The instructions, when executed, also may, in response to a determination that the hydraulic fracturing stage profiles are available for use, communicate a prompt at the terminal to utilize one of the hydraulic fracturing stage profiles or to amend one of the hydraulic fracturing stage profiles for the current hydraulic fracturing stage profile and may, in response to an entry or amendment of the hydraulic fracturing stage parameters for the current hydraulic fracturing stage profile at the terminal, store the current hydraulic fracturing stage profile to the computing device with an indicator. The indicator, for example, may indicate that the current hydraulic fracturing stage profile is associated with the current hydraulic fracturing pumping stage. Further, the instructions, when executed, may communicate a prompt to the terminal requesting acceptance of the use of the current hydraulic fracturing stage profile for the current hydraulic fracturing stage.


According to another embodiment of the disclosure, a controller for a hydraulic fracturing system may include a terminal input/output in signal communication with a terminal. The controller may be configured to, in relation to the terminal and in response to a determination that no hydraulic fracturing stage profiles are available for use, provide a prompt to the terminal to enter data for a hydraulic fracturing stage of a plurality of hydraulic fracturing stages into a first hydraulic fracturing stage profile. The controller, in relation to the terminal, also may be configured to receive the first hydraulic fracturing stage profile from the terminal. The controller, in relation to the terminal and in response to a determination that one or more hydraulic fracturing stage profiles are available, also may be configured to provide a prompt to the terminal requesting utilization or amendment of one of the hydraulic fracturing stage profiles for another hydraulic fracturing stage of the plurality of hydraulic fracturing stages. The controller may be configured to receive acceptance of the use of one of the hydraulic fracturing stage profiles for the another hydraulic fracturing stage. Further, the controller may be configured to receive an amended hydraulic fracturing stage profile of the hydraulic fracturing stage profiles for the another hydraulic fracturing stage. The controller may include a server input/output in signal communication with a server such that each hydraulic fracturing stage profile, including indicators of associated hydraulic fracturing stages, are communicated between the controller and the server. The controller may also include a first control output in signal communication with the plurality of hydraulic fracturing pumps such that the controller provides pump control signals based on a stage of the plurality of hydraulic fracturing stages and an associated hydraulic fracturing stage profile. The controller, for example, may be a supervisory controller, and each of the plurality of hydraulic fracturing pumps also may include a controller in signal communication with the supervisory controller as will be understood by those skilled in the art.


Still other aspects and advantages of these embodiments and other embodiments, are discussed in detail herein. Moreover, it is to be understood that both the foregoing information and the following detailed description provide merely illustrative examples of various aspects and embodiments, and are intended to provide an overview or framework for understanding the nature and character of the claimed aspects and embodiments. Accordingly, these and other objects, along with advantages and features of the present disclosure, will become apparent through reference to the following description and the accompanying drawings. Furthermore, it is to be understood that the features of the various embodiments described herein are not mutually exclusive and may exist in various combinations and permutations.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are included to provide a further understanding of the embodiments of the present disclosure, are incorporated in and constitute a part of this specification, illustrate embodiments of the present disclosure, and together with the detailed description, serve to explain principles of the embodiments discussed herein. No attempt is made to show structural details of this disclosure in more detail than may be necessary for a fundamental understanding of the embodiments discussed herein and the various ways in which they may be practiced. According to common practice, the various features of the drawings discussed below are not necessarily drawn to scale. Dimensions of various features and elements in the drawings may be expanded or reduced to more clearly illustrate embodiments of the disclosure.



FIG. 1 is a top plan schematic view of a wellsite hydraulic fracturing pumper system, according to an embodiment of the disclosure;



FIGS. 2A and 2B are block diagrams of a controller connected to backside equipment, hydraulic fracturing pumps, a display, and a computing device according to an embodiment of the disclosure;



FIG. 3 is a flowchart of a method of enhanced operation of hydraulic fracturing equipment by use of hydraulic fracturing stage profiles, according to an embodiment of the disclosure;



FIGS. 4A, 4B, and 4C are flowcharts of a method of enhanced operation of hydraulic fracturing equipment by use of hydraulic fracturing stage profiles, according to an embodiment of the disclosure;



FIG. 5 is a block diagram of a wellsite hydraulic fracturing pumper system, according to an embodiment of the disclosure;



FIG. 6 is a schematic view of a display of a wellsite hydraulic fracturing system, according to an embodiment of the disclosure;



FIG. 7 is another schematic view of a display of a wellsite hydraulic fracturing system, according to an embodiment of the disclosure;



FIG. 8 is another schematic view of a display of a wellsite hydraulic fracturing system, according to an embodiment of the disclosure;



FIG. 9 is a flowchart of a method for determining hydraulic fracturing pump pressure in relation to a value in the hydraulic fracturing stage profile, according to an embodiment of the disclosure; and



FIG. 10 is flowchart of a method for determining hydraulic fracturing pump flow rate in relation to a value in the hydraulic fracturing stage profile, according to an embodiment of the disclosure.





DETAILED DESCRIPTION

The present disclosure will now be described more fully hereinafter with reference to example embodiments thereof with reference to the drawings in which like reference numerals designate identical or corresponding elements in each of the several views. These example embodiments are described so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Features from one embodiment or aspect may be combined with features from any other embodiment or aspect in any appropriate combination. For example, any individual or collective features of method aspects or embodiments may be applied to apparatus, product, or component aspects or embodiments and vice versa. The disclosure may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. As used in the specification and the appended claims, the singular forms “a,” “an,” “the,” and the like include plural referents unless the context clearly dictates otherwise. In addition, while reference may be made herein to quantitative measures, values, geometric relationships or the like, unless otherwise stated, any one or more if not all of these may be absolute or approximate to account for acceptable variations that may occur, such as those due to manufacturing or engineering tolerances or the like.


The phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. As used herein, the term “plurality” refers to two or more items or components. The terms “comprising,” “including,” “carrying,” “having,” “containing,” and “involving,” whether in the written description or the claims and the like, are open-ended terms, i.e., to mean “including but not limited to,” unless otherwise stated. Thus, the use of such terms is meant to encompass the items listed thereafter, and equivalents thereof, as well as additional items. The transitional phrases “consisting of” and “consisting essentially of,” are closed or semi-closed transitional phrases, respectively, with respect to any claims. Use of ordinal terms such as “first,” “second,” “third,” and the like in the claims to modify a claim element does not by itself connote any priority, precedence, or order of one claim element over another or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one claim element having a certain name from another element having a same name (but for use of the ordinal term) to distinguish claim elements.


Embodiments of the present disclosure are directed to methods and systems for enhancing operation of hydraulic fracturing equipment at a hydraulic fracturing wellsite. The methods and systems detailed herein may be executed on a controller which controls all equipment at the hydraulic fracturing wellsite and may provide prompts and requests to an operator in relation to utilizing and amending hydraulic fracturing stage profiles for hydraulic fracturing stages.



FIG. 1 is a top-down schematic view of a wellsite hydraulic fracturing system 100, according to an embodiment. The wellsite hydraulic fracturing system 100 may include a plurality of mobile power units 102 to drive electrical generators 104. The electrical generators 104 may provide electrical power to the wellsite hydraulic fracturing system 100 (in other words, to hydraulic fracturing equipment at the wellsite hydraulic fracturing system 100). In such examples, the mobile power units 102 may include an internal combustion engine 103. The internal combustion engine 103 may connect to a source of fuel. The internal combustion engine 103 may be a gas turbine engine (GTE) or a reciprocating-piston engine. In another embodiment, the electrical generators 104 may power the backside equipment 120.


In another embodiment, the GTEs may be dual-fuel or bi-fuel. In other words, the GTE may be operable using two or more different types of fuel, such as natural gas and diesel fuel, or other types of fuel. A dual-fuel or bi-fuel GTE may be operable using a first type of fuel, a second type of fuel, and/or a combination of the first type of fuel and the second type of fuel. For example, the fuel may include gaseous fuels, such as, compressed natural gas (CNG), natural gas, field gas, pipeline gas, methane, propane, butane, and/or liquid fuels, such as, diesel fuel (e.g., #2 diesel), bio-diesel fuel, bio-fuel, alcohol, gasoline, gasohol, aviation fuel, and other fuels. The gaseous fuels may be supplied by CNG bulk vessels, a gas compressor, a liquid natural gas vaporizer, line gas, and/or well-gas produced natural gas. Other types and associated fuel supply sources are contemplated. The one or more internal combustion engines 103 may be operated to provide horsepower to drive the transmission 136 connected to the electrical generators to provide electrical power to the hydraulic fracturing equipment at the wellsite hydraulic fracturing system 100.


The wellsite hydraulic fracturing system 100 may also include a plurality of mobile power units 106 to drive hydraulic fracturing pumps 108. In an embodiment, the mobile power unit 106 may be an internal combustion engine 107 (e.g., a GTE or reciprocating-piston engine). In another embodiment, the hydraulic fracturing pumps 108 may be a directly-driven turbine (DDT) hydraulic fracturing pumps. In such examples, the internal combustion engine 107 may connect to the DDT hydraulic fracturing pump via a transmission 138 connected to a drive shaft, the drive shaft connected to an input flange of the DDT hydraulic fracturing pump. Other engine-to-pump connections may be utilized. In another embodiment, the mobile power units 106 may include auxiliary internal combustion engines, auxiliary electric generators, backup power sources, and/or some combination thereof.


In another embodiment, the hydraulic fracturing pumps 108 may be positioned around a wellhead 110 and may discharge, at a high pressure, slurry to a manifold 144 such that the high pressure slurry may be provided to the wellhead 110 for a hydraulic fracturing stage, as will be understood by those skilled in the art. In such examples, each of the hydraulic fracturing pumps 108 may discharge the slurry through high-pressure discharge lines 109 to flow lines 111 on manifold 144. The flow lines 111 may connect to or combine at the manifold 144. The manifold 144 may provide the slurry or combined slurry to a manifold assembly 113. The manifold assembly 113 may provide the slurry to the wellhead 110 or one or more wellheads. After a hydraulic fracturing stage is complete, some portion of the slurry may return to a flowback manifold (not shown). From the flowback manifold, the slurry may flow to a flowback tank (not shown).


In an embodiment, the slurry may refer to a mixture of fluid (such as water), proppants, and chemical additives. The proppants may be small granules, for example, sand, ceramics, gravel, other particulates, and/or some combination thereof. Further, the granules may be coated in resin. As noted above, once fractures are introduced in reservoir rocks or formations and the slurry is drained or pumped back, the proppants may remain and prop or keep open the newly formed fractures, thus preventing the newly formed fractures from closing or, at least, reducing contracture of the newly formed fractures. Further, chemicals may be added to the slurry. For example, the chemicals may be thickening agents, gels, dilute acids, biocides, breakers, corrosion inhibitors, friction reducers, potassium chloride, oxygen scavengers, pH adjusting agents, scale inhibitors, and/or surfactants. Other chemical additives may be utilized.


The wellsite hydraulic fracturing system 100 may also include a blender unit 112, a hydration unit 114, a chemical additive unit 116, and a conveyor 118 (one or more of which may be referred to as backside equipment 120). In an embodiment, for a hydraulic fracturing stage, the blender unit 112 may provide an amount of slurry at a specified flow rate to the hydraulic fracturing pumps 108, the slurry to be discharged by the hydraulic fracturing pumps 108 to the wellhead 110 (as described above). The flow rate for slurry from the blender unit 112 may be determined by a sensor such as a flow meter (e.g., blender flow rate meter 160). Further, the conveyor 118 may provide proppant to a mixer 122 of the blender unit 112. The conveyor 118 may include a conveyor belt, an auger, a chute (including a mechanism to allow passage of a specified amount of proppant), and/or other equipment to move or transfer proppant to the blender unit 112, as will be understood by those skilled in the art. Further still, the hydration unit 114 may provide a specified amount of fluid, from water tanks 115, and chemicals, from the chemical additive unit 116, to the mixer 122 of the blender unit 112. The chemical additive unit 116 may provide a specified amount and type of chemicals to hydration unit 114. The mixer 122 of the blender unit 112 may mix the fluid, proppant, and chemicals to create the slurry to be utilized by the hydraulic fracturing pumps 108. As noted above, the blender unit 112 may then pressurize and discharge the slurry from hose 142 to flow line 140 to the hydraulic fracturing pumps 108.


In another embodiment, the wellsite hydraulic fracturing system 100, or a portion of the wellsite hydraulic fracturing system 100, may be mobile or portable. Such mobility may allow for the wellsite hydraulic fracturing system 100 to be assembled or disassembled quickly. For example, a majority of the hydraulic fracturing equipment may be included on trailers attached to vehicles or on the vehicles. When a wellsite starts hydraulic fracturing stages, the hydraulic fracturing equipment may be brought to the wellsite, assembled, and utilized and when the hydraulic fracturing stages are completed, the hydraulic fracturing equipment may be disassembled and transported to another wellsite. In such examples, data or hydraulic fracturing stage parameters may be retained by a supervisory controller 124 or another computing device for later use.


The wellsite hydraulic fracturing system 100 may also include a control unit, control center, data van, data center, controller, or supervisory controller 124 to monitor and control operations hydraulic fracturing equipment at the wellsite. In other words, the supervisory controller 124 may be in signal communication with the hydraulic fracturing equipment. The supervisory controller 124 may be in signal communication (to transmit and/or receive signals) with components, other controllers, and/or sensors included on or with the mobile power units 102 driving the electrical generators 104, the internal combustion engines 103, the mobile power units 106 driving the hydraulic fracturing pumps 108, the hydraulic fracturing pumps 108, the internal combustion engines 107, the manifold 144, the wellhead 110, the flow line 111, the hose 142, the backside equipment 120, other equipment at the wellsite, and/or some combination thereof. Further, other equipment may be included in the same location as the supervisory controller 124, such as a display or terminal, an input device, other computing devices, and/or other electronic devices.


As used herein, “signal communication” refers to electric communication such as hard wiring two components together or wireless communication, as will be understood by those skilled in the art. Wireless communication may be Wi-Fi®, Bluetooth®, ZigBee®, or forms of near field communications. In addition, signal communication may include one or more intermediate controllers or relays disposed between elements that are in signal communication with one another.


In another embodiment, the supervisory controller 124 may be in signal communication with a display, a terminal, and/or a computing device, as well as associated input devices. Further, the display may be included with a computing device. The computing device may include a user interface (the user interface to be displayed on the display). The user interface may be a graphical user interface (GUI). In another embodiment, the user interface may be an operating system. In such examples, the operating system may include various firmware, software, and/or drivers that allow a user to communicate or interface with, via input devices, the hardware of the computing device and, thus, with the supervisory controller 124. The computing device may include other peripherals or input devices, e.g., a mouse, a pointer device, a keyboard, and/or a touchscreen. The supervisory controller 124 may communicate, send or transmit prompts, requests, or notifications to the display through the computing device to the display. As used herein, “user” may refer an operator, a single operator, a person, or any personnel at, or remote from, the wellsite hydraulic fracturing system 100. In another embodiment, a user may send data, e.g., through data entry, via an input device, into a computing device associated with the display for a hydraulic fracturing stage profile, from the display to the supervisory controller 124. The user may send responses, e.g., through user selection of a prompt, via the input device, on the display, from the display to the supervisory controller 124.


In an embodiment, the supervisory controller 124 may be in signal communication with the backside equipment 120 to control the hydraulic fracturing stage parameters for a hydraulic fracturing stage. In other words, the supervisory controller 124 may communicate the hydraulic fracturing stage parameters to and control the backside equipment 120 for a current hydraulic fracturing stage. Further, the supervisory controller 124 may communicate with controllers of the backside equipment 120. For example, the supervisory controller 124 may transmit, to controller 150 of the chemical additive unit 116, the amount and type of chemicals to be sent to the hydration unit 114 for the current hydraulic fracturing stage. The supervisory controller 124 may also transmit, through the signal communication, the amount of fluid, to the controller 148 of the hydration unit 114, to provide to the mixer 122 of the blender unit 112 for the current hydraulic fracturing stage. Further, the supervisory controller 124 may also transmit, through the signal communication, the amount and type of proppant, to controller 152 of the conveyor 118, to provide to the mixer 122 of the blender unit 112 for the current hydraulic fracturing stage. Further still, the supervisory controller 124 may transmit, through the signal communication, to a controller 154 of the blender unit 112 the flow rate of the slurry from the blender unit 112 to a set of the hydraulic fracturing pumps 108 for the current hydraulic fracturing stage. The supervisory controller 124 may also be in signal communication with the hydraulic fracturing pumps 108 and/or a controller 146 of the hydraulic fracturing pumps 108 to control or transmit the flow rate (minimum and/or maximum flow rate) of the discharge of the slurry from the set of the hydraulic fracturing pumps 108, the maximum pressure of the slurry, and/or the pressure rating (minimum and/or maximum pressure rate) of the slurry for the current hydraulic fracturing stage.


The supervisory controller 124 may also be in signal communication with various sensors, equipment, controllers and/or other components disposed around and on the hydraulic fracturing equipment at the wellsite hydraulic fracturing system 100. For example, the supervisory controller 124 may receive a measurement of pressure and flow rate of the slurry being delivered to the wellhead 110 from a wellhead pressure transducer 128, the pressure and flow rate of the slurry at a manifold pressure transducer 130, the pressure of the slurry at a hydraulic fracturing pump output pressure transducer 132, and/or data related to each of the hydraulic fracturing pumps 108 from a hydraulic fracturing pump profiler. The wellhead pressure transducer 128 may be disposed at the wellhead 110 to measure a pressure of the fluid at the wellhead 110. While the manifold pressure transducer 130 may be disposed at the end of the manifold 144 (as shown in FIG. 1), it will be understood by those skilled in the art, that the pressure within the manifold 144 may be substantially the same throughout the entire manifold 144 such that the manifold pressure transducer 130 may be disposed anywhere within the manifold 144 to provide a pressure of the fluid being delivered to the wellhead 110. The hydraulic fracturing pump output pressure transducer 132 may be disposed adjacent an output of one of the hydraulic fracturing pumps 108, which may be in fluid communication with the manifold 144 and thus, the fluid at the output of the hydraulic fracturing pumps 108 may be at substantially the same pressure as the fluid in the manifold 144 and the fluid being provided to the wellhead 110. Each of the hydraulic fracturing pumps 108 may include a hydraulic fracturing pump output pressure transducer 132, and the supervisory controller 124 may determine the fluid pressure provided to the wellhead 110 as an average of the fluid pressure measured by each of the hydraulic fracturing pump output pressure transducers 132.


Each of the hydraulic fracturing pumps 108 may include a hydraulic fracturing pump profiler. The hydraulic fracturing pump profiler may be instructions stored in a memory, executable by a processor, of a controller 146. In another embodiment, the hydraulic fracturing pump profiler may be another controller or other computing device. The controller 146 may be disposed on each of the one or more hydraulic fracturing pumps 108. The hydraulic fracturing pump profiler may provide various data points related to each of the one or more hydraulic fracturing pumps 108 to the supervisory controller 124, for example, the hydraulic fracturing pump profiler may provide data including hydraulic fracturing pump characteristics (minimum flow rate, maximum flow rate, harmonization rate, and/or hydraulic fracturing pump condition), maintenance data associated with the one or more hydraulic fracturing pumps 108 and mobile power units 106 (e.g., health, maintenance schedules and/or histories associated with the hydraulic fracturing pumps 108, the internal combustion engine 107, and/or the transmission 138), operation data associated with the one or more hydraulic fracturing pumps 108 and mobile power units 106 (e.g., historical data associated with horsepower, fluid pressures, fluid flow rates, etc., associated with operation of the hydraulic fracturing pumps 108 and mobile power units 106), data related to the transmissions 138 (e.g., hours of operation, health, efficiency, and/or installation age), data related to the internal combustion engines 107 (e.g., hours of operation, health, available power, and/or installation age), information related to the one or more hydraulic fracturing pumps 108 (e.g., hours of operation, plunger and/or stroke size, maximum speed, efficiency, health, and/or installation age), and/or equipment alarm history (e.g., life reduction events, pump cavitation events, pump pulsation events, and/or emergency shutdown events).



FIGS. 2A and 2B are block diagrams of a supervisory controller 124 in communication with backside equipment 120 (see FIG. 1), hydraulic fracturing pumps 108, a display 206, and a computing device 208, according to an embodiment. The supervisory controller 124 may include a non-transitory machine-readable storage medium (e.g., a memory 202) and processor 204. As used herein, a “machine-readable storage medium” may be any electronic, magnetic, optical, or other physical storage apparatus to contain or store information such as executable instructions, data, and the like. For example, any machine-readable storage medium described herein may be any of random access memory (RAM), volatile memory, non-volatile memory, flash memory, a storage drive (e.g., a hard drive), a solid state drive, any type of storage disc, and the like, or a combination thereof. As noted, the memory 202 may store or include instructions executable by the processor 204. As noted above, the supervisory controller 124 may utilize hydraulic fracturing stage profiles for hydraulic fracturing stages at the hydraulic fracture wellsite. In such embodiments, the hydraulic fracturing stage profile may include hydraulic fracturing stage parameters. For example, a hydraulic fracturing stage profile may include an amount of fluid for the hydration unit 114 to provide to the mixer 122 of the blender unit 112, an amount and type of chemicals for the chemical additive unit 116 to provide to the hydration unit 114, an amount and type of proppant for the conveyor 118 to provide to the mixer 122 of the blender 112, a flow rate of the slurry sent from the blender unit 112 to a set of the one or more hydraulic fracturing pumps 108, a flow rate for the set of the one or more hydraulic fracturing pumps 108 to indicate a flow rate from the hydraulic fracturing pumps 108 to the wellhead 110, a pressure rating for the set of the hydraulic fracturing pumps 108 to follow, and a maximum pressure for the set of the hydraulic fracturing pumps 108 to meet.


The supervisory controller 124 may include instructions stored in the memory 202, when executed by the processor 204, to determine whether previous hydraulic fracturing stage profiles are available for use in a current hydraulic fracturing stage profile. To determine that such previous hydraulic fracturing stage profiles exist, the supervisory controller 124 (in other words, the instructions executed by the processor 204) may check a local memory or other machine-readable storage medium included with or attached to the supervisory controller 124, a computing device 208, or some other specified location. In such examples, the supervisory controller 124 may include previous hydraulic fracturing stage profiles in memory 202 (as in, local memory), another machine-readable storage medium included in the supervisory controller 124, or a machine-readable storage medium connected or added to the supervisory controller 124 (such as, a USB key or an external hard drive). In another embodiment, the supervisory controller 124 may be in signal communication with a computing device 208. The computing device 208 may be a server, edge server, storage device, database, and/or personal computer (such as a desktop, laptop, workstation, tablet, or smart phone). The computing device 208 may store previous hydraulic fracturing stage profiles 210. Further, the computing device 208 may store previous hydraulic fracturing stage profiles 210 from a separate or different hydraulic fracturing wellsite. In other words, a previous wellsite at which at least portions of the wellsite hydraulic fracturing system 100 was used. As noted, the supervisory controller 124 may check the computing device 208 for any previous hydraulic fracturing stage profiles 210. The supervisory controller 124 may determine whether previous hydraulic fracturing stage profiles may be used in a current hydraulic fracturing stage profile based on the equipment available, data from the hydraulic fracturing pump profiler, and/or other data related to the wellsite hydraulic fracturing system 100.


The supervisory controller 124 may include instructions stored in the memory 202, when executed by the processor 204, to build a new hydraulic fracturing stage profile for the current hydraulic fracturing stage and/or further hydraulic fracturing stages. The supervisory controller 124 may build the new hydraulic fracturing stage profile based, at least, in part on one or more previous hydraulic fracturing stage profiles, data from the hydraulic fracturing fleet, data from one or more previous wellsites that the hydraulic fracturing fleet may have been utilized at, the hydraulic fracturing fleets alarm history, data from the hydraulic fracturing pump profiler or profilers, and/or data from the controller 146 of the one or more hydraulic fracturing pumps 108. The supervisory controller 124 may consider, when building the new hydraulic fracturing stage profile, geological data of the current wellsite and, if available, geological data of previous wellsites. For example, based on the geological data of the current wellsite, the supervisory controller 124 may set a specific type and amount of proppant and chemicals to be added to a slurry, an amount of water to be added to the slurry, and a flow rate of the slurry from the blender unit 112. In another embodiment, based on geological data and/or available hydraulic fracturing pumps 108 (availability which may be determined based on maintenance data, prior hydraulic fracturing stage completions, alerts/events, and/or other data described herein), the supervisory controller 124 may select which hydraulic fracturing pumps 108 may be utilized for a specific hydraulic fracturing stage. Other equipment and/or aspects for a hydraulic fracturing stage may be determined by the supervisory controller 124 based on other data described herein. After the new hydraulic fracturing stage profile is built, the supervisory controller 124 may prompt the user to utilize the new hydraulic fracturing stage profile for the current hydraulic fracturing stage. The supervisory controller 124 may build the new hydraulic fracturing stage profile by populating the new hydraulic fracturing stage profile with one or more hydraulic fracturing stage parameters, based on the data described above. Before selecting the new hydraulic fracturing stage profile, the user may amend new hydraulic fracturing stage profile.


The supervisory controller 124 may include instructions stored in the memory 202 which, when executed by the processor 204, may, in response to a determination the previous hydraulic fracturing stage profiles are not available (as described above), send prompts to the display 206 requesting that the user, for a current hydraulic fracturing stage, enter in, via an input device included with display 206 (described above), new hydraulic fracturing stage job parameters for a new or current hydraulic fracturing stage profile and a new or current hydraulic fracturing stage. In such examples, the instructions, when executed by the processor 204, may communicate or send a data packet including text to include on the display 206 and a form or data fields. The form or data fields may accept a user's input and include text indicating the purpose of a specific box in the form or a specific data field. The form or data fields may match or include boxes for each of the hydraulic fracturing stage parameters. In other words, the supervisory controller 124 may send a form, list, or data fields corresponding to the hydraulic fracturing stage parameters, thus, allowing a user to enter or alter or amend the hydraulic fracturing stage parameters for the new or current hydraulic fracturing stage. The instructions, when executed by the processor 204, may include an interactive save field or button. The interactive save field or button may allow the user to save entered hydraulic fracturing stage parameters as a new or current hydraulic fracturing stage profile.


The supervisory controller 124 may include instructions stored in the memory 202 which, when executed by the processor 204, may, in response to a determination the previous hydraulic fracturing stage profiles are available (as described above), communicate or send prompts to the display 206 requesting that the user, for a current hydraulic fracturing stage, accept or amend, at an input device included with display 206 (described above), one of the previous hydraulic fracturing stage profiles for the current hydraulic fracturing stage profile. In such examples, the instructions, when executed by the processor 204, may communicate or send a list of the previous hydraulic fracturing stage profiles. Each of the previous hydraulic fracturing stage profiles may be selectable by the user. In another embodiment, each of the previous hydraulic fracturing stage profiles may include two options, accept or amend.


The supervisory controller 124 may include instructions stored in the memory 202 which, when executed by the processor 204, may, in response to a selection to amend a previous hydraulic fracturing stage profile, communicate or send a request that the user amend the selected hydraulic fracturing stage profile. In such examples, the instructions, when executed by the processor 204, may communicate or send a data packet including text to include on the display 206 and a form or data fields filled in with the data from the selected hydraulic fracturing stage parameters. In other words, the form or data fields may appear the same as described above, but may be pre-filled with the data from the selected hydraulic fracturing stage profile. Any form or data field may be updated or remain as is. As described above, a save button may be included.


The supervisory controller 124 may include instructions stored in the memory 202 which, when executed by the processor 204, may prompt the user to accept the selected, new, or amended hydraulic fracturing stage profile as the current hydraulic stage profile for the current hydraulic stage profile. In such examples, the instructions, when executed by the processor 204) may communicate or send the prompt in response to an entry or amendment and save of a new hydraulic fracturing stage profile or amended selected hydraulic fracturing stage profile, respectively. In a further example, the instructions may communicate or send the prompt in response to a selection of a previous hydraulic fracturing stage profile.


The supervisory controller 124 may include instructions stored in the memory 202 which, when executed by the processor 204, may, in response to a reception of an acceptance of the selected, new, or amended hydraulic fracturing stage profile, communicate or send the current hydraulic fracturing stage profile (in other words, the current hydraulic fracturing stage parameters) to the backside equipment 120 for the current hydraulic fracturing stage. As noted above, the supervisory controller 124 may be in signal communication with the backside equipment 120. The connection between the supervisory controller 124 and backside equipment 120 may be a representational state transfer (REST or RESTful) interface, a Web Socket® interface, or some other transmission control protocol (TCP) or QUIC based interface. In such examples, the current hydraulic fracturing stage parameters may be sent from the supervisory controller 124 to the backside equipment 120 over hypertext transfer protocol (HTTP), hypertext transfer protocol secure (HTTPS), or other protocol.


After the supervisory controller 124 communicates or sends the current hydraulic fracturing stage parameters to the backside equipment 120 (blender unit 112, hydration unit 114, chemical additive unit 116, and conveyor 118) the supervisory controller 124 may wait for a confirmation of reception of the current hydraulic fracturing stage parameters. In response to a reception of the confirmation of reception of the current hydraulic fracturing stage parameters, the supervisory controller 124 may include instructions which, when executed by the processor 204, may determine a set of the hydraulic fracturing pumps 108 to be utilized based on the flow rate, pressure rate, maximum pressure, and hydraulic fracturing pumps 108 available for use.


In another embodiment, after the set of hydraulic fracturing pumps 108 are selected for the current hydraulic fracturing stage, the processor 204 of the supervisory controller 124 may execute instructions included in the memory 202 to determine whether the set of the hydraulic fracturing pumps 108 meet the pressure rate and/or maximum pressure of the current hydraulic fracturing stage profile. In another embodiment, the supervisory controller 124 may include instructions stored in the memory 202 which, when executed by the processor 204, may, in response to a determination that not all of the sets of the hydraulic fracturing pumps 108 meet the pressure rate and/or maximum pressure of the current hydraulic fracturing stage profile, notify the user which of the set of the hydraulic fracturing pumps 108 may not meet the criteria of the current hydraulic fracturing stage profile and determine if any of the set of the hydraulic fracturing pumps 108 meet a pressure rate utilization of between 50% to 98% (e.g., between 75% to 90%) of the current hydraulic fracturing stage profile. If one of the hydraulic fracturing pumps 108 do not meet a pressure rate utilization of between 50% to 98% (e.g., between 75% to 90%) of the current hydraulic fracturing stage profile, the processor 204 of the supervisory controller 124 may execute instructions to discount or remove the hydraulic fracturing pump from use in the current hydraulic fracturing stage. If one of the hydraulic fracturing pumps 108 do meet a pressure rate utilization of between 50% to 98% (e.g., between 75% to 90%) of the current hydraulic fracturing stage profile, the processor 204 of the supervisory controller 124 may execute instructions to send a prompt to the display 206 notifying a user that the user may accept use of the hydraulic fracturing pump. If a user chooses to utilize the hydraulic fracturing pump, the processor 204 of the supervisory controller 124 may execute instructions to prompt the user to enter an identification number to confirm an acceptance of the hydraulic fracturing pump.


In another embodiment, after the determination of whether to discount or remove any of the hydraulic fracturing pumps 108 due to pressure rate utilization, the processor 204 of the supervisory controller 124 may execute instructions included in the memory 202 to determine whether the set of the hydraulic fracturing pumps 108 meet the flow rate of the current hydraulic fracturing stage profile. In another embodiment, the supervisory controller 124 may include instructions stored in the memory 202 which, when executed by the processor 204, may, in response to a determination that not all of the sets of the hydraulic fracturing pumps 108 meet the flow rate of the current hydraulic fracturing stage profile, notify the user which of the set of the hydraulic fracturing pumps 108 may not meet the criteria of the current hydraulic fracturing stage profile and determine if any of the set of the hydraulic fracturing pumps 108 meet a flow rate at between 50% to 98% (e.g., between 75% to 90%) of crank RPM rating of the current hydraulic fracturing stage profile. If one of the hydraulic fracturing pumps 108 do not meet a flow rate at between 50% to 98% (e.g., between 75% to 90%) of crank RPM rating of the current hydraulic fracturing stage profile, the processor 204 of the supervisory controller 124 may execute instructions to discount or remove the hydraulic fracturing pump from use in the current hydraulic fracturing stage. If one of the hydraulic fracturing pumps 108 do meet a flow rate at between 50% to 98% (e.g., between 75% to 90%) of crank RPM rating of the current hydraulic fracturing stage profile, the processor 204 of the supervisory controller 124 may execute instructions to communicate or send a prompt to the display 206 notifying a user that the user may accept use of the hydraulic fracturing pump. If a user chooses to utilize the hydraulic fracturing pump, the processor 204 of the supervisory controller 124 may execute instructions to prompt the user to enter an identification number to confirm an acceptance of the hydraulic fracturing pump.


In another embodiment, after the determination of whether to discount or remove any of the hydraulic fracturing pumps 108 due to flow rate utilization, the processor 204 of the supervisory controller 124 may execute instructions included in the memory 202 to determine whether the set of the hydraulic fracturing pumps 108 meet a power utilization between 50% to 98% (e.g., between 75% to 80%) of maximum pressure for the current hydraulic fracturing stage profile. In another embodiment, the supervisory controller 124 may include instructions stored in the memory 202 which, when executed by the processor 204, may, in response to a determination that not all of the sets of the hydraulic fracturing pumps 108 meet the power utilization between 50% to 98% (e.g., between 75% to 80%) of maximum pressure for the current hydraulic fracturing stage profile, notify the user of the poor power utilization and prompt the operator to accept an increase in power utilization of the set of the hydraulic fracturing pumps 108. In response to an acceptance of the prompt to increase power utilization, the processor 204 may execute instructions to move one of the poor power utilization hydraulic fracturing pumps offline (in other words, remove a hydraulic fracturing pump from the set of the hydraulic fracturing pumps 108) at a time, until a desired power utilization is met. In another embodiment, the processor 204 may execute instructions to remove all of the poor power utilization hydraulic fracturing pumps offline or prompt the user to select which poor power utilization hydraulic fracturing pumps to move offline.



FIG. 3 is a flowchart of example method 300 of utilizing and amending hydraulic fracturing stage profiles, according to an embodiment. The method is detailed with reference to the wellsite hydraulic fracturing system 100 and supervisory controller 124. Unless otherwise specified, the actions of method 300 may be completed within the supervisory controller 124. Specifically, method 300 may be included in one or more programs, protocols, or instructions loaded into the memory 202 of the supervisory controller 124 and executed on the processor 204. The order in which the operations are described is not intended to be construed as a limitation, and any number of the described blocks may be combined in any order and/or in parallel to implement the methods.


At block 302, the supervisory controller 124 may determine whether one or more previous hydraulic fracturing stage profiles 210 are available for use with the hydraulic fracturing equipment at the hydraulic fracturing wellsite. In an example, the supervisory controller 124 may search all storage attached or connected to the supervisory controller 124 to determine whether a previous hydraulic fracturing stage profile is available. In another embodiment, the supervisory controller 124 may determine whether a previous hydraulic fracturing stage is available for use after receiving a prompt from a user (e.g., when a user starts a process at a terminal or display 206 with an input device). In another embodiment, the supervisory controller 124 may perform the determination upon or without user intervention. For example, in response to a user opening or initiating an application, the supervisory controller 124 may initiate the determination. The supervisory controller 124, without intervention may initiate the determination after an event, e.g., the event being a completion of a previous hydraulic fracturing stage).


At block 304, supervisory controller 124 may prompt a user to accept or amend the previous hydraulic fracturing stage profile as a current hydraulic fracturing stage profile for a current hydraulic fracturing pumping stage, in response to the determination that previous hydraulic fracturing stage profiles are available for use. Stated another way, if hydraulic fracturing stage profiles are available, the supervisory controller 124 may prompt the user to accept or amend one of the available hydraulic fracturing stage profiles. In such examples, the supervisory controller 124 may list the available hydraulic fracturing stage profiles available for use. In such examples, a user may select one of the available hydraulic fracturing stage profiles for use in the next hydraulic fracturing stage. In another embodiment, supervisory controller 124 may prompt the user to select an available hydraulic fracturing stage profile while a hydraulic fracturing stage is occurring. In another embodiment, when a user selects a previous hydraulic fracturing stage to amend, the supervisory controller 124 may populate the display 206 or terminal with the hydraulic fracturing stage parameters of the selected hydraulic fracturing stage profile. The user may update or change any of the values populated on the display 206. In another embodiment, an interactive save field or button may populate the display 206 or terminal along with the hydraulic fracturing stage parameters of the selected hydraulic fracturing stage profile. After the user updates or changes the parameters, the user may save the changes or updates.


At block 306, in response to a reception of an amendment of a previous or available hydraulic fracturing stage, the supervisory controller 124 may prompt, at a display 206 or terminal, a user to accept the amended previous hydraulic fracturing stage profile as the current hydraulic fracturing stage profile. In other words, the amended previous hydraulic fracturing stage profile may be utilized, by the supervisory controller 124, as the current hydraulic fracturing stage profile for a current hydraulic fracturing stage.


At block 308, in response to either a selection or amendment of a previous hydraulic fracturing storage profile, the supervisory controller 124 may build another hydraulic fracturing stage profile based at least in part on the current hydraulic fracturing stage profile for a next hydraulic fracturing stage. The supervisory controller 124 may also base the new hydraulic fracturing stage profile on one or more previous hydraulic fracturing stage profiles, data from the hydraulic fracturing fleet, data from previous wellsites that the hydraulic fracturing fleet may have been utilized at, the hydraulic fracturing fleets alarm history, data from the hydraulic fracturing pump profiler, data from the controller 146 of the one or more hydraulic fracturing pumps 108, and/or other data relevant to a hydraulic fracturing stage, as will be understood by those skilled in the art. In other words, the supervisory controller 124 may populate the hydraulic fracturing stage parameters for the next hydraulic fracturing stage based on the data noted above. At a later time, the supervisory controller 124 may prompt a user to accept or amend the new hydraulic fracturing stage profile for the next hydraulic fracturing stage.


The supervisory controller 124 may also store the current hydraulic fracturing stage profile in memory 202 as another previous hydraulic fracturing stage profile or the new hydraulic fracturing stage profile (noted above) for the next hydraulic fracturing stage for use in association with the supervisory controller 124. In other words, the current hydraulic fracturing stage profile or the new hydraulic fracturing stage may be stored along with an indicator. In an example, the indicator may indicate which hydraulic fracturing stage the current hydraulic fracturing stage profile is to be used or utilized with. For example, a user may create, select, or amend n hydraulic fracturing stage profiles. Each of the n hydraulic fracturing stage profiles may be associated with a like numbered hydraulic fracturing stage (e.g., a n hydraulic fracturing stage profile may be associated with a n hydraulic fracturing stage, a n-1 hydraulic fracturing stage profile may be associated with a n-1 hydraulic fracturing stage, a n-2 hydraulic fracturing stage profile may be associated with a n-2 hydraulic fracturing stage, etc.). In an example, the indicator may be represented by an ID, number, letter, name, or some combination thereof. In another embodiment, a hydraulic fracturing stage may be saved as a JSON, BSON, XML, XLS, DB, or some other appropriate file type. In such examples, the name of the saved hydraulic fracturing stage profile may indicate the associated hydraulic fracturing stage.


At block 310, the supervisory controller 124 may prompt a user to configure hydraulic fracturing pumping stage parameters for the current hydraulic fracturing stage profile, in response to the determination that previous hydraulic fracturing stage profiles are not available for use. In such examples, the supervisory controller 124 may populate the display 206 or terminal with blank fields, including labels or texts to indicate the hydraulic fracturing stage parameters.


The supervisory controller 124 may store (as describe above) the current hydraulic fracturing stage profile in memory 202 as the previous hydraulic fracturing stage profile for use in association with the supervisory controller 124. In such examples, a previous hydraulic fracturing stage profile may not be available for use in either the supervisory controller's 124 memory 202 or at the computing device 208. In such examples, the supervisory controller 124 may store the current hydraulic fracturing stage profile as a previous hydraulic fracturing stage profile for potential use in a next or future hydraulic fracturing stage. As described above, the supervisory controller 124 may also build 312 a new hydraulic fracturing stage profile for the next hydraulic fracturing stage based on the current hydraulic fracturing stage profile, as well as other data, as will be understood by those in the art.


At block 314, the supervisory controller 124 may prompt the user at the terminal to verify that the hydraulic fracturing stage parameters in the current hydraulic fracturing stage profile are correct. In other words, in response to a selection, amendment, or entry of a new hydraulic fracturing stage profile, the supervisory controller 124 may send a prompt to the terminal requesting verification that the new hydraulic fracturing stage contains the correct hydraulic fracturing stage parameters for the current hydraulic fracturing stage. In such examples, the supervisory controller 124 may include the hydraulic fracturing stage parameters in the prompt for verification, thus allowing for the user to visually confirm that the hydraulic fracturing stage parameters are correct of the current hydraulic fracturing stage.



FIGS. 4A, 4B, and 4C are flowcharts of an example method 400 of utilizing and amending hydraulic fracturing stage profiles, according to an embodiment. The method is detailed with reference to the wellsite hydraulic fracturing system 100 and supervisory controller 124. Unless otherwise specified, the actions of method 400 may be completed within the supervisory controller 124. Specifically, method 400 may be included in one or more programs, protocols, or instructions loaded into the memory 202 of the supervisory controller 124 and executed on the processor 204. The order in which the operations are described is not intended to be construed as a limitation, and any number of the described blocks may be combined in any order and/or in parallel to implement the methods.


At block 402, in response to reception of a confirmation or verification that the current hydraulic fracturing stage parameters of the current hydraulic fracturing stage profile are correct, the supervisory controller 124 may communicate or send the hydraulic fracturing stage parameters of the current hydraulic fracturing stage profile to the blender unit 112, hydration unit 114, and chemical additive unit 116. At block 404, the supervisory controller 124 may confirm reception of the hydraulic fracturing pumping stage parameters of the current hydraulic fracturing stage profile from the blender unit 112, hydration unit 114, and chemical additive unit 116. In other words, before the hydraulic fracturing stage may continue, the supervisory controller 124 may wait for confirmation of reception of the parameters by the backside equipment 120. In another embodiment, the supervisory controller 124 may also communicate or send the parameters to the conveyor 118. In another embodiment, the supervisory controller 124 may communicate or send the parameters to the backside equipment 120 in a specific order. For example, the supervisory controller 124 may send the parameters to the blender unit 112 first. After confirmation of data reception by the blender unit 112 to the supervisory controller 124, the supervisory controller 124 may communicate or send the parameters to the hydration unit 114. After confirmation of data reception by the supervisory controller 124 from the hydration unit 114, the supervisory controller 124 may communicate or send data to the chemical additive unit 116. In another embodiment, the supervisory controller 124 may send the parameters to all the backside equipment 120 at once and wait for confirmation from all of the backside equipment 120 before moving on. In another embodiment, the confirmation may be sent automatically by each of the backside equipment 120. In another embodiment, a user or operator at each piece of the backside equipment 120 may verify that the parameters have been sent and are correct for the current hydraulic fracturing stage.


At block 406, the supervisory controller 124 may determine the available hydraulic fracturing pumps which meet the current hydraulic fracturing stage profiles pressure rate, maximum pressure, and flow rate. In another embodiment, the supervisory controller 124 may consider other factors in hydraulic fracturing pump availability. For example, the supervisory controller 124 may consider the hydraulic fracturing pumps' 108 maintenance schedules, current fuel levels for the internal combustion engines 107 powering the hydraulic fracturing pumps 108, which of the hydraulic fracturing pumps 108 are currently in use, and/or proximity of hydraulic fracturing pumps 108 to the wellhead 110. At block 408, based on the available hydraulic fracturing pumps, the supervisory controller 124 may select, from the available hydraulic fracturing pumps, the hydraulic fracturing pumps to meet the flow rate, pressure rate, and/or maximum pressure.


At block 410, the supervisory controller 124 may determine whether the selected hydraulic fracture pumps meet the profiles pressure rating. At block 412, if the selected hydraulic fracturing pumps do not meet the pressure rating, the supervisory controller 124 may notify a user, at the display 206, that a set of the selected hydraulic fracturing pumps do not meet the pressure rating. At block 414, after notifying the user, the supervisory controller 124 may determine whether the discounted hydraulic fracturing pumps may meet pressure utilizing 50% to 98% (e.g., 75% to 90%) of the profile pressure rating. At block 418, if the hydraulic fracturing pumps may meet 50% to 98% (e.g., 75% to 80%), then the supervisory controller 124 may notify the user. At block 420, after notifying the user, the supervisory controller 124 may send the user a confirmation on whether to use the discounted hydraulic fracturing pumps. In another embodiment, the supervisory controller 124 may send the notification and request to select the hydraulic fracturing pumps together (in other words, blocks 418 and 420 may performed simultaneously). At block 416, if the user decides to not use the hydraulic fracturing pumps or if the hydraulic fracturing pumps do not utilize at least 50% (e.g., at least 75%) of the profile pressure rating, the supervisory controller 124 may discount the hydraulic fracturing pumps. In other words, the supervisory controller 124 may remove the hydraulic fracturing pumps from the set of selected hydraulic fracturing pumps for the current hydraulic fracturing stage. At block 422, if the user decides to use the hydraulic fracturing pumps utilizing 50% to 98% (e.g., 75% to 90%) of the hydraulic fracturing stage profile pressure rating, the supervisory controller 124 may send a prompt requesting the user to enter in identification to confirm the selection. In an embodiment, the supervisory controller 124 may store the identification, a timestamp, the pumps selected, and/or some combination thereof at a local memory of the supervisory controller 124 or at a separate computing device 208. At block 424, the supervisory controller 124 may move the scheduled maintenance of the selected hydraulic fracturing pumps forward or to a sooner date and time.


At block 426, the supervisory controller 124 may determine whether the selected hydraulic fracture pumps meet the profiles flow rate. At block 428, if the selected hydraulic fracturing pumps do not meet the flow rate, the supervisory controller 124 may notify a user, at the display 206, that a set of the selected hydraulic fracturing pumps do not meet the flow rate. At block 430, after notifying the user, the supervisory controller 124 may calculate whether the discounted hydraulic fracturing pumps may meet flow rate utilizing 50% to 98% (e.g., 75% to 90%) of the crank RPM rating. At block 432, if the hydraulic fracturing pumps may meet 50% to 98% (e.g., 75% to 80%), then the supervisory controller 124 may notify the user. At block 434, after notifying the user, the supervisory controller 124 may send the user a confirmation on whether to use the discounted hydraulic fracturing pumps. In another embodiment, the supervisory controller 124 may send the notification and request to select the hydraulic fracturing pumps together or simultaneously. At block 440, if the user decides to not use the hydraulic fracturing pumps or if the hydraulic fracturing pumps do not meet flow rate utilizing at least 50% (e.g., at least 75%) of the crank RPM rating, the supervisory controller 124 may discount the hydraulic fracturing pumps. In other words, the supervisory controller 124 may remove the hydraulic fracturing pumps from the set of selected hydraulic fracturing pumps for the current hydraulic fracturing stage. At block 436, if the user decides to use the hydraulic fracturing pumps that meet flow rate utilizing 50% to 98% (e.g., 75% to 90%) of the crank RPM rating, the supervisory controller 124 may send a prompt requesting the user to enter in identification to confirm the selection. In an embodiment, the supervisory controller 124 may store the identification, a timestamp, the hydraulic fracturing pumps selected, and/or some combination thereof at a local memory of the supervisory controller 124 or at the separate computing device 208. At block 438, the supervisory controller 124 may move the scheduled maintenance of the selected hydraulic fracturing pumps forward or to a sooner date and time.


At block 442, the supervisory controller 124 may determine the hydraulic fracturing pumps power utilization. In other words, the supervisory controller 124 may determine whether all remaining hydraulic fracturing pumps being utilized for the current hydraulic fracturing stage operate at 50% to 90% maximum horsepower at 50% to 90% of maximum stage pressure at a full flow rate. At block 444, if the hydraulic fracturing pumps do not meet power utilization, the supervisory controller 124 may notify the user. At block 446, the supervisory controller 124 may prompt the user to accept an increase in power utilization. At block 448, if the user accepts the power optimization, each hydraulic fracturing pump with a poor power utilization may be taken offline serially or, in other words, one at a time until the desired power utilization it met. In another embodiment, the supervisory controller 124 may remove all hydraulic fracturing pumps not meeting power utilization.


At block 450, the supervisory controller 124 may notify the user which hydraulic fracturing pumps are to be utilized or are left for the current hydraulic fracturing stage. At block 452, after notifying the user, the supervisory controller 124 may prompt the user to confirm the hydraulic fracturing pump selection. In another embodiment, the supervisory controller 124 may communicate or send a list of the hydraulic fracturing pumps for the stage, as well as a prompt to confirm the selection. In response to a confirmation, the supervisory controller 124 may start the hydraulic fracturing stage. In another embodiment, a previous hydraulic fracturing stage may be occurring and in response to the confirmation, the supervisory controller 124 may prompt the user to enter, select, or amend another hydraulic fracturing stage profile for another hydraulic fracturing stage. At block 454, the supervisory controller 124 may determine whether there are other hydraulic fracturing stages. At block 456, the supervisory controller 124 may prompt the user to enter, select, or amend another hydraulic fracturing stage profile for further or other hydraulic fracturing stages, until all planned hydraulic fracturing stages include hydraulic fracturing stage parameters. At block 458, for further hydraulic fracturing stage profiles, the supervisory controller 124 may prompt the user to enter in a time delay. For example, when the current stage finishes, the next stage, while ready to start, may not start until after the specified time delay. The time delay may allow for a user or other personnel/operators to inspect the hydraulic fracturing equipment at the wellsite before the next stage begins. In another embodiment, rather than a time delay, the supervisory controller 124 may prompt the user to confirm the next stage before initiation.



FIG. 5 is a block diagram of a wellsite hydraulic fracturing pumper system 500, according to an example. In an embodiment, the controller or supervisor may be included in a data van 534. In such an embodiment, the data van 534 may be separated into a control network 538 and business network 536. In another embodiment, the control network 538 may include the controller, as well as user displays (e.g., a user or operator terminal 514). The controller may include various electronic components. For example, the controller may include a switch (e.g., an Ethernet switch 502) to connect to the backside equipment 504 or backside equipment 504 controllers (e.g., via an interface 505 such as a REST, RESTful, or WebSocket® interface) and one or more hydraulic fracturing pumps 506 or the one or more hydraulic fracturing pumps 506 controllers to an application delivery controller 508. The application delivery controller 508 may connect to a server and backup or mirrored server (e.g., two connected and/or mirrored application servers 510) via another switch 512. In such examples, the controller may be considered the Ethernet switch 502, the application delivery controller 508, the switch 512, and the two connected and/or mirrored application servers 510. In another embodiment, the controller may be in signal communication with user or operator terminals 514. In another embodiment, the controller may connect to a wireless access point (AP) 516 or wireless router. In such examples, a user may connect to the controller via wireless signals. Further the user may connect to the controller via a smartphone 518 or tablet 520. In another embodiment, a hydraulic fracturing pump interface 522, disposed on a controller or component of each of the hydraulic fracturing pumps 506, may be in direct electrical communication with an intermediate interface 524. The hydraulic fracturing pump interface 522 may be a serial interface (e.g., a RS422 interface). In another embodiment, the hydraulic fracturing pump interface 522 may be a wireless interface. In other words, the hydraulic fracturing pump interface 522 may send data, via a wireless network, to the intermediate interface 524. The intermediate interface 524 may be in direct electrical communication or wireless communication with the controller (through the Ethernet switch 502).


As noted, the data van 534 may include a business network 536 or business unit. The business network 536 may include a computing device 526 to store the hydraulic fracturing stage profiles, as well as other wellsite data and analytics. The computing device 526 may be in signal communication with the controller. The computing device 526 may be a server. In another embodiment, the computing device 526 may be an edge server. In a further example, the computing device 526 may connect to a switch 528 to send, through an internet connection 530, data and/or analytics of the wellsite to a data center 532 for further analysis. Further, the hydraulic fracturing pumps 506 and backside equipment 504 may connect, through the internet connection 530, to the data center 532, thus providing real time data to the data center 532.



FIGS. 6, 7, and 8 are schematic views of a terminal 602, according to an embodiment. As noted, the terminal 602 or display may be in signal communication with a controller. Further, an input device 603 (e.g., a keyboard or touch-sensitive display) may be in signal communication with the controller as well, to allow a user 604 to enter data into the terminal 602. As such, the controller may send prompts or requests to the terminal 602. As shown, the controller may send a prompt for the user 604 to fill in or enter in data for a current hydraulic fracturing stage profile 606. In such examples, the current hydraulic fracturing stage profile 606 may include fields for the amount of liquid from the hydration unit 608, the amount of chemicals from the chemical additive unit 612, the type of chemicals from the chemical additive unit 610, the amount of proppant from the conveyor (not shown), the flow rate for the blender unit 614, the flow rate for the hydraulic fracturing pumps to be selected 616, the pressure rate for the hydraulic fracturing pumps to be selected 618, the maximum pressure of the hydraulic fracturing pumps to be selected 620, and/or other hydraulic fracturing stage parameters. In such examples, the user 604 may enter data into each field via the input device 603. In another embodiment, the controller may send a prompt for a user 604 to accept a hydraulic fracturing stage profile 702 for a next hydraulic fracturing stage 704. In such examples, the user 604 may select one of the hydraulic fracturing stage profiles 702, choose to amend one of the hydraulic fracturing stage profiles 702 after selecting one of the hydraulic fracturing stage profiles 702, or choose to enter in new hydraulic fracturing stage parameters 704. In response to a selection, a notification may be sent to the controller, including the option selected. In another embodiment, if a user 604 selects one of the hydraulic fracturing stage profiles 702, the controller may display a prompt to select the profile or amend the profile. In another embodiment, the controller may request that the user 604 enter in the users 604 employee identification (ID) 802 to select hydraulic fracturing pumps that do not meet the hydraulic fracturing stage profile criteria (e.g., the pressure rate, the maximum pressure, or the flow rate). In such an example, the controller may store, in response to entry of the user's employee ID 802, locally or to a computing device, the user's employee ID 802, a time stamp (in other words, when the hydraulic fracturing stage pump was selected), and/or the hydraulic fracturing pumps selected.



FIG. 9 is a flowchart of a method 900 for determining hydraulic fracturing pump pressure in relation to a value in the hydraulic fracturing stage profile, according to an embodiment. FIG. 10 is a flowchart of a method 1000 for determining hydraulic fracturing pump flow rate in relation to a value in the hydraulic fracturing stage profile, according to an embodiment. These methods are detailed with reference to the wellsite hydraulic fracturing system 100 and supervisory controller 124. Unless otherwise specified, the actions of method 900 and 1000 may be completed within the supervisory controller 124. Specifically, method 900 and 1000 may be included in one or more programs, protocols, or instructions loaded into the memory 202 of the supervisory controller 124 and executed on the processor 204. The order in which the operations are described is not intended to be construed as a limitation, and any number of the described blocks may be combined in any order and/or in parallel to implement the methods.


As noted above, the supervisory controller 124 may determine whether a hydraulic fracturing pumps pressure meets the pressure rate specified in the current hydraulic fracturing stage profile. At block 902, the supervisory controller 124 may scan a hydraulic fracturing pump's pump profiler, controller, or sensor to obtain or determine 903 the maximum pressure that the hydraulic fracturing pumps may meet. At block 904, the supervisory controller 124 may store the plunger diameter (PD) from the pump profiler. At block 906, the supervisory controller 124 may store the maximum rod load (RL) for each of the hydraulic fracturing pumps. At block 908, the controller may determine 75% of the maximum RL. At block 910, the supervisory controller 124, utilizing maximum RL, may determine the maximum pressure (PSI) of the hydraulic fracturing pump with the following equation:







RL


PD
2

*
.7854


=
PSI




At block 912, the supervisory controller 124 may compare the determined pressure to the maximum pressure of the hydraulic fracturing stage profile. As noted above and in relation to method 400, the supervisory controller 124 may discount or remove the hydraulic fracturing pumps, which do not meet 50% to 90% of the pressure rating of the current hydraulic fracturing profile.


As noted above, the supervisory controller 124 may determine whether a hydraulic fracturing pumps flow rate meets the flow rate specified in the hydraulic fracturing stage profile. At block 1002, the supervisory controller 124 may scan a hydraulic fracturing pump's pump profiler, controller, or sensor to obtain or determine, at block 1003, the maximum flow rate that the hydraulic fracturing pump may pump. At block 1004, the controller may store the plunger diameter (PD), stroke length (SL), number of cylinders (NC), and/or maximum RPM for each hydraulic fracturing pump. At block 1006, the supervisory controller 124 may determine the displacement per revolution (GPR):









PD
2

*
.7854
*
SL
*
NC

231

=
GPR




At block 1008, utilizing 75% of the maximum pump RPM rating, the supervisory controller 124 may determine gallons per minute (GPM) with the following equation:

GPR*RPM=GPM


In another embodiment, the supervisory controller 124 may convert the GPM to barrels per minute (BPM). At block 1010, the supervisory controller 124 may sum all flow rates of the hydraulic fracturing pumps that meet the maximum pressure and may compare the summed flow rate to the flow rate of the hydraulic fracturing stage profile. As noted above and in relation to method 400, the supervisory controller 124 may discount or remove the hydraulic fracturing pumps which do not meet the flow rate at 50% to 90% maximum HP at 50% to 90% maximum pressure at full flow rate of the current hydraulic fracturing profile.


References are made to block diagrams of systems, methods, apparatuses, and computer program products according to example embodiments. It will be understood that at least some of the blocks of the block diagrams, and combinations of blocks in the block diagrams, may be implemented at least partially by computer program instructions. These computer program instructions may be loaded onto a general purpose computer, special purpose computer, special purpose hardware-based computer, or other programmable data processing apparatus to produce a machine, such that the instructions which execute on the computer or other programmable data processing apparatus create means for implementing the functionality of at least some of the blocks of the block diagrams, or combinations of blocks in the block diagrams discussed.


These computer program instructions may also be stored in a non-transitory machine-readable memory that may direct a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the machine-readable memory produce an article of manufacture including instruction means that implement the function specified in the block or blocks. The computer program instructions may also be loaded onto a computer or other programmable data processing apparatus to cause a series of operational steps to be performed on the computer or other programmable apparatus to produce a computer implemented process such that the instructions that execute on the computer or other programmable apparatus provide task, acts, actions, or operations for implementing the functions specified in the block or blocks.


One or more components of the systems and one or more elements of the methods described herein may be implemented through an application program running on an operating system of a computer. They may also be practiced with other computer system configurations, including hand-held devices, multiprocessor systems, microprocessor-based or programmable consumer electronics, mini-computers, mainframe computers, and the like.


Application programs that are components of the systems and methods described herein may include routines, programs, components, data structures, etc. that may implement certain abstract data types and perform certain tasks or actions. In a distributed computing environment, the application program (in whole or in part) may be located in local memory or in other storage. In addition, or alternatively, the application program (in whole or in part) may be located in remote memory or in storage to allow for circumstances where tasks may be performed by remote processing devices linked through a communications network.


Although only a few exemplary embodiments have been described in detail herein, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of the embodiments of the present disclosure. Accordingly, all such modifications are intended to be included within the scope of the embodiments of the present disclosure as defined in the following claims.


This is a continuation of U.S. Non-Provisional application Ser. No. 17/555,919, filed Dec. 20, 2021, titled “STAGE PROFILES FOR OPERATIONS OF HYDRAULIC SYSTEMS AND ASSOCIATED METHODS,” which is a continuation of U.S. Non-Provisional application Ser. No. 17/500,217, filed Oct. 13, 2021, titled “STAGE PROFILES FOR OPERATIONS OF HYDRAULIC SYSTEMS AND ASSOCIATED METHODS,” now U.S. Pat. No. 11,236,598, issued Feb. 1, 2022, which is continuation of U.S. Non-Provisional application Ser. No. 17/308,330, filed May 5, 2021, titled “STAGE PROFILES FOR OPERATIONS OF HYDRAULIC SYSTEMS AND ASSOCIATED METHODS,” now U.S. Pat. No. 11,208,879, issued Dec. 28, 2021, which is continuation of U.S. Non-Provisional application Ser. No. 17/182,489, filed Feb. 23, 2021, titled “STAGE PROFILES FOR OPERATIONS OF HYDRAULIC SYSTEMS AND ASSOCIATED METHODS,” now U.S. Pat. No. 11,028,677, issued Jun. 8, 2021, which claims priority to and the benefit of U.S. Provisional Application No. 62/705,332, filed Jun. 22, 2020, titled “METHODS AND SYSTEMS TO ENHANCE OPERATION OF HYDRAULIC FRACTURING EQUIPMENT AT A HYDRAULIC FRACTURING WELLSITE BY HYDRAULIC FRACTURING STAGE PROFILES,” and U.S. Provisional Application No. 62/705,356, filed Jun. 23, 2020, titled “STAGE PROFILES FOR OPERATIONS OF HYDRAULIC SYSTEMS AND ASSOCIATED METHODS,” the disclosures of all of which are incorporated herein by reference in their entirety.


In the drawings and specification, several embodiments of systems and methods of enhancing operation of hydraulic fracturing equipment at a hydraulic fracturing wellsite have been disclosed, and although specific terms are employed, the terms are used in a descriptive sense only and not for purposes of limitation. Embodiments of systems and methods have been described in considerable detail with specific reference to the illustrated embodiments. However, it will be apparent that various modifications and changes may be made within the spirit and scope of the embodiments of systems and methods as described in the foregoing specification, and such modifications and changes are to be considered equivalents and part of this disclosure.

Claims
  • 1. A method of operating equipment at a selected site, the method comprising: determining if one or more equipment operating stage profiles is available for use in association with a controller in operative communications with one or more pumps, the one or more equipment operating stage profiles including one or more pumping stage parameters and a plurality of pumping stages at a selected site;in response to a determination that a previous equipment operating stage profile is available for use by the controller, accepting or amending the previous operating stage profile as a current operating stage profile for a pumping stage for the one or more pumps;in response to a reception of an amendment of the previous hydraulic fracturing stage profile: accepting the amended previous equipment operating stage profile as the current equipment operating stage profile, andstoring the current equipment operating stage profile in memory as another previous equipment operating stage profile for use in association with the controller; andin response to a determination that the previous equipment operating stage profile is not available for use in association with the controller: configuring the one or more pumping stage parameters for the one or more pumps for the current equipment operating stage profile; andverifying that the one or more pumping stage parameters in the current operating equipment stage profile is correct for use with the one or more pumps.
  • 2. The method of claim 1, wherein the one or more pumping stage parameters include one or more of: pump flow rate, blender flow rate, pressure rating, maximum pressure, proppant concentrations, power utilization, or chemical loadings, wherein the one or more pumps in combination with other equipment define a fleet, the equipment of the fleet includes one or more of: mobile powering units to power the one or more hydraulic fracturing pumps, a blender unit, a hydration unit, a chemical additive unit, the controller, or one or more mobile powering drives to drive electrical generators to provide power to one or more of the corresponding blender unit, the hydration unit, the chemical unit, and the controller, andwherein the method further includes sending, by the controller, the one or more pumping stage parameters of the current equipment operating stage profile to the one or more pumps, the blender unit, the hydration unit, and the chemical additive unit; andconfirming, by the controller, reception of the one or more pumping stage parameters of the current equipment operating stage profile from the one or more pumps, the blender unit, the hydration unit, and the chemical additive unit.
  • 3. The method of claim 2, wherein the one or more hydraulic fracturing pumps includes a plurality of pumps, and the method further comprising: determining, by the controller, availability of the one or more pumps to meet a pump flow rate and a pressure rating;selecting, by the controller, one or more available pumps for one of the plurality of pumping stages;determining, by the controller, an ability of the selected pumps to meet the pressure rating; andin response to a determination, by the controller, that one or more of the selected pumps do not meet the pressure rating: prompting, by the controller, to accept utilization of the one or more of the selected pumps that do not meet the pressure rating;in response to reception of an acceptance to utilize the one or more of the selected pumps that do not meet the pressure rating, requesting, by the controller and at the display, identification of the user to confirm acceptance; andin response to reception of a denial of the acceptance to utilize the one or more of the selected pumps that do not meet the pressure rating, discounting, by the controller, the one or more of the selected pumps that do not meet pressure rating from the selected pumps.
  • 4. The method of claim 3, further comprising: determining, by the controller, an ability of the selected pumps to meet the pump flow rate;in response to a determination, by the controller, that one or more of the selected pumps do not meet the flow rate: requesting, by the controller and at the display, acceptance to utilize the one or more of the selected pumps that do not meet the flow rate;in response to reception of an acceptance to utilize the one or more of the selected hydraulic fracturing pumps that do not meet the flow rate, requesting, by the controller and at the display, identification of the user to confirm acceptance; andin response to reception of a denial of the acceptance to utilize the one or more of the selected pumps that do not meet the flow rate, discounting, by the controller, the one or more of the selected pumps that do not meet the flow rate from the selected pumps.
  • 5. The method of claim 1, further comprising: determining, by the controller, power utilization of one or more selected pumps;in response to a power utilization of less than 75 percent max horsepower (HP) of maximum pressure at full flow rate: notifying, by the controller and at the display, the user of poor power utilization;prompting the user to accept an increase of power utilization on the selected one or more hydraulic fracturing pumps; andremoving, by the controller, each of the selected one or more pumps with poor power utilization one at a time from the selected one or more pumps until power utilization of a current hydraulic fracturing stage profile is met.
  • 6. The method of claim 5, further comprising in response to a reception of a signal to initiate the current pumping stage, initiating one or more pumping stages.
  • 7. The method of claim 1, further comprising: building, by the controller, a next equipment operating stage profile for a next pumping stage, based, at least, in part on one or more previous stage profiles and data from the fleet, the data including one or more of: maintenance data from a fleet, operation data from the fleet, or fleet alarm history from a fleet.
  • 8. The method of claim 1, further comprising: building, by the controller, a new stage profile of the operating equipment for a new pumping stage at a new selected site, based, at least, in part on one or more previous equipment operating stage profiles, data from the fleet, and data from one or more previous selected sites.
  • 9. The method of claim 1, wherein the previous equipment operating stage profile is accepted or amended when a previous hydraulic fracturing pumping stage is occurring.
  • 10. The method of claim 1, wherein the previous equipment operating stage profile is amended for a new pumping stage when the current pumping stage is occurring.
  • 11. The method of claim 1, wherein the previous equipment operating stage profile is amended to include a time delay to delay start of the pumping stage for a specified period of time; and wherein the previous stage profile is from a previous selected site.
  • 12. A method of operating hydraulic fracturing equipment, the method comprising: determining if one or more hydraulic fracturing stage profiles is available for use in association with a controller in operative communication with one or more hydraulic fracturing pumps, the one or more profiles including one or more hydraulic fracturing pumping stage parameters and a plurality of hydraulic fracturing pumping stages;in response to a determination that a previous hydraulic fracturing stage profile is available for use by the controller, accepting or amending the previous hydraulic fracturing stage profile as a current hydraulic fracturing stage profile for a hydraulic fracturing pumping stage for the one or more hydraulic fracturing pumps, the previous hydraulic fracturing stage profile being accepted or amended during a period of time when another hydraulic fracturing pumping stage is occurring;in response to a reception of an amendment of the previous hydraulic fracturing stage profile, accepting the amended previous hydraulic fracturing stage profile as the current hydraulic fracturing stage profile; andin response to a determination that the previous hydraulic fracturing stage profile is not available for use in association with the controller: configuring the one or more hydraulic fracturing pumping stage parameters for the one or more hydraulic fracturing pumps for the current hydraulic fracturing stage profile, and verifying that the hydraulic fracturing pumping stage parameters in a current hydraulic fracturing stage profile are correct for use with the one or more hydraulic fracturing pumps.
  • 13. The method of claim 12, wherein the hydraulic fracturing pumping stage parameters include one or more of: pump flow rate, blender flow rate, pressure rating, maximum pressure, proppant concentrations, power utilization, or chemical loadings, wherein the one or more hydraulic fracturing pumps in combination with other hydraulic fracturing equipment define a hydraulic fracturing fleet, the hydraulic fracturing equipment of the hydraulic fracturing fleet includes one or more of: mobile powering units to power the one or more hydraulic fracturing pumps, a blender unit, a hydration unit, a chemical additive unit, the controller, or one or more mobile powering drives to drive electrical generators to provide power to one or more of the corresponding blender unit, the hydration unit, the chemical unit, and the controller, andwherein the method further includes sending, by the controller, the hydraulic fracturing pumping stage parameters of the current hydraulic fracturing stage profile to the one or more hydraulic fracturing pumps, the blender unit, the hydration unit, and the chemical additive unit; andconfirming, by the controller, reception of the hydraulic fracturing pumping stage parameters of the current hydraulic fracturing stage profile from the one or more hydraulic fracturing pumps, the blender unit, the hydration unit, and the chemical additive unit.
  • 14. The method of claim 13, wherein the one or more hydraulic fracturing pumps includes a plurality of hydraulic fracturing pumps, and the method further comprising: determining, by the controller, availability of the plurality of hydraulic fracturing pumps to meet a pump flow rate and a pressure rating;selecting, by the controller, one or more available hydraulic fracturing pumps for the hydraulic fracturing pumping stage;determining, by the controller, an ability of the selected hydraulic fracturing pumps to meet the pressure rating; andin response to a determination, by the controller, that one or more of the selected hydraulic fracturing pumps do not meet the pressure rating: accepting utilization of the one or more of the selected hydraulic fracturing pumps that do not meet the pressure rating;in response to reception of an acceptance to utilize the one or more of the selected hydraulic fracturing pumps that do not meet the pressure rating, requesting, by the controller, confirming acceptance; andin response to reception of a denial of the acceptance to utilize the one or more of the selected hydraulic fracturing pumps that do not meet the pressure rating, discounting, by the controller, the one or more of the selected hydraulic fracturing pumps that do not meet pressure rating from the selected hydraulic fracturing pumps.
  • 15. The method of claim 14, further comprising: determining, by the controller, an ability of the selected hydraulic fracturing pumps to meet the pump flow rate;in response to a determination, by the controller, that one or more of the selected hydraulic fracturing pumps do not meet the flow rate: requesting, by the controller, acceptance to utilize the one or more of the selected hydraulic fracturing pumps that do not meet the flow rate;in response to reception of an acceptance to utilize the one or more of the selected hydraulic fracturing pumps that do not meet the flow rate, requesting, by the controller and at the display, confirming acceptance; andin response to reception of a denial of the acceptance to utilize the one or more of the selected hydraulic fracturing pumps that do not meet the flow rate, discounting, by the controller, the one or more of the selected hydraulic fracturing pumps that do not meet the flow rate from the selected hydraulic fracturing pumps.
  • 16. The method of claim 15, further comprising: determining, by the controller, power utilization of the selected hydraulic fracturing pumps;in response to a power utilization of less than 75 percent max horsepower (HP) of maximum pressure at full flow rate: notifying, by the controller, poor power utilization;accepting an increase of power utilization on the selected hydraulic fracturing pumps; andremoving, by the controller, each of the selected hydraulic fracturing pumps with poor power utilization one at a time from the selected hydraulic fracturing pumps until power utilization of the current hydraulic fracturing stage profile is met.
  • 17. The method of claim 16, further comprising in response to a reception of a signal to initiate the hydraulic fracturing pumping stage, initiating the hydraulic fracturing pumping stage.
  • 18. The method of claim 17, further comprising: building, by the controller, a next hydraulic fracturing stage profile for a next hydraulic fracturing pumping stage, based, at least, in part on one or more previous hydraulic fracturing stage profiles and data from the hydraulic fracturing fleet, the data including one or more of: maintenance data from the hydraulic fracturing fleet, operation data from the hydraulic fracturing fleet, or hydraulic fracturing fleet alarm history.
  • 19. The method of claim 17, further comprising: building, by the controller, a new hydraulic fracturing stage profile for a new hydraulic fracturing pumping stage at a new hydraulic fracturing wellsite, based, at least, in part on one or more previous hydraulic fracturing stage profiles, data from the hydraulic fracturing fleet, and data from previous hydraulic fracturing well sites.
  • 20. The method of claim 12, wherein the previous hydraulic fracturing stage profile is amended to include a time delay to delay start of the hydraulic fracturing pumping stage for a specified period of time; and wherein the previous hydraulic fracturing stage profile is from one or more previous wellsites.
PRIORITY CLAIM

This is a continuation of U.S. Non-Provisional application Ser. No. 17/555,919, filed Dec. 20, 2021, titled “STAGE PROFILES FOR OPERATIONS OF HYDRAULIC SYSTEMS AND ASSOCIATED METHODS,” which is a continuation of U.S. Non-Provisional application Ser. No. 17/500,217, filed Oct. 13, 2021, titled “STAGE PROFILES FOR OPERATIONS OF HYDRAULIC SYSTEMS AND ASSOCIATED METHODS,” now U.S. Pat. No. 11,236,598, issued Feb. 1, 2022, which is continuation of U.S. Non-Provisional application Ser. No. 17/308,330, filed May 5, 2021, titled “STAGE PROFILES FOR OPERATIONS OF HYDRAULIC SYSTEMS AND ASSOCIATED METHODS,” now U.S. Pat. No. 11,208,879, issued Dec. 28, 2021, which is continuation of U.S. Non-Provisional application Ser. No. 17/182,489, filed Feb. 23, 2021, titled “STAGE PROFILES FOR OPERATIONS OF HYDRAULIC SYSTEMS AND ASSOCIATED METHODS,” now U.S. Pat. No. 11,028,677, issued Jun. 8, 2021, which claims priority to and the benefit of U.S. Provisional Application No. 62/705,332, filed Jun. 22, 2020, titled “METHODS AND SYSTEMS TO ENHANCE OPERATION OF HYDRAULIC FRACTURING EQUIPMENT AT A HYDRAULIC FRACTURING WELLSITE BY HYDRAULIC FRACTURING STAGE PROFILES,” and U.S. Provisional Application No. 62/705,356, filed Jun. 23, 2020, titled “STAGE PROFILES FOR OPERATIONS OF HYDRAULIC SYSTEMS AND ASSOCIATED METHODS,” the disclosures of all of which are incorporated herein by reference in their entirety.

US Referenced Citations (1052)
Number Name Date Kind
1716049 Greve Jun 1929 A
1726633 Smith Sep 1929 A
2178662 Lars Nov 1939 A
2427638 Vilter Sep 1947 A
2498229 Adler Feb 1950 A
2535703 Smith et al. Dec 1950 A
2572711 Fischer Oct 1951 A
2820341 Amann Jan 1958 A
2868004 Runde Jan 1959 A
2940377 Darnell et al. Jun 1960 A
2947141 Russ Aug 1960 A
2956738 Rosenschold Oct 1960 A
3068796 Pfluger et al. Dec 1962 A
3191517 Solzman Jun 1965 A
3257031 Dietz Jun 1966 A
3274768 Klein Sep 1966 A
3378074 Kiel Apr 1968 A
3382671 Ehni, III May 1968 A
3401873 Privon Sep 1968 A
3463612 Whitsel Aug 1969 A
3496880 Wolff Feb 1970 A
3550696 Kenneday Dec 1970 A
3560053 Ortloff Feb 1971 A
3586459 Zerlauth Jun 1971 A
3632222 Cronstedt Jan 1972 A
3656582 Alcock Apr 1972 A
3667868 Brunner Jun 1972 A
3692434 Schnear Sep 1972 A
3739872 McNair Jun 1973 A
3757581 Mankin Sep 1973 A
3759063 Bendall Sep 1973 A
3765173 Harris Oct 1973 A
3771916 Flanigan et al. Nov 1973 A
3773438 Hall et al. Nov 1973 A
3781135 Nickell Dec 1973 A
3786835 Finger Jan 1974 A
3791682 Mitchell Feb 1974 A
3796045 Foster Mar 1974 A
3814549 Cronstedt Jun 1974 A
3820922 Buse et al. Jun 1974 A
3847511 Cole Nov 1974 A
3866108 Yannone Feb 1975 A
3875380 Rankin Apr 1975 A
3963372 McLain et al. Jun 1976 A
4010613 McInerney Mar 1977 A
4019477 Overton Apr 1977 A
4031407 Reed Jun 1977 A
4047569 Tagirov et al. Sep 1977 A
4050862 Buse Sep 1977 A
4059045 McClain Nov 1977 A
4086976 Holm et al. May 1978 A
4117342 Melley, Jr. Sep 1978 A
4173121 Yu Nov 1979 A
4204808 Reese et al. May 1980 A
4209079 Marchal et al. Jun 1980 A
4209979 Woodhouse et al. Jul 1980 A
4222229 Uram Sep 1980 A
4239396 Arribau et al. Dec 1980 A
4269569 Hoover May 1981 A
4311395 Douthitt et al. Jan 1982 A
4330237 Battah May 1982 A
4341508 Rambin, Jr. Jul 1982 A
4357027 Zeitlow Nov 1982 A
4383478 Jones May 1983 A
4402504 Christian Sep 1983 A
4430047 Ilg Feb 1984 A
4442665 Fick Apr 1984 A
4457325 Green Jul 1984 A
4470771 Hall et al. Sep 1984 A
4483684 Black Nov 1984 A
4505650 Hannett et al. Mar 1985 A
4574880 Handke Mar 1986 A
4584654 Crane Apr 1986 A
4620330 Izzi, Sr. Nov 1986 A
4672813 David Jun 1987 A
4754607 Mackay Jul 1988 A
4782244 Wakimoto Nov 1988 A
4796777 Keller Jan 1989 A
4869209 Young Sep 1989 A
4913625 Gerlowski Apr 1990 A
4983259 Duncan Jan 1991 A
4990058 Eslinger Feb 1991 A
5032065 Yamamuro Jul 1991 A
5135361 Dion Aug 1992 A
5167493 Kobari Dec 1992 A
5245970 Iwaszkiewicz et al. Sep 1993 A
5275041 Poulsen Jan 1994 A
5291842 Sallstrom et al. Mar 1994 A
5326231 Pandeya Jul 1994 A
5362219 Paul et al. Nov 1994 A
5482116 El-Rabaa et al. Jan 1996 A
5511956 Hasegawa Apr 1996 A
5517854 Plumb et al. May 1996 A
5537813 Davis et al. Jul 1996 A
5553514 Walkowc Sep 1996 A
5560195 Anderson et al. Oct 1996 A
5586444 Fung Dec 1996 A
5622245 Reik Apr 1997 A
5626103 Haws et al. May 1997 A
5634777 Albertin Jun 1997 A
5651400 Corts et al. Jul 1997 A
5678460 Walkowc Oct 1997 A
5717172 Griffin, Jr. et al. Feb 1998 A
5720598 de Chizzelle Feb 1998 A
5761084 Edwards Jun 1998 A
5811676 Spalding et al. Sep 1998 A
5839888 Harrison Nov 1998 A
5846062 Yanagisawa et al. Dec 1998 A
5875744 Vallejos Mar 1999 A
5983962 Gerardot Nov 1999 A
5992944 Hara Nov 1999 A
6041856 Thrasher et al. Mar 2000 A
6050080 Horner Apr 2000 A
6067962 Bartley et al. May 2000 A
6071188 O'Neill et al. Jun 2000 A
6074170 Bert et al. Jun 2000 A
6123751 Nelson et al. Sep 2000 A
6129335 Yokogi Oct 2000 A
6145318 Kaplan et al. Nov 2000 A
6230481 Jahr May 2001 B1
6279309 Lawlor, II et al. Aug 2001 B1
6321860 Reddoch Nov 2001 B1
6334746 Nguyen et al. Jan 2002 B1
6367548 Purvis et al. Apr 2002 B1
6401472 Pollrich Jun 2002 B2
6530224 Conchieri Mar 2003 B1
6543395 Green Apr 2003 B2
6644844 Neal et al. Nov 2003 B2
6655922 Flek Dec 2003 B1
6669453 Breeden Dec 2003 B1
6765304 Baten et al. Jul 2004 B2
6786051 Kristich et al. Sep 2004 B2
6832900 Leu Dec 2004 B2
6851514 Han et al. Feb 2005 B2
6859740 Stephenson et al. Feb 2005 B2
6901735 Lohn Jun 2005 B2
6935424 Lehman et al. Aug 2005 B2
6962057 Kurokawa et al. Nov 2005 B2
7007966 Campion Mar 2006 B2
7047747 Tanaka May 2006 B2
7065953 Kopko Jun 2006 B1
7143016 Discenzo et al. Nov 2006 B1
7222015 Davis et al. May 2007 B2
7281519 Schroeder Oct 2007 B2
7388303 Seiver Jun 2008 B2
7404294 Sundin Jul 2008 B2
7442239 Armstrong et al. Oct 2008 B2
7516793 Dykstra Apr 2009 B2
7524173 Cummins Apr 2009 B2
7545130 Latham Jun 2009 B2
7552903 Dunn et al. Jun 2009 B2
7563076 Brunet et al. Jul 2009 B2
7563413 Naets et al. Jul 2009 B2
7574325 Dykstra Aug 2009 B2
7581379 Yoshida et al. Sep 2009 B2
7594424 Fazekas Sep 2009 B2
7614239 Herzog et al. Nov 2009 B2
7627416 Batenburg et al. Dec 2009 B2
7677316 Butler et al. Mar 2010 B2
7721521 Kunkle et al. May 2010 B2
7730711 Kunkle et al. Jun 2010 B2
7779961 Matte Aug 2010 B2
7789452 Dempsey et al. Sep 2010 B2
7836949 Dykstra Nov 2010 B2
7841394 McNeel et al. Nov 2010 B2
7845413 Shampine et al. Dec 2010 B2
7861679 Lemke et al. Jan 2011 B2
7886702 Jerrell et al. Feb 2011 B2
7900724 Promersberger et al. Mar 2011 B2
7921914 Bruins et al. Apr 2011 B2
7938151 Höckner May 2011 B2
7955056 Pettersson Jun 2011 B2
7980357 Edwards Jul 2011 B2
8056635 Shampine et al. Nov 2011 B2
8083504 Williams et al. Dec 2011 B2
8099942 Alexander Jan 2012 B2
8186334 Ooyama May 2012 B2
8196555 Ikeda et al. Jun 2012 B2
8202354 Iijima Jun 2012 B2
8316936 Roddy et al. Nov 2012 B2
8336631 Shampine et al. Dec 2012 B2
8388317 Sung Mar 2013 B2
8414673 Raje et al. Apr 2013 B2
8469826 Brosowske Jun 2013 B2
8500215 Gastauer Aug 2013 B2
8506267 Gambier et al. Aug 2013 B2
8575873 Peterson et al. Nov 2013 B2
8616005 Cousino, Sr. et al. Dec 2013 B1
8621873 Robertson et al. Jan 2014 B2
8641399 Mucibabic Feb 2014 B2
8656990 Kajaria et al. Feb 2014 B2
8672606 Glynn et al. Mar 2014 B2
8707853 Dille et al. Apr 2014 B1
8708667 Collingborn Apr 2014 B2
8714253 Sherwood et al. May 2014 B2
8757918 Ramnarain et al. Jun 2014 B2
8763583 Hofbauer et al. Jul 2014 B2
8770329 Spitler Jul 2014 B2
8784081 Blume Jul 2014 B1
8789601 Broussard et al. Jul 2014 B2
8794307 Coquilleau et al. Aug 2014 B2
8801394 Anderson Aug 2014 B2
8851186 Shampine et al. Oct 2014 B2
8851441 Acuna et al. Oct 2014 B2
8886502 Walters et al. Nov 2014 B2
8894356 Lafontaine et al. Nov 2014 B2
8905056 Kendrick Dec 2014 B2
8951019 Hains et al. Feb 2015 B2
8973560 Krug Mar 2015 B2
8997904 Cryer et al. Apr 2015 B2
9011111 Lesko Apr 2015 B2
9016383 Shampine et al. Apr 2015 B2
9032620 Frassinelli et al. May 2015 B2
9057247 Kumar et al. Jun 2015 B2
9097249 Petersen Aug 2015 B2
9103193 Coli et al. Aug 2015 B2
9121257 Coli et al. Sep 2015 B2
9140110 Coli et al. Sep 2015 B2
9175810 Hains Nov 2015 B2
9187982 Dehring et al. Nov 2015 B2
9206667 Khvoshchev et al. Dec 2015 B2
9212643 Deliyski Dec 2015 B2
9217318 Dusterhoft et al. Dec 2015 B2
9222346 Walls Dec 2015 B1
9297250 Dusterhoft et al. Mar 2016 B2
9324049 Thomeer et al. Apr 2016 B2
9341055 Weightman et al. May 2016 B2
9346662 Van Vliet et al. May 2016 B2
9366114 Coli et al. Jun 2016 B2
9376786 Numasawa Jun 2016 B2
9394829 Cabeen et al. Jul 2016 B2
9395049 Vicknair et al. Jul 2016 B2
9401670 Minato et al. Jul 2016 B2
9410406 Yuan Aug 2016 B2
9410410 Broussard et al. Aug 2016 B2
9410546 Jaeger et al. Aug 2016 B2
9429078 Crowe et al. Aug 2016 B1
9435333 McCoy et al. Sep 2016 B2
9488169 Cochran et al. Nov 2016 B2
9493997 Liu et al. Nov 2016 B2
9512783 Veilleux et al. Dec 2016 B2
9534473 Morris et al. Jan 2017 B2
9546652 Yin Jan 2017 B2
9550501 Ledbetter Jan 2017 B2
9556721 Jang et al. Jan 2017 B2
9562420 Morris et al. Feb 2017 B2
9570945 Fischer Feb 2017 B2
9579980 Cryer et al. Feb 2017 B2
9587649 Behring Mar 2017 B2
9593710 Laimboeck et al. Mar 2017 B2
9611728 Oehring Apr 2017 B2
9617808 Liu et al. Apr 2017 B2
9638101 Crowe et al. May 2017 B1
9638194 Wiegman et al. May 2017 B2
9650871 Oehring et al. May 2017 B2
9656762 Kamath et al. May 2017 B2
9689316 Crom Jun 2017 B1
9695808 Giessbach et al. Jul 2017 B2
9739130 Young Aug 2017 B2
9764266 Carter Sep 2017 B1
9777748 Lu et al. Oct 2017 B2
9803467 Tang et al. Oct 2017 B2
9803793 Davi et al. Oct 2017 B2
9809308 Aguilar et al. Nov 2017 B2
9829002 Crom Nov 2017 B2
9840897 Larson Dec 2017 B2
9840901 Oering et al. Dec 2017 B2
9845730 Betti et al. Dec 2017 B2
9850422 Lestz et al. Dec 2017 B2
9856131 Moffitt Jan 2018 B1
9863279 Laing et al. Jan 2018 B2
9869305 Crowe et al. Jan 2018 B1
9871406 Churnock et al. Jan 2018 B1
9879609 Crowe et al. Jan 2018 B1
RE46725 Case et al. Feb 2018 E
9893500 Oehring et al. Feb 2018 B2
9893660 Peterson et al. Feb 2018 B2
9897003 Motakef et al. Feb 2018 B2
9920615 Zhang et al. Mar 2018 B2
9945365 Hernandez et al. Apr 2018 B2
9964052 Millican et al. May 2018 B2
9970278 Broussard et al. May 2018 B2
9981840 Shock May 2018 B2
9995102 Dillie et al. Jun 2018 B2
9995218 Oehring et al. Jun 2018 B2
10008880 Vicknair et al. Jun 2018 B2
10008912 Davey et al. Jun 2018 B2
10018096 Wallimann et al. Jul 2018 B2
10020711 Oehring et al. Jul 2018 B2
10024123 Steffenhagen et al. Jul 2018 B2
10029289 Wendorski et al. Jul 2018 B2
10030579 Austin et al. Jul 2018 B2
10036238 Oehring Jul 2018 B2
10040541 Wilson et al. Aug 2018 B2
10060293 Del Bono Aug 2018 B2
10060349 Álvarez et al. Aug 2018 B2
10077933 Nelson et al. Sep 2018 B2
10082137 Graham et al. Sep 2018 B2
10094366 Marica Oct 2018 B2
10100827 Devan et al. Oct 2018 B2
10107084 Coli et al. Oct 2018 B2
10107085 Coli et al. Oct 2018 B2
10114061 Frampton et al. Oct 2018 B2
10119381 Oehring et al. Nov 2018 B2
10125750 Pfaff Nov 2018 B2
10134257 Zhang et al. Nov 2018 B2
10138098 Sorensen et al. Nov 2018 B2
10151244 Giancotti et al. Dec 2018 B2
10161423 Rampen Dec 2018 B2
10174599 Shampine et al. Jan 2019 B2
10184397 Austin et al. Jan 2019 B2
10196258 Kalala et al. Feb 2019 B2
10221856 Hernandez et al. Mar 2019 B2
10227854 Glass Mar 2019 B2
10227855 Coli et al. Mar 2019 B2
10246984 Payne et al. Apr 2019 B2
10247182 Zhang et al. Apr 2019 B2
10253598 Crews et al. Apr 2019 B2
10254732 Oehring et al. Apr 2019 B2
10267439 Pryce et al. Apr 2019 B2
10280724 Hinderliter May 2019 B2
10287943 Schiltz May 2019 B1
10288519 De La Cruz May 2019 B2
10303190 Shock May 2019 B2
10305350 Johnson et al. May 2019 B2
10316832 Byrne Jun 2019 B2
10317875 Pandurangan et al. Jun 2019 B2
10329888 Urbancic et al. Jun 2019 B2
10337402 Austin et al. Jul 2019 B2
10358035 Cryer Jul 2019 B2
10371012 Davis et al. Aug 2019 B2
10374485 Morris et al. Aug 2019 B2
10378326 Morris et al. Aug 2019 B2
10393108 Chong et al. Aug 2019 B2
10407990 Oehring et al. Sep 2019 B2
10408031 Oehring et al. Sep 2019 B2
10415348 Zhang et al. Sep 2019 B2
10415557 Crowe et al. Sep 2019 B1
10415562 Kajita et al. Sep 2019 B2
10422207 Aidagulov et al. Sep 2019 B2
RE47695 Case et al. Nov 2019 E
10465689 Crom Nov 2019 B2
10478753 Elms et al. Nov 2019 B1
10526882 Oehring et al. Jan 2020 B2
10563649 Zhang et al. Feb 2020 B2
10570704 Colvin et al. Feb 2020 B2
10577908 Kisra et al. Mar 2020 B2
10577910 Stephenson Mar 2020 B2
10584645 Nakagawa et al. Mar 2020 B2
10590867 Thomassin et al. Mar 2020 B2
10598258 Oehring et al. Mar 2020 B2
10605060 Chuprakov et al. Mar 2020 B2
10610842 Chong Apr 2020 B2
10662749 Hill et al. May 2020 B1
10677961 Chen et al. Jun 2020 B1
10711787 Darley Jul 2020 B1
10738580 Fischer et al. Aug 2020 B1
10753153 Fischer et al. Aug 2020 B1
10753165 Fischer et al. Aug 2020 B1
10760416 Weng et al. Sep 2020 B2
10760556 Crom et al. Sep 2020 B1
10794165 Fischer et al. Oct 2020 B2
10794166 Reckels et al. Oct 2020 B2
10801311 Cui et al. Oct 2020 B1
10815764 Yeung et al. Oct 2020 B1
10815978 Glass Oct 2020 B2
10830032 Zhang et al. Nov 2020 B1
10830225 Repaci Nov 2020 B2
10851633 Harper Dec 2020 B2
10859203 Cui et al. Dec 2020 B1
10864487 Han et al. Dec 2020 B1
10865624 Cui et al. Dec 2020 B1
10865631 Zhang et al. Dec 2020 B1
10870093 Zhong et al. Dec 2020 B1
10871045 Fischer et al. Dec 2020 B2
10900475 Weightman et al. Jan 2021 B2
10907459 Yeung et al. Feb 2021 B1
10914139 Shahri et al. Feb 2021 B2
10920538 Rodriguez Herrera et al. Feb 2021 B2
10920552 Rodriguez Herrera et al. Feb 2021 B2
10927774 Cai et al. Feb 2021 B2
10927802 Oehring Feb 2021 B2
10954770 Yeung et al. Mar 2021 B1
10954855 Ji et al. Mar 2021 B1
10961614 Yeung et al. Mar 2021 B1
10961908 Yeung et al. Mar 2021 B1
10961912 Yeung et al. Mar 2021 B1
10961914 Yeung et al. Mar 2021 B1
10961993 Ji et al. Mar 2021 B1
10961995 Mayorca Mar 2021 B2
10892596 Yeung et al. Apr 2021 B2
10968837 Yeung et al. Apr 2021 B1
10982523 Hill et al. Apr 2021 B1
10989019 Cai et al. Apr 2021 B2
10989180 Yeung et al. Apr 2021 B2
10995564 Miller et al. May 2021 B2
11002189 Yeung et al. May 2021 B2
11008950 Ethier et al. May 2021 B2
11015423 Yeung et al. May 2021 B1
11015536 Yeung et al. May 2021 B2
11015594 Yeung et al. May 2021 B2
11022526 Yeung et al. Jun 2021 B1
11028677 Yeung et al. Jun 2021 B1
11035213 Dusterhoft et al. Jun 2021 B2
11035214 Cui et al. Jun 2021 B2
11047379 Li et al. Jun 2021 B1
10895202 Yeung et al. Jul 2021 B1
11053853 Li et al. Jul 2021 B2
11060455 Yeung et al. Jul 2021 B1
11066915 Yeung et al. Jul 2021 B1
11068455 Shabi et al. Jul 2021 B2
11085281 Yeung et al. Aug 2021 B1
11085282 Mazrooee et al. Aug 2021 B2
11092152 Yeung et al. Aug 2021 B2
11098651 Yeung et al. Aug 2021 B1
11105250 Zhang et al. Aug 2021 B1
11105266 Zhou et al. Aug 2021 B2
11109508 Yeung et al. Aug 2021 B1
11111768 Yeung et al. Sep 2021 B1
11125066 Yeung et al. Sep 2021 B1
11125156 Zhang et al. Sep 2021 B2
11129295 Yeung et al. Sep 2021 B1
11143000 Li et al. Oct 2021 B2
11143005 Dusterhoft et al. Oct 2021 B2
11143006 Zhang et al. Oct 2021 B1
11149533 Yeung et al. Oct 2021 B1
11149726 Yeung et al. Oct 2021 B1
11156159 Yeung et al. Oct 2021 B1
11168681 Boguski Nov 2021 B2
11174716 Yeung et al. Nov 2021 B1
11193360 Yeung et al. Dec 2021 B1
11193361 Yeung et al. Dec 2021 B1
11205880 Yeung et al. Dec 2021 B1
11205881 Yeung et al. Dec 2021 B2
11208879 Yeung et al. Dec 2021 B1
11208953 Yeung et al. Dec 2021 B1
11220895 Yeung et al. Jan 2022 B1
11236739 Yeung et al. Feb 2022 B2
11242737 Zhang et al. Feb 2022 B2
11243509 Cai et al. Feb 2022 B2
11251650 Liu et al. Feb 2022 B1
11261717 Yeung et al. Mar 2022 B2
11268346 Yeung et al. Mar 2022 B2
11280266 Yeung et al. Mar 2022 B2
11306835 Dille et al. Apr 2022 B1
RE49083 Case et al. May 2022 E
11339638 Yeung et al. May 2022 B1
11346200 Cai et al. May 2022 B2
11373058 Jaaskelainen et al. Jun 2022 B2
RE49140 Case et al. Jul 2022 E
11377943 Kriebel et al. Jul 2022 B2
RE49155 Case et al. Aug 2022 E
RE49156 Case et al. Aug 2022 E
11401927 Li et al. Aug 2022 B2
11428165 Yeung et al. Aug 2022 B2
11441483 Li et al. Sep 2022 B2
11448122 Feng et al. Sep 2022 B2
11466680 Yeung et al. Oct 2022 B2
11480040 Han et al. Oct 2022 B2
11492887 Cui et al. Nov 2022 B2
11499405 Zhang et al. Nov 2022 B2
11506039 Zhang et al. Nov 2022 B2
11512570 Yeung Nov 2022 B2
11519395 Zhang et al. Dec 2022 B2
11519405 Deng et al. Dec 2022 B2
11530602 Yeung et al. Dec 2022 B2
11549349 Wang et al. Jan 2023 B2
11555390 Cui et al. Jan 2023 B2
11555756 Yeung et al. Jan 2023 B2
11557887 Ji et al. Jan 2023 B2
11560779 Mao et al. Jan 2023 B2
11560845 Yeung et al. Jan 2023 B2
11572775 Mao et al. Feb 2023 B2
11575249 Ji et al. Feb 2023 B2
11592020 Chang et al. Feb 2023 B2
11596047 Liu et al. Feb 2023 B2
11598263 Yeung et al. Mar 2023 B2
11603797 Zhang et al. Mar 2023 B2
11607982 Tian et al. Mar 2023 B2
11608726 Zhang et al. Mar 2023 B2
11624326 Yeung et al. Apr 2023 B2
11629583 Yeung et al. Apr 2023 B2
11629589 Lin et al. Apr 2023 B2
11649766 Yeung et al. May 2023 B1
11649819 Gillispie May 2023 B2
11662384 Liu et al. May 2023 B2
11668173 Zhang et al. Jun 2023 B2
11668289 Chang et al. Jun 2023 B2
11677238 Liu et al. Jun 2023 B2
20020126922 Cheng et al. Sep 2002 A1
20020197176 Kondo Dec 2002 A1
20030031568 Stiefel Feb 2003 A1
20030061819 Kuroki et al. Apr 2003 A1
20030161212 Neal et al. Aug 2003 A1
20040016245 Pierson Jan 2004 A1
20040074238 Wantanabe et al. Apr 2004 A1
20040076526 Fukano et al. Apr 2004 A1
20040187950 Cohen et al. Sep 2004 A1
20040219040 Kugelev et al. Nov 2004 A1
20050051322 Speer Mar 2005 A1
20050056081 Gocho Mar 2005 A1
20050139286 Poulter Jun 2005 A1
20050196298 Manning Sep 2005 A1
20050226754 Orr et al. Oct 2005 A1
20050274134 Ryu et al. Dec 2005 A1
20060061091 Osterloh Mar 2006 A1
20060062914 Garg et al. Mar 2006 A1
20060155473 Soliman et al. Jul 2006 A1
20060196251 Richey Sep 2006 A1
20060211356 Grassman Sep 2006 A1
20060228225 Rogers Oct 2006 A1
20060260331 Andreychuk Nov 2006 A1
20060272333 Sundin Dec 2006 A1
20070029090 Andreychuk et al. Feb 2007 A1
20070041848 Wood et al. Feb 2007 A1
20070066406 Keller et al. Mar 2007 A1
20070098580 Petersen May 2007 A1
20070107981 Sicotte May 2007 A1
20070125544 Robinson et al. Jun 2007 A1
20070169543 Fazekas Jul 2007 A1
20070181212 Fell Aug 2007 A1
20070272407 Lehman et al. Nov 2007 A1
20070277982 Shampine et al. Dec 2007 A1
20070295569 Manzoor et al. Dec 2007 A1
20080006089 Adnan et al. Jan 2008 A1
20080041594 Boles et al. Feb 2008 A1
20080098891 Feher May 2008 A1
20080161974 Alston Jul 2008 A1
20080212275 Waryck et al. Sep 2008 A1
20080229757 Alexander et al. Sep 2008 A1
20080264625 Ochoa Oct 2008 A1
20080264649 Crawford Oct 2008 A1
20080298982 Pabst Dec 2008 A1
20090053072 Borgstadt et al. Feb 2009 A1
20090064685 Busekros et al. Mar 2009 A1
20090068031 Gambier et al. Mar 2009 A1
20090092510 Williams et al. Apr 2009 A1
20090124191 Van Becelaere et al. May 2009 A1
20090178412 Spytek Jul 2009 A1
20090212630 Flegel et al. Aug 2009 A1
20090249794 Wilkes et al. Oct 2009 A1
20090252616 Brunet et al. Oct 2009 A1
20090308602 Bruins et al. Dec 2009 A1
20100019626 Stout et al. Jan 2010 A1
20100071899 Coquilleau et al. Mar 2010 A1
20100218508 Brown et al. Sep 2010 A1
20100224365 Abad Sep 2010 A1
20100300683 Looper et al. Dec 2010 A1
20100310384 Stephenson et al. Dec 2010 A1
20110030963 Demong et al. Feb 2011 A1
20110041681 Duerr Feb 2011 A1
20110052423 Gambier et al. Mar 2011 A1
20110054704 Karpman et al. Mar 2011 A1
20110067857 Underhill et al. Mar 2011 A1
20110085924 Shampine et al. Apr 2011 A1
20110120702 Craig May 2011 A1
20110120705 Walters et al. May 2011 A1
20110120706 Craig May 2011 A1
20110120718 Craig May 2011 A1
20110125471 Craig et al. May 2011 A1
20110125476 Craig May 2011 A1
20110146244 Farman et al. Jun 2011 A1
20110146246 Farman et al. Jun 2011 A1
20110173991 Dean Jul 2011 A1
20110197988 Van Vliet et al. Aug 2011 A1
20110241888 Lu et al. Oct 2011 A1
20110265443 Ansari Nov 2011 A1
20110272158 Neal Nov 2011 A1
20120023973 Mayorca Feb 2012 A1
20120048242 Sumilla et al. Mar 2012 A1
20120085541 Love et al. Apr 2012 A1
20120137699 Montagne et al. Jun 2012 A1
20120179444 Ganguly et al. Jul 2012 A1
20120192542 Chillar et al. Aug 2012 A1
20120199001 Chillar et al. Aug 2012 A1
20120204627 Anderl et al. Aug 2012 A1
20120255734 Coli et al. Oct 2012 A1
20120310509 Pardo et al. Dec 2012 A1
20120324903 Dewis et al. Dec 2012 A1
20130068307 Hains et al. Mar 2013 A1
20130087045 Sullivan et al. Apr 2013 A1
20130087945 Kusters et al. Apr 2013 A1
20130134702 Boraas et al. May 2013 A1
20130140031 Cohen et al. Jun 2013 A1
20130189915 Hazard Jul 2013 A1
20130205798 Kwok et al. Aug 2013 A1
20130233165 Matzner et al. Sep 2013 A1
20130255953 Tudor Oct 2013 A1
20130259707 Yin Oct 2013 A1
20130284455 Kajaria et al. Oct 2013 A1
20130300341 Gillette Nov 2013 A1
20130306322 Sanborn Nov 2013 A1
20140000668 Lessard Jan 2014 A1
20140010671 Cryer et al. Jan 2014 A1
20140013768 Laing et al. Jan 2014 A1
20140032082 Gehrke et al. Jan 2014 A1
20140044517 Saha et al. Feb 2014 A1
20140048253 Andreychuk Feb 2014 A1
20140090729 Coulter et al. Apr 2014 A1
20140090742 Coskrey et al. Apr 2014 A1
20140094105 Lundh et al. Apr 2014 A1
20140095114 Thomeer et al. Apr 2014 A1
20140095554 Thomeer et al. Apr 2014 A1
20140123621 Driessens et al. May 2014 A1
20140130422 Laing et al. May 2014 A1
20140138079 Broussard et al. May 2014 A1
20140144641 Chandler May 2014 A1
20140147291 Burnette May 2014 A1
20140158345 Jang et al. Jun 2014 A1
20140174097 Hammer et al. Jun 2014 A1
20140196459 Futa et al. Jul 2014 A1
20140216736 Leugemors et al. Aug 2014 A1
20140219824 Burnette Aug 2014 A1
20140250845 Jackson et al. Sep 2014 A1
20140251623 Lestz et al. Sep 2014 A1
20140262232 Dusterhoft et al. Sep 2014 A1
20140277772 Lopez et al. Sep 2014 A1
20140290266 Veilleux, Jr. et al. Oct 2014 A1
20140318638 Harwood et al. Oct 2014 A1
20140322050 Marette et al. Oct 2014 A1
20150027730 Hall et al. Jan 2015 A1
20150075778 Walters et al. Mar 2015 A1
20150078924 Zhang et al. Mar 2015 A1
20150096739 Ghasripoor et al. Apr 2015 A1
20150101344 Jarrier et al. Apr 2015 A1
20150114652 Lestz et al. Apr 2015 A1
20150129210 Chong et al. May 2015 A1
20150135659 Jarrier et al. May 2015 A1
20150159553 Kippel et al. Jun 2015 A1
20150176387 Wutherich Jun 2015 A1
20150192117 Bridges Jul 2015 A1
20150204148 Liu et al. Jul 2015 A1
20150204174 Kresse et al. Jul 2015 A1
20150204322 Iund et al. Jul 2015 A1
20150211512 Wiegman et al. Jul 2015 A1
20150214816 Raad Jul 2015 A1
20150217672 Shampine et al. Aug 2015 A1
20150226140 Zhang et al. Aug 2015 A1
20150252661 Glass Sep 2015 A1
20150275891 Chong et al. Oct 2015 A1
20150337730 Kupiszewski et al. Nov 2015 A1
20150340864 Compton Nov 2015 A1
20150345385 Santini Dec 2015 A1
20150369351 Hermann et al. Dec 2015 A1
20160032703 Broussard et al. Feb 2016 A1
20160032836 Hawkinson et al. Feb 2016 A1
20160076447 Merlo et al. Mar 2016 A1
20160090823 Alzahabi et al. Mar 2016 A1
20160102581 Del Bono Apr 2016 A1
20160105022 Oehring et al. Apr 2016 A1
20160108705 Maxwell et al. Apr 2016 A1
20160108713 Dunaeva et al. Apr 2016 A1
20160123185 Le Pache et al. May 2016 A1
20160168979 Zhang et al. Jun 2016 A1
20160177675 Morris et al. Jun 2016 A1
20160177945 Byrne et al. Jun 2016 A1
20160186671 Austin et al. Jun 2016 A1
20160195082 Wiegman et al. Jul 2016 A1
20160215774 Oklejas et al. Jul 2016 A1
20160230525 Lestz et al. Aug 2016 A1
20160244314 Van Vliet et al. Aug 2016 A1
20160248230 Tawy et al. Aug 2016 A1
20160253634 Thomeer et al. Sep 2016 A1
20160258267 Payne et al. Sep 2016 A1
20160265330 Mazrooee et al. Sep 2016 A1
20160265331 Weng et al. Sep 2016 A1
20160273328 Oehring Sep 2016 A1
20160273346 Tang et al. Sep 2016 A1
20160290114 Oehring et al. Oct 2016 A1
20160319650 Oehring et al. Nov 2016 A1
20160326845 Djikpesse et al. Nov 2016 A1
20160348479 Oehring et al. Dec 2016 A1
20160369609 Morris et al. Dec 2016 A1
20170009905 Arnold Jan 2017 A1
20170016433 Chong et al. Jan 2017 A1
20170030177 Oehring et al. Feb 2017 A1
20170038137 Turney Feb 2017 A1
20170045055 Hoefel et al. Feb 2017 A1
20170051598 Ouenes Feb 2017 A1
20170052087 Faqihi et al. Feb 2017 A1
20170074074 Joseph et al. Mar 2017 A1
20170074076 Joseph et al. Mar 2017 A1
20170074089 Agarwal et al. Mar 2017 A1
20170082110 Lammers Mar 2017 A1
20170089189 Norris et al. Mar 2017 A1
20170114613 Lecerf et al. Apr 2017 A1
20170114625 Norris et al. Apr 2017 A1
20170122310 Ladron de Guevara May 2017 A1
20170131174 Enev et al. May 2017 A1
20170145918 Oehring et al. May 2017 A1
20170177992 Klie Jun 2017 A1
20170191350 Johns et al. Jul 2017 A1
20170218727 Oehring et al. Aug 2017 A1
20170226839 Broussard et al. Aug 2017 A1
20170226842 Omont et al. Aug 2017 A1
20170226998 Zhang et al. Aug 2017 A1
20170227002 Mikulski et al. Aug 2017 A1
20170233103 Teicholz et al. Aug 2017 A1
20170234165 Kersey et al. Aug 2017 A1
20170234308 Buckley Aug 2017 A1
20170241336 Jones et al. Aug 2017 A1
20170241671 Ahmad Aug 2017 A1
20170247995 Crews et al. Aug 2017 A1
20170248034 Dzieciol et al. Aug 2017 A1
20170248208 Tamura Aug 2017 A1
20170248308 Makarychev-Mikhailov et al. Aug 2017 A1
20170254186 Aidagulov et al. Sep 2017 A1
20170275149 Schmidt Sep 2017 A1
20170288400 Williams Oct 2017 A1
20170292409 Aguilar et al. Oct 2017 A1
20170302135 Cory Oct 2017 A1
20170305736 Haile et al. Oct 2017 A1
20170306847 Suciu et al. Oct 2017 A1
20170306936 Dole Oct 2017 A1
20170322086 Luharuka Nov 2017 A1
20170328179 Dykstra et al. Nov 2017 A1
20170333086 Jackson Nov 2017 A1
20170334448 Schwunk Nov 2017 A1
20170335842 Robinson et al. Nov 2017 A1
20170350471 Steidl et al. Dec 2017 A1
20170356470 Jaffrey Dec 2017 A1
20170370199 Witkowski et al. Dec 2017 A1
20170370480 Witkowski et al. Dec 2017 A1
20180016895 Weng et al. Jan 2018 A1
20180034280 Pedersen Feb 2018 A1
20180038328 Louven et al. Feb 2018 A1
20180041093 Miranda Feb 2018 A1
20180045202 Crom Feb 2018 A1
20180038216 Zhang et al. Mar 2018 A1
20180058171 Roesner et al. Mar 2018 A1
20180087499 Zhang et al. Mar 2018 A1
20180087996 De La Cruz Mar 2018 A1
20180149000 Roussel et al. May 2018 A1
20180156210 Oehring et al. Jun 2018 A1
20180172294 Owen Jun 2018 A1
20180183219 Oehring et al. Jun 2018 A1
20180186442 Maier Jul 2018 A1
20180187662 Hill et al. Jul 2018 A1
20180209415 Zhang et al. Jul 2018 A1
20180223640 Keihany et al. Aug 2018 A1
20180224044 Penney Aug 2018 A1
20180229998 Shock Aug 2018 A1
20180230780 Klenner et al. Aug 2018 A1
20180258746 Broussard et al. Sep 2018 A1
20180266412 Stokkevag et al. Sep 2018 A1
20180278124 Oehring et al. Sep 2018 A1
20180283102 Cook Oct 2018 A1
20180283618 Cook Oct 2018 A1
20180284817 Cook et al. Oct 2018 A1
20180290877 Shock Oct 2018 A1
20180291781 Pedrini Oct 2018 A1
20180298731 Bishop Oct 2018 A1
20180298735 Conrad Oct 2018 A1
20180307255 Bishop Oct 2018 A1
20180313456 Bayyouk et al. Nov 2018 A1
20180328157 Bishop Nov 2018 A1
20180334893 Oehring Nov 2018 A1
20180363435 Coli et al. Dec 2018 A1
20180363436 Coli et al. Dec 2018 A1
20180363437 Coli et al. Dec 2018 A1
20180363438 Coli et al. Dec 2018 A1
20190003272 Morris et al. Jan 2019 A1
20190003329 Morris et al. Jan 2019 A1
20190010793 Hinderliter Jan 2019 A1
20190011051 Yeung Jan 2019 A1
20190048993 Akiyama et al. Feb 2019 A1
20190055836 Felkl et al. Feb 2019 A1
20190063263 Davis et al. Feb 2019 A1
20190063341 Davis Feb 2019 A1
20190067991 Davis et al. Feb 2019 A1
20190071946 Painter et al. Mar 2019 A1
20190071992 Feng Mar 2019 A1
20190072005 Fisher et al. Mar 2019 A1
20190078471 Braglia et al. Mar 2019 A1
20190088845 Sugi et al. Mar 2019 A1
20190091619 Huang Mar 2019 A1
20190106316 Van Vliet et al. Apr 2019 A1
20190106970 Oehring Apr 2019 A1
20190112908 Coli et al. Apr 2019 A1
20190112910 Oehring et al. Apr 2019 A1
20190119096 Haile et al. Apr 2019 A1
20190120024 Oehring et al. Apr 2019 A1
20190120031 Gilje Apr 2019 A1
20190120134 Goleczka et al. Apr 2019 A1
20190128247 Douglas, III May 2019 A1
20190128288 Konada et al. May 2019 A1
20190131607 Gillette May 2019 A1
20190136677 Shampine et al. May 2019 A1
20190153843 Headrick May 2019 A1
20190153938 Hammoud May 2019 A1
20190154020 Glass May 2019 A1
20190155318 Meunier May 2019 A1
20190264667 Byrne May 2019 A1
20190169962 Agrawi et al. Jun 2019 A1
20190178234 Beisel Jun 2019 A1
20190178235 Coskrey et al. Jun 2019 A1
20190185312 Bush et al. Jun 2019 A1
20190203572 Morris et al. Jul 2019 A1
20190204021 Morris et al. Jul 2019 A1
20190211661 Reckles et al. Jul 2019 A1
20190211814 Weightman et al. Jul 2019 A1
20190217258 Bishop Jul 2019 A1
20190226317 Payne et al. Jul 2019 A1
20190245348 Hinderliter et al. Aug 2019 A1
20190249652 Stephenson et al. Aug 2019 A1
20190249754 Oehring et al. Aug 2019 A1
20190257297 Botting et al. Aug 2019 A1
20190277279 Byrne et al. Sep 2019 A1
20190277295 Clyburn et al. Sep 2019 A1
20190309585 Miller et al. Oct 2019 A1
20190316447 Oehring et al. Oct 2019 A1
20190316456 Beisel et al. Oct 2019 A1
20190323337 Glass et al. Oct 2019 A1
20190330923 Gable et al. Oct 2019 A1
20190331117 Gable et al. Oct 2019 A1
20190337392 Joshi et al. Nov 2019 A1
20190338762 Curry et al. Nov 2019 A1
20190345920 Surjaatmadja et al. Nov 2019 A1
20190353103 Roberge Nov 2019 A1
20190356199 Morris et al. Nov 2019 A1
20190376449 Carrell Dec 2019 A1
20190383123 Hinderliter Dec 2019 A1
20200003205 Stokkevåg et al. Jan 2020 A1
20200011165 George et al. Jan 2020 A1
20200040878 Morris Feb 2020 A1
20200049136 Stephenson Feb 2020 A1
20200049153 Headrick et al. Feb 2020 A1
20200071998 Oehring et al. Mar 2020 A1
20200072201 Marica Mar 2020 A1
20200088202 Sigmar et al. Mar 2020 A1
20200095854 Hinderliter Mar 2020 A1
20200109610 Husoy et al. Apr 2020 A1
20200109616 Oehring et al. Apr 2020 A1
20200132058 Mollatt Apr 2020 A1
20200141219 Oehring et al. May 2020 A1
20200141326 Redford et al. May 2020 A1
20200141907 Meck et al. May 2020 A1
20200166026 Marica May 2020 A1
20200206704 Chong Jul 2020 A1
20200208733 Kim Jul 2020 A1
20200223648 Herman et al. Jul 2020 A1
20200224645 Buckley Jul 2020 A1
20200225381 Walles et al. Jul 2020 A1
20200232454 Chretien et al. Jul 2020 A1
20200256333 Surjaatmadja Aug 2020 A1
20200263498 Fischer et al. Aug 2020 A1
20200263525 Reid Aug 2020 A1
20200263526 Fischer et al. Aug 2020 A1
20200263527 Fischer et al. Aug 2020 A1
20200263528 Fischer et al. Aug 2020 A1
20200267888 Putz Aug 2020 A1
20200291731 Haiderer et al. Sep 2020 A1
20200295574 Batsch-Smith Sep 2020 A1
20200300050 Oehring et al. Sep 2020 A1
20200309027 Rytkonen Oct 2020 A1
20200309113 Hunter et al. Oct 2020 A1
20200325752 Clark et al. Oct 2020 A1
20200325760 Markham Oct 2020 A1
20200325761 Williams Oct 2020 A1
20200325791 Himmelmann Oct 2020 A1
20200325893 Kraige et al. Oct 2020 A1
20200332784 Zhang et al. Oct 2020 A1
20200332788 Cui et al. Oct 2020 A1
20200340313 Fischer et al. Oct 2020 A1
20200340340 Oehring et al. Oct 2020 A1
20200340344 Reckels et al. Oct 2020 A1
20200340404 Stockstill Oct 2020 A1
20200347725 Morris et al. Nov 2020 A1
20200354928 Wehler et al. Nov 2020 A1
20200355055 Dusterhoft et al. Nov 2020 A1
20200362760 Morenko et al. Nov 2020 A1
20200362764 Saintignan et al. Nov 2020 A1
20200370394 Cai et al. Nov 2020 A1
20200370408 Cai et al. Nov 2020 A1
20200370429 Cai et al. Nov 2020 A1
20200371490 Cai et al. Nov 2020 A1
20200340322 Sizemore et al. Dec 2020 A1
20200386169 Hinderliter et al. Dec 2020 A1
20200386222 Pham et al. Dec 2020 A1
20200388140 Gomez et al. Dec 2020 A1
20200392826 Cui et al. Dec 2020 A1
20200392827 George et al. Dec 2020 A1
20200393088 Sizemore et al. Dec 2020 A1
20200398238 Zhong et al. Dec 2020 A1
20200400000 Ghasripoor et al. Dec 2020 A1
20200400005 Han et al. Dec 2020 A1
20200407625 Stephenson Dec 2020 A1
20200408071 Li et al. Dec 2020 A1
20200408144 Feng et al. Dec 2020 A1
20200408147 Zhang et al. Dec 2020 A1
20200408149 Li et al. Dec 2020 A1
20210010361 Kriebel et al. Jan 2021 A1
20210010362 Kriebel et al. Jan 2021 A1
20210025324 Morris et al. Jan 2021 A1
20210025383 Bodishbaugh et al. Jan 2021 A1
20210032961 Hinderliter et al. Feb 2021 A1
20210054727 Floyd Feb 2021 A1
20210071503 Ogg et al. Mar 2021 A1
20210071574 Feng et al. Mar 2021 A1
20210071579 Li et al. Mar 2021 A1
20210071654 Brunson Mar 2021 A1
20210071752 Cui et al. Mar 2021 A1
20210079758 Yeung et al. Mar 2021 A1
20210079851 Yeung et al. Mar 2021 A1
20210086851 Zhang et al. Mar 2021 A1
20210087883 Zhang et al. Mar 2021 A1
20210087916 Zhang et al. Mar 2021 A1
20210087925 Heidari et al. Mar 2021 A1
20210087943 Cui et al. Mar 2021 A1
20210088042 Zhang et al. Mar 2021 A1
20210123425 Cui et al. Apr 2021 A1
20210123434 Cui et al. Apr 2021 A1
20210123435 Cui et al. Apr 2021 A1
20210131409 Cui et al. May 2021 A1
20210140416 Buckley May 2021 A1
20210148208 Thomas et al. May 2021 A1
20210156240 Cicci et al. May 2021 A1
20210156241 Cook May 2021 A1
20210172282 Wang et al. Jun 2021 A1
20210180517 Zhou et al. Jun 2021 A1
20210190045 Zhang et al. Jun 2021 A1
20210199110 Albert et al. Jul 2021 A1
20210222690 Beisel Jul 2021 A1
20210239112 Buckley Aug 2021 A1
20210246774 Cui et al. Aug 2021 A1
20210270261 Zhang et al. Sep 2021 A1
20210270264 Byrne Sep 2021 A1
20210285311 Ji et al. Sep 2021 A1
20210285432 Ji et al. Sep 2021 A1
20210301807 Cui et al. Sep 2021 A1
20210306720 Sandoval et al. Sep 2021 A1
20210308638 Zhong et al. Oct 2021 A1
20210324718 Anders Oct 2021 A1
20210348475 Yeung et al. Nov 2021 A1
20210348476 Yeung et al. Nov 2021 A1
20210348477 Yeung et al. Nov 2021 A1
20210355927 Jian et al. Nov 2021 A1
20210372394 Bagulayan et al. Dec 2021 A1
20210372395 Li et al. Dec 2021 A1
20210376413 Asfha Dec 2021 A1
20210388760 Feng et al. Dec 2021 A1
20220082007 Zhang et al. Mar 2022 A1
20220090476 Zhang et al. Mar 2022 A1
20220090477 Zhang et al. Mar 2022 A1
20220090478 Zhang et al. Mar 2022 A1
20220112892 Cui et al. Apr 2022 A1
20220120262 Ji et al. Apr 2022 A1
20220145740 Yuan et al. May 2022 A1
20220154775 Liu et al. May 2022 A1
20220155373 Liu et al. May 2022 A1
20220162931 Zhong et al. May 2022 A1
20220162991 Zhang et al. May 2022 A1
20220181859 Ji et al. Jun 2022 A1
20220186724 Chang et al. Jun 2022 A1
20220213777 Cui et al. Jul 2022 A1
20220220836 Zhang et al. Jul 2022 A1
20220224087 Ji et al. Jul 2022 A1
20220228468 Cui et al. Jul 2022 A1
20220228469 Zhang et al. Jul 2022 A1
20220235639 Zhang et al. Jul 2022 A1
20220235640 Mao et al. Jul 2022 A1
20220235641 Zhang et al. Jul 2022 A1
20220235642 Zhang et al. Jul 2022 A1
20220235802 Jiang et al. Jul 2022 A1
20220242297 Tian et al. Aug 2022 A1
20220243613 Ji et al. Aug 2022 A1
20220243724 Li et al. Aug 2022 A1
20220250000 Zhang et al. Aug 2022 A1
20220255319 Liu et al. Aug 2022 A1
20220258659 Cui et al. Aug 2022 A1
20220259947 Li et al. Aug 2022 A1
20220259964 Zhang et al. Aug 2022 A1
20220268201 Feng et al. Aug 2022 A1
20220282606 Zhong et al. Sep 2022 A1
20220282726 Zhang et al. Sep 2022 A1
20220290549 Zhang et al. Sep 2022 A1
20220294194 Cao et al. Sep 2022 A1
20220298906 Zhong et al. Sep 2022 A1
20220307359 Liu et al. Sep 2022 A1
20220307424 Wang et al. Sep 2022 A1
20220314248 Ge et al. Oct 2022 A1
20220315347 Liu et al. Oct 2022 A1
20220316306 Liu et al. Oct 2022 A1
20220316362 Zhang et al. Oct 2022 A1
20220316461 Wang et al. Oct 2022 A1
20220325608 Zhang et al. Oct 2022 A1
20220330411 Liu et al. Oct 2022 A1
20220333471 Zhong et al. Oct 2022 A1
20220339646 Yu et al. Oct 2022 A1
20220341358 Ji et al. Oct 2022 A1
20220341362 Feng et al. Oct 2022 A1
20220341415 Deng et al. Oct 2022 A1
20220345007 Liu et al. Oct 2022 A1
20220349345 Zhang et al. Nov 2022 A1
20220353980 Liu et al. Nov 2022 A1
20220361309 Liu et al. Nov 2022 A1
20220364452 Wang et al. Nov 2022 A1
20220364453 Chang et al. Nov 2022 A1
20220372865 Lin et al. Nov 2022 A1
20220376280 Shao et al. Nov 2022 A1
20220381126 Cui et al. Dec 2022 A1
20220389799 Mao Dec 2022 A1
20220389803 Zhang et al. Dec 2022 A1
20220389804 Cui et al. Dec 2022 A1
20220389865 Feng et al. Dec 2022 A1
20220389867 Li et al. Dec 2022 A1
20220412196 Cui et al. Dec 2022 A1
20220412199 Mao et al. Dec 2022 A1
20220412200 Zhang et al. Dec 2022 A1
20220412258 Li et al. Dec 2022 A1
20220412379 Wang et al. Dec 2022 A1
20230001524 Jiang et al. Jan 2023 A1
20230003238 Du et al. Jan 2023 A1
20230015132 Feng et al. Jan 2023 A1
20230015529 Zhang et al. Jan 2023 A1
20230015581 Ji et al. Jan 2023 A1
20230017968 Deng et al. Jan 2023 A1
20230029574 Zhang et al. Feb 2023 A1
20230029671 Han et al. Feb 2023 A1
20230036118 Xing et al. Feb 2023 A1
20230040970 Liu et al. Feb 2023 A1
20230042379 Zhang et al. Feb 2023 A1
20230047033 Fu et al. Feb 2023 A1
20230048551 Feng et al. Feb 2023 A1
20230049462 Zhang et al. Feb 2023 A1
20230064964 Wang et al. Mar 2023 A1
20230074794 Liu et al. Mar 2023 A1
20230085124 Zhong et al. Mar 2023 A1
20230092506 Zhong et al. Mar 2023 A1
20230092705 Liu et al. Mar 2023 A1
20230106683 Zhang et al. Apr 2023 A1
20230107300 Huang et al. Apr 2023 A1
20230107791 Zhang et al. Apr 2023 A1
20230109018 Du et al. Apr 2023 A1
20230116458 Liu et al. Apr 2023 A1
20230117362 Zhang et al. Apr 2023 A1
20230119725 Wang et al. Apr 2023 A1
20230119876 Mao et al. Apr 2023 A1
20230119896 Zhang et al. Apr 2023 A1
20230120810 Fu et al. Apr 2023 A1
20230121251 Cui et al. Apr 2023 A1
20230124444 Chang et al. Apr 2023 A1
20230138582 Li et al. May 2023 A1
20230144116 Li et al. May 2023 A1
20230145963 Zhang et al. May 2023 A1
20230151722 Cui et al. May 2023 A1
20230151723 Ji et al. May 2023 A1
20230152793 Wang et al. May 2023 A1
20230160289 Cui et al. May 2023 A1
20230160510 Bao et al. May 2023 A1
20230163580 Ji et al. May 2023 A1
20230167776 Cui et al. Jun 2023 A1
Foreign Referenced Citations (634)
Number Date Country
9609498 Jul 1999 AU
737970 Sep 2001 AU
2043184 Aug 1994 CA
2829762 Sep 2012 CA
2737321 Sep 2013 CA
2876687 May 2014 CA
2693567 Sep 2014 CA
2964597 Oct 2017 CA
2876687 Apr 2019 CA
3138533 Nov 2020 CA
2919175 Mar 2021 CA
2622404 Jun 2004 CN
2779054 May 2006 CN
2890325 Apr 2007 CN
200964929 Oct 2007 CN
101323151 Dec 2008 CN
201190660 Feb 2009 CN
201190892 Feb 2009 CN
201190893 Feb 2009 CN
101414171 Apr 2009 CN
201215073 Apr 2009 CN
201236650 May 2009 CN
201275542 Jul 2009 CN
201275801 Jul 2009 CN
201333385 Oct 2009 CN
201443300 Apr 2010 CN
201496415 Jun 2010 CN
201501365 Jun 2010 CN
201507271 Jun 2010 CN
101323151 Jul 2010 CN
201560210 Aug 2010 CN
201581862 Sep 2010 CN
201610728 Oct 2010 CN
201610751 Oct 2010 CN
201618530 Nov 2010 CN
201661255 Dec 2010 CN
101949382 Jan 2011 CN
201756927 Mar 2011 CN
101414171 May 2011 CN
102128011 Jul 2011 CN
102140898 Aug 2011 CN
102155172 Aug 2011 CN
102182904 Sep 2011 CN
202000930 Oct 2011 CN
202055781 Nov 2011 CN
202082265 Dec 2011 CN
202100216 Jan 2012 CN
202100217 Jan 2012 CN
202100815 Jan 2012 CN
202124340 Jan 2012 CN
202140051 Feb 2012 CN
202140080 Feb 2012 CN
202144789 Feb 2012 CN
202144943 Feb 2012 CN
202149354 Feb 2012 CN
102383748 Mar 2012 CN
202156297 Mar 2012 CN
202158355 Mar 2012 CN
202163504 Mar 2012 CN
202165236 Mar 2012 CN
202180866 Apr 2012 CN
202181875 Apr 2012 CN
202187744 Apr 2012 CN
202191854 Apr 2012 CN
202250008 May 2012 CN
101885307 Jul 2012 CN
102562020 Jul 2012 CN
202326156 Jul 2012 CN
202370773 Aug 2012 CN
202417397 Sep 2012 CN
202417461 Sep 2012 CN
102729335 Oct 2012 CN
202463955 Oct 2012 CN
202463957 Oct 2012 CN
202467739 Oct 2012 CN
202467801 Oct 2012 CN
202531016 Nov 2012 CN
202544794 Nov 2012 CN
102825039 Dec 2012 CN
202578592 Dec 2012 CN
202579164 Dec 2012 CN
202594808 Dec 2012 CN
202594928 Dec 2012 CN
202596615 Dec 2012 CN
202596616 Dec 2012 CN
102849880 Jan 2013 CN
102889191 Jan 2013 CN
202641535 Jan 2013 CN
202645475 Jan 2013 CN
202666716 Jan 2013 CN
202669645 Jan 2013 CN
202669944 Jan 2013 CN
202671336 Jan 2013 CN
202673269 Jan 2013 CN
202751982 Feb 2013 CN
102963629 Mar 2013 CN
202767964 Mar 2013 CN
202789791 Mar 2013 CN
202789792 Mar 2013 CN
202810717 Mar 2013 CN
202827276 Mar 2013 CN
202833093 Mar 2013 CN
202833370 Mar 2013 CN
102140898 Apr 2013 CN
202895467 Apr 2013 CN
202926404 May 2013 CN
202935216 May 2013 CN
202935798 May 2013 CN
202935816 May 2013 CN
202970631 Jun 2013 CN
103223315 Jul 2013 CN
203050598 Jul 2013 CN
103233714 Aug 2013 CN
103233715 Aug 2013 CN
103245523 Aug 2013 CN
103247220 Aug 2013 CN
103253839 Aug 2013 CN
103277290 Sep 2013 CN
103321782 Sep 2013 CN
203170270 Sep 2013 CN
203172509 Sep 2013 CN
203175778 Sep 2013 CN
203175787 Sep 2013 CN
102849880 Oct 2013 CN
203241231 Oct 2013 CN
203244941 Oct 2013 CN
203244942 Oct 2013 CN
203303798 Nov 2013 CN
102155172 Dec 2013 CN
102729335 Dec 2013 CN
103420532 Dec 2013 CN
203321792 Dec 2013 CN
203412658 Jan 2014 CN
203420697 Feb 2014 CN
203480755 Mar 2014 CN
103711437 Apr 2014 CN
203531815 Apr 2014 CN
203531871 Apr 2014 CN
203531883 Apr 2014 CN
203556164 Apr 2014 CN
203558809 Apr 2014 CN
203559861 Apr 2014 CN
203559893 Apr 2014 CN
203560189 Apr 2014 CN
102704870 May 2014 CN
203611843 May 2014 CN
203612531 May 2014 CN
203612843 May 2014 CN
203614062 May 2014 CN
203614388 May 2014 CN
203621045 Jun 2014 CN
203621046 Jun 2014 CN
203621051 Jun 2014 CN
203640993 Jun 2014 CN
203655221 Jun 2014 CN
103899280 Jul 2014 CN
103923670 Jul 2014 CN
203685052 Jul 2014 CN
203716936 Jul 2014 CN
103990410 Aug 2014 CN
103993869 Aug 2014 CN
203754009 Aug 2014 CN
203754025 Aug 2014 CN
203754341 Aug 2014 CN
203756614 Aug 2014 CN
203770264 Aug 2014 CN
203784519 Aug 2014 CN
203784520 Aug 2014 CN
104057864 Sep 2014 CN
203819819 Sep 2014 CN
203823431 Sep 2014 CN
203835337 Sep 2014 CN
104074500 Oct 2014 CN
203876633 Oct 2014 CN
203876636 Oct 2014 CN
203877364 Oct 2014 CN
203877365 Oct 2014 CN
203877375 Oct 2014 CN
203877424 Oct 2014 CN
203879476 Oct 2014 CN
203879479 Oct 2014 CN
203890292 Oct 2014 CN
203899476 Oct 2014 CN
203906206 Oct 2014 CN
104150728 Nov 2014 CN
104176522 Dec 2014 CN
104196464 Dec 2014 CN
104234651 Dec 2014 CN
203971841 Dec 2014 CN
203975450 Dec 2014 CN
204020788 Dec 2014 CN
204021980 Dec 2014 CN
204024625 Dec 2014 CN
204051401 Dec 2014 CN
204060661 Dec 2014 CN
104260672 Jan 2015 CN
104314512 Jan 2015 CN
204077478 Jan 2015 CN
204077526 Jan 2015 CN
204078307 Jan 2015 CN
204083051 Jan 2015 CN
204113168 Jan 2015 CN
104340682 Feb 2015 CN
104358536 Feb 2015 CN
104369687 Feb 2015 CN
104402178 Mar 2015 CN
104402185 Mar 2015 CN
104402186 Mar 2015 CN
204209819 Mar 2015 CN
204224560 Mar 2015 CN
204225813 Mar 2015 CN
204225839 Mar 2015 CN
104533392 Apr 2015 CN
104563938 Apr 2015 CN
104563994 Apr 2015 CN
104563995 Apr 2015 CN
104563998 Apr 2015 CN
104564033 Apr 2015 CN
204257122 Apr 2015 CN
204283610 Apr 2015 CN
204283782 Apr 2015 CN
204297682 Apr 2015 CN
204299810 Apr 2015 CN
103223315 May 2015 CN
104594857 May 2015 CN
104595493 May 2015 CN
104612647 May 2015 CN
104612928 May 2015 CN
104632126 May 2015 CN
204325094 May 2015 CN
204325098 May 2015 CN
204326983 May 2015 CN
204326985 May 2015 CN
204344040 May 2015 CN
204344095 May 2015 CN
104727797 Jun 2015 CN
204402414 Jun 2015 CN
204402423 Jun 2015 CN
204402450 Jun 2015 CN
103247220 Jul 2015 CN
104803568 Jul 2015 CN
204436360 Jul 2015 CN
204457524 Jul 2015 CN
204472485 Jul 2015 CN
204473625 Jul 2015 CN
204477303 Jul 2015 CN
204493095 Jul 2015 CN
204493309 Jul 2015 CN
103253839 Aug 2015 CN
104820372 Aug 2015 CN
104832093 Aug 2015 CN
104863523 Aug 2015 CN
204552723 Aug 2015 CN
204553866 Aug 2015 CN
204571831 Aug 2015 CN
204703814 Oct 2015 CN
204703833 Oct 2015 CN
204703834 Oct 2015 CN
105092401 Nov 2015 CN
103233715 Dec 2015 CN
103790927 Dec 2015 CN
105207097 Dec 2015 CN
204831952 Dec 2015 CN
204899777 Dec 2015 CN
102602323 Jan 2016 CN
105240064 Jan 2016 CN
204944834 Jan 2016 CN
205042127 Feb 2016 CN
205172478 Apr 2016 CN
103993869 May 2016 CN
105536299 May 2016 CN
105545207 May 2016 CN
205260249 May 2016 CN
103233714 Jun 2016 CN
104340682 Jun 2016 CN
205297518 Jun 2016 CN
205298447 Jun 2016 CN
205391821 Jul 2016 CN
205400701 Jul 2016 CN
103277290 Aug 2016 CN
104260672 Aug 2016 CN
205477370 Aug 2016 CN
205479153 Aug 2016 CN
205503058 Aug 2016 CN
205503068 Aug 2016 CN
205503089 Aug 2016 CN
105958098 Sep 2016 CN
205599180 Sep 2016 CN
205599180 Sep 2016 CN
106121577 Nov 2016 CN
205709587 Nov 2016 CN
104612928 Dec 2016 CN
106246120 Dec 2016 CN
205805471 Dec 2016 CN
106321045 Jan 2017 CN
205858306 Jan 2017 CN
106438310 Feb 2017 CN
205937833 Feb 2017 CN
104563994 Mar 2017 CN
206129196 Apr 2017 CN
104369687 May 2017 CN
106715165 May 2017 CN
106761561 May 2017 CN
105240064 Jun 2017 CN
206237147 Jun 2017 CN
206287832 Jun 2017 CN
206346711 Jul 2017 CN
104563995 Sep 2017 CN
107120822 Sep 2017 CN
107143298 Sep 2017 CN
107159046 Sep 2017 CN
107188018 Sep 2017 CN
206496016 Sep 2017 CN
104564033 Oct 2017 CN
107234358 Oct 2017 CN
107261975 Oct 2017 CN
206581929 Oct 2017 CN
104820372 Dec 2017 CN
105092401 Dec 2017 CN
107476769 Dec 2017 CN
107520526 Dec 2017 CN
206754664 Dec 2017 CN
107605427 Jan 2018 CN
106438310 Feb 2018 CN
107654196 Feb 2018 CN
107656499 Feb 2018 CN
107728657 Feb 2018 CN
206985503 Feb 2018 CN
207017968 Feb 2018 CN
107859053 Mar 2018 CN
207057867 Mar 2018 CN
207085817 Mar 2018 CN
105545207 Apr 2018 CN
107883091 Apr 2018 CN
107902427 Apr 2018 CN
107939290 Apr 2018 CN
107956708 Apr 2018 CN
207169595 Apr 2018 CN
207194873 Apr 2018 CN
207245674 Apr 2018 CN
108034466 May 2018 CN
108036071 May 2018 CN
108087050 May 2018 CN
207380566 May 2018 CN
108103483 Jun 2018 CN
108179046 Jun 2018 CN
108254276 Jul 2018 CN
108311535 Jul 2018 CN
207583576 Jul 2018 CN
207634064 Jul 2018 CN
207648054 Jul 2018 CN
207650621 Jul 2018 CN
108371894 Aug 2018 CN
207777153 Aug 2018 CN
108547601 Sep 2018 CN
108547766 Sep 2018 CN
108555826 Sep 2018 CN
108561098 Sep 2018 CN
108561750 Sep 2018 CN
108590617 Sep 2018 CN
207813495 Sep 2018 CN
207814698 Sep 2018 CN
207862275 Sep 2018 CN
108687954 Oct 2018 CN
207935270 Oct 2018 CN
207961582 Oct 2018 CN
207964530 Oct 2018 CN
108789848 Nov 2018 CN
108799473 Nov 2018 CN
108868675 Nov 2018 CN
208086829 Nov 2018 CN
208089263 Nov 2018 CN
208169068 Nov 2018 CN
108979569 Dec 2018 CN
109027662 Dec 2018 CN
109058092 Dec 2018 CN
208179454 Dec 2018 CN
208179502 Dec 2018 CN
208253147 Dec 2018 CN
208260574 Dec 2018 CN
109114418 Jan 2019 CN
109141990 Jan 2019 CN
208313120 Jan 2019 CN
208330319 Jan 2019 CN
208342730 Jan 2019 CN
208430982 Jan 2019 CN
208430986 Jan 2019 CN
109404274 Mar 2019 CN
109429610 Mar 2019 CN
109491318 Mar 2019 CN
109515177 Mar 2019 CN
109526523 Mar 2019 CN
109534737 Mar 2019 CN
208564504 Mar 2019 CN
208564516 Mar 2019 CN
208564525 Mar 2019 CN
208564918 Mar 2019 CN
208576026 Mar 2019 CN
208576042 Mar 2019 CN
208650818 Mar 2019 CN
208669244 Mar 2019 CN
109555484 Apr 2019 CN
109682881 Apr 2019 CN
208730959 Apr 2019 CN
208735264 Apr 2019 CN
208746733 Apr 2019 CN
208749529 Apr 2019 CN
208750405 Apr 2019 CN
208764658 Apr 2019 CN
109736740 May 2019 CN
109751007 May 2019 CN
208868428 May 2019 CN
208870761 May 2019 CN
109869294 Jun 2019 CN
109882144 Jun 2019 CN
109882372 Jun 2019 CN
209012047 Jun 2019 CN
209100025 Jul 2019 CN
110080707 Aug 2019 CN
110118127 Aug 2019 CN
110124574 Aug 2019 CN
110145277 Aug 2019 CN
110145399 Aug 2019 CN
110152552 Aug 2019 CN
110155193 Aug 2019 CN
110159225 Aug 2019 CN
110159432 Aug 2019 CN
110159432 Aug 2019 CN
110159433 Aug 2019 CN
110208100 Sep 2019 CN
110252191 Sep 2019 CN
110284854 Sep 2019 CN
110284972 Sep 2019 CN
209387358 Sep 2019 CN
110374745 Oct 2019 CN
209534736 Oct 2019 CN
110425105 Nov 2019 CN
110439779 Nov 2019 CN
110454285 Nov 2019 CN
110454352 Nov 2019 CN
110467298 Nov 2019 CN
110469312 Nov 2019 CN
110469314 Nov 2019 CN
110469405 Nov 2019 CN
110469654 Nov 2019 CN
110485982 Nov 2019 CN
110485983 Nov 2019 CN
110485984 Nov 2019 CN
110486249 Nov 2019 CN
110500255 Nov 2019 CN
110510771 Nov 2019 CN
110513097 Nov 2019 CN
209650738 Nov 2019 CN
209653968 Nov 2019 CN
209654004 Nov 2019 CN
209654022 Nov 2019 CN
209654128 Nov 2019 CN
209656622 Nov 2019 CN
107849130 Dec 2019 CN
108087050 Dec 2019 CN
110566173 Dec 2019 CN
110608030 Dec 2019 CN
110617187 Dec 2019 CN
110617188 Dec 2019 CN
110617318 Dec 2019 CN
209740823 Dec 2019 CN
209780827 Dec 2019 CN
209798631 Dec 2019 CN
209799942 Dec 2019 CN
209800178 Dec 2019 CN
209855723 Dec 2019 CN
209855742 Dec 2019 CN
209875063 Dec 2019 CN
110656919 Jan 2020 CN
107520526 Feb 2020 CN
110787667 Feb 2020 CN
110821464 Feb 2020 CN
110833665 Feb 2020 CN
110848028 Feb 2020 CN
210049880 Feb 2020 CN
210049882 Feb 2020 CN
210097596 Feb 2020 CN
210105817 Feb 2020 CN
210105818 Feb 2020 CN
210105993 Feb 2020 CN
110873093 Mar 2020 CN
210139911 Mar 2020 CN
110947681 Apr 2020 CN
111058810 Apr 2020 CN
111075391 Apr 2020 CN
210289931 Apr 2020 CN
210289932 Apr 2020 CN
210289933 Apr 2020 CN
210303516 Apr 2020 CN
211412945 Apr 2020 CN
111089003 May 2020 CN
111151186 May 2020 CN
111167769 May 2020 CN
111169833 May 2020 CN
111173476 May 2020 CN
111185460 May 2020 CN
111185461 May 2020 CN
111188763 May 2020 CN
111206901 May 2020 CN
111206992 May 2020 CN
111206994 May 2020 CN
210449044 May 2020 CN
210460875 May 2020 CN
210522432 May 2020 CN
210598943 May 2020 CN
210598945 May 2020 CN
210598946 May 2020 CN
210599194 May 2020 CN
210599303 May 2020 CN
210600110 May 2020 CN
111219326 Jun 2020 CN
111350595 Jun 2020 CN
210660319 Jun 2020 CN
210714569 Jun 2020 CN
210769168 Jun 2020 CN
210769169 Jun 2020 CN
210769170 Jun 2020 CN
210770133 Jun 2020 CN
210825844 Jun 2020 CN
210888904 Jun 2020 CN
210888905 Jun 2020 CN
210889242 Jun 2020 CN
111397474 Jul 2020 CN
111412064 Jul 2020 CN
111441923 Jul 2020 CN
111441925 Jul 2020 CN
111503517 Aug 2020 CN
111515898 Aug 2020 CN
111594059 Aug 2020 CN
111594062 Aug 2020 CN
111594144 Aug 2020 CN
211201919 Aug 2020 CN
211201920 Aug 2020 CN
211202218 Aug 2020 CN
111608965 Sep 2020 CN
111664087 Sep 2020 CN
111677476 Sep 2020 CN
111677647 Sep 2020 CN
111692064 Sep 2020 CN
111692065 Sep 2020 CN
211384571 Sep 2020 CN
211397553 Sep 2020 CN
211397677 Sep 2020 CN
211500955 Sep 2020 CN
211524765 Sep 2020 CN
4004854 Aug 1991 DE
4241614 Jun 1994 DE
102009022859 Dec 2010 DE
102012018825 Mar 2014 DE
102013111655 Dec 2014 DE
102015103872 Oct 2015 DE
102013114335 Dec 2020 DE
0835983 Apr 1998 EP
1378683 Jan 2004 EP
2143916 Jan 2010 EP
2613023 Jul 2013 EP
3095989 Nov 2016 EP
3211766 Aug 2017 EP
3049642 Apr 2018 EP
3354866 Aug 2018 EP
3075946 May 2019 EP
2795774 Jun 1999 FR
474072 Oct 1937 GB
1438172 Jun 1976 GB
S57135212 Feb 1984 JP
20020026398 Apr 2002 KR
13562 Apr 2000 RU
1993020328 Oct 1993 WO
2006025886 Mar 2006 WO
2009023042 Feb 2009 WO
2011119668 Sep 2011 WO
20110133821 Oct 2011 WO
2012139380 Oct 2012 WO
2013158822 Oct 2013 WO
PCTCN2012074945 Nov 2013 WO
2013185399 Dec 2013 WO
2015073005 May 2015 WO
2015158020 Oct 2015 WO
2016014476 Jan 2016 WO
2016033983 Mar 2016 WO
2016078181 May 2016 WO
2016086138 Jun 2016 WO
2016101374 Jun 2016 WO
2016112590 Jul 2016 WO
2016186790 Nov 2016 WO
2017123656 Jul 2017 WO
2017146279 Aug 2017 WO
2017213848 Dec 2017 WO
2018031029 Feb 2018 WO
2018038710 Mar 2018 WO
2018044293 Mar 2018 WO
2018044307 Mar 2018 WO
2018071738 Apr 2018 WO
2018084871 May 2018 WO
2018101909 Jun 2018 WO
2018101912 Jun 2018 WO
2018106210 Jun 2018 WO
2018106225 Jun 2018 WO
2018106252 Jun 2018 WO
2018132106 Jul 2018 WO
2018125176 Jul 2018 WO
2018152051 Aug 2018 WO
2018156131 Aug 2018 WO
2018160171 Sep 2018 WO
2018075034 Oct 2018 WO
2018187346 Oct 2018 WO
2018031031 Feb 2019 WO
2019045691 Mar 2019 WO
2019046680 Mar 2019 WO
2019060922 Mar 2019 WO
2019117862 Jun 2019 WO
2019126742 Jun 2019 WO
2019147601 Aug 2019 WO
2019169366 Sep 2019 WO
2019195651 Oct 2019 WO
2019200510 Oct 2019 WO
2019210417 Nov 2019 WO
2020018068 Jan 2020 WO
2020046866 Mar 2020 WO
2020072076 Apr 2020 WO
2020076569 Apr 2020 WO
2020097060 May 2020 WO
2020104088 May 2020 WO
2020131085 Jun 2020 WO
2020211083 Oct 2020 WO
2020211086 Oct 2020 WO
2021038604 Mar 2021 WO
2021038604 Mar 2021 WO
2021041783 Mar 2021 WO
Non-Patent Literature Citations (115)
Entry
US 11,555,493 B2, 01/2023, Chang et al. (withdrawn)
AFGlobal Corporation, Durastim Hydraulic Fracturing Pump, A Revolutionary Design for Continuous Duty Hydraulic Fracturing, 2018.
Spm® QEM 5000 E-Frac Pump Specification Sheet, Weir Group (2019) (“Weir 5000”).
Green Field Energy Services Natural Gas Driven Turbine Frac Pumps HHP Summit Presentation, Yumpu (Sep. 2012), https://www.yumpu.com/en/document/read/49685291/turbine-frac-pump-assembly-hhp (“Green Field”).
Dowell B908 “Turbo-Jet” Operator's Manual.
Jereh Debut's Super-power Turbine Fracturing Pump, Leading the Industrial Revolution, Jereh Oilfield Services Group (Mar. 19, 2014), https://www.prnewswire.com/news-releases/jereh-debuts-super-power-turbine-fracturing-pump-leading-the-industrial-revolution-250992111.html.
Jereh Apollo 4500 Turbine Frac Pumper Finishes Successful Field Operation in China, Jereh Group (Feb. 13, 2015), as available on Apr. 20, 2015, https://web.archive.org/web/20150420220625/https://www. prnewswire.com/news-releases/jereh-apollo-4500-turbine-frac-pumper-finishes-successful-field-operation-in-china-300035829.html.
35% Economy Increase, Dual-fuel System Highlighting Jereh Apollo Frac Pumper, Jereh Group (Apr. 13, 2015), https://www.jereh.com/en/news/press-release/news-detail-7345.htm.
Hydraulic Fracturing: Gas turbine proves successful in shale gas field operations, Vericor (2017), https://www.vericor.com/wp-content/ uploads/2020/02/7.-Fracing-4500hp-Pump-China-En.pdf (“Vericor Case Study”).
Jereh Apollo Turbine Fracturing Pumper Featured on China Central Television, Jereh Group (Mar. 9, 2018), https://www.jereh.com/en/ news/press-release/news-detail-7267.htm.
Jereh Unveiled New Electric Fracturing Solution at OTC 2019, Jereh Group (May 7, 2019), as available on May 28, 2019, https://web.archive.org/web/20190528183906/https://www.prnewswire .com/news-releases/jereh-unveiled-new-electric-fracturing-solution-at-otc-2019-300845028.html.
Jereh Group, Jereh Fracturing Unit, Fracturing Spread, YouTube (Mar. 30, 2015), https://www.youtube.com/watch?v=PIkDbU5dE0o.
Transcript of Jereh Group, Jereh Fracturing Unit, Fracturing Spread, YouTube (Mar. 30, 2015).
Jereh Group, Jereh Fracturing Equipment. YouTube (Jun. 8, 2015), https://www.youtube.com/watch?v=m0vMiq84P4Q.
Transcript of Jereh Group, Jereh Fracturing Equipment, YouTube (Jun. 8, 2015), https://www.youtube.com/watch?v=m0vMiq84P4Q.
Ferdinand P. Beer et al., Mechanics of Materials (6th ed. 2012).
Weir Oil & Gas Introduces Industry's First Continuous Duty 5000-Horsepower Pump, Weir Group (Jul. 25, 2019), https://www.global. weir/newsroom/news-articles/weir-oil-and-gas-introduces-industrys-first-continuous-duty-5000-horsepower-pump/.
2012 High Horsepower Summit Agenda, Natural Gas for High Horsepower Applications (Sep. 5, 2012).
Review of HHP Summit 2012, Gladstein, Neandross & Associates https://www.gladstein.org/gna-conferences/high-horsepower-summit-2012/.
Green Field Energy Services Deploys Third New Hydraulic Fracturing System, Green Field Energy Services, Inc. (Jul. 11, 2012), https://www.prnewswire.com/news-releases/green-field-energy-services-deploys-third-new-hydraulic-fracturing-spread-162113425.
Karen Boman, Turbine Technology Powers Green Field Multi-Fuel Frack Pump, Rigzone (Mar. 7, 2015), as available on Mar. 14, 2015, https://web.archive.org/web/20150314203227/https://www.rigzone.com/news/oil-gas/a/124883/Turbine_Technology_Powers_Green_Field_MultiFuel_Frack_Pump.
“Turbine Frac Units,” WMD Squared (2012), https://wmdsquared.com/ work/gfes-turbine-frac-units/.
Leslie Turj, Green Field asset sale called ‘largest disposition industry has seen,’ The INDsider Media (Mar. 19, 2014), http://theind.com/ article-16497-green-field-asset-sale-called-%E2%80%98largest-disposition-industry-has-seen%60.html.
“Honghua developing new-generation shale-drilling rig, plans testing of frac pump”; Katherine Scott; Drilling Contractor; May 23, 2013; accessed at https://www.drillingcontractor.org/honghua-developing-new-generation-shale-drilling-rig-plans-testing-of-frac-pump-23278.
Researchgate, Answer by Byron Woolridge, found at https://www.researchgate.net/post/How_can_we_improve_the_efficiency_of_the_gas_turbine_cycles, Jan. 1, 2013.
Filipović, Ivan, Preliminary Selection of Basic Parameters of Different Torsional Vibration Dampers Intended for use in Medium-Speed Diesel Engines, Transactions of Famena XXXVI-3 (2012).
Marine Turbine Technologies, 1 MW Power Generation Package, http://marineturbine.com/power-generation, 2017.
Business Week: Fiber-optic cables help fracking, cablinginstall.com. Jul. 12, 2013. https://www.cablinginstall.com/cable/article/16474208/businessweek-fiberoptic-cables-help-fracking.
Fracking companies switch to electric motors to power pumps, iadd-intl.org. Jun. 27, 2019. https://www.iadd-intl.org/articles/fracking-companies-switch-to-electric-motors-to-power-pumps/.
The Leader in Frac Fueling, suncoastresources.com. Jun. 29, 2015. https://web.archive.org/web/20150629220609/https://www.suncoastresources.com/oilfield/fueling-services/.
Mobile Fuel Delivery, atlasoil.com. Mar. 6, 2019. https://www.atlasoil.com/nationwide-fueling/onsite-and-mobile-fueling.
Frac Tank Hose (FRAC), 4starhose.com. Accessed: Nov. 10, 2019. http://www.4starhose.com/product/frac_tank_hose_frac.aspx.
Plos One, Dynamic Behavior of Reciprocating Plunger Pump Discharge Valve Based on Fluid Structure Interaction and Experimental Analysis. Oct. 21, 2015.
FMC Technologies, Operation and Maintenance Manual, L06 Through L16 Triplex Pumps Doc No. OMM50000903 Rev: E p. 1 of 66. Aug. 27, 2009.
Gardner Denver Hydraulic Fracturing Pumps GD 3000 https://www.gardnerdenver.com/en-us/pumps/triplex-fracking-pump-gd-3000.
Lekontsev, Yu M., et al. “Two-side sealer operation.” Journal of Mining Science 49.5 (2013): 757-762.
Tom Hausfeld, GE Power & Water, and Eldon Schelske, Evolution Well Services, TM2500+ Power for Hydraulic Fracturing.
FTS International's Dual Fuel Hydraulic Fracturing Equipment Increases Operational Efficiencies, Provides Cost Benefits, Jan. 3, 2018.
CNG Delivery, Fracturing with natural gas, dual-fuel drilling with CNG, Aug. 22, 2019.
PbNG, Natural Gas Fuel for Drilling and Hydraulic Fracturing, Diesel Displacement / Dual Fuel & Bi-Fuel, May 2014.
Integrated Flow, Skid-mounted Modular Process Systems, Jul. 15, 2017, https://ifsolutions.com/why-modular/.
Cameron, A Schlumberger Company, Frac Manifold Systems, 2016.
ZSi-Foster, Energy | Solar | Fracking | Oil and Gas, Aug. 2020, https://www.zsi-foster.com/energy-solar-fracking-oil-and-gas.html.
JBG Enterprises, Inc., Ws-Series Blowout Prevention Safety Coupling—Quick Release Couplings, Sep. 11, 2015, http://www.jgbhose.com/products/WS-Series-Blowout-Prevention-Safety-Coupling.asp.
Halliburton, Vessel-based Modular Solution (VMS), 2015.
Chun, M. K., H. K. Song, and R. Lallemand. “Heavy duty gas turbines in petrochemical plants: Samsung's Daesan plant (Korea) beats fuel flexibility records with over 95% hydrogen in process gas.” Proceedings of PowerGen Asia Conference, Singapore. 1999.
Wolf, Jürgen J., and Marko A. Perkavec. “Safety Aspects and Environmental Considerations for a 10 MW Cogeneration Heavy Duty Gas Turbine Burning Coke Oven Gas with 60% Hydrogen Content.” ASME 1992 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers Digital Collection, 1992.
Ginter, Timothy, and Thomas Bouvay. “Uprate options for the MS7001 heavy duty gas turbine.” GE paper GER-3808C, GE Energy 12 (2006).
Chaichan, Miqdam Tariq. “The impact of equivalence ratio on performance and emissions of a hydrogen-diesel dual fuel engine with cooled exhaust gas recirculation.” International Journal of Scientific & Engineering Research 6.6 (2015): 938-941.
Ecob, David J., et al. “Design and Development of a Landfill Gas Combustion System for the Typhoon Gas Turbine.” ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers Digital Collection, 1996.
II-VI Marlow Industries, Thermoelectric Technologies in Oil, Gas, and Mining Industries, blog.marlow.com (Jul. 24, 2019).
B.M. Mahlalela, et al., .Electric Power Generation Potential Based on Waste Heat and Geothermal Resources in South Africa, pangea.stanford.edu (Feb. 11, 2019).
Department of Energy, United States of America, The Water-Energy Nexus: Challenges and Opportunities purenergypolicy.org (Jun. 2014).
Ankit Tiwari, Design of a Cooling System for a Hydraulic Fracturing Equipment, The Pennsylvania State University, The Graduate School, College of Engineering, 2015.
Jp Yadav et al., Power Enhancement of Gas Turbine Plant by Intake Air Fog Cooling, Jun. 2015.
Mee Industries: Inlet Air Fogging Systems for Oil, Gas and Petrochemical Processing, Verdict Media Limited Copyright 2020.
M. Ahmadzadehtalatapeh et al.Performance enhancement of gas turbine units by retrofitting with inlet air cooling technologies (IACTs): an hour-by-hour simulation study, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Mar. 2020.
Advances in Popular Torque-Link Solution Offer OEMs Greater Benefit, Jun. 21, 2018.
Emmanuel Akita et al., Mewbourne College of Earth & Energy, Society of Petroleum Engineers; Drilling Systems Automation Technical Section (DSATS); 2019.
PowerShelter Kit II, nooutage.com, Sep. 6, 2019.
EMPengineering.com, HEMP Resistant Electrical Generators / Hardened Structures HEMP/GMD Shielded Generators, Virginia, Nov. 3, 2012.
Blago Minovski, Coupled Simulations of Cooling and Engine Systems for Unsteady Analysis of the Benefits of Thermal Engine Encapsulation, Department of Applied Mechanics, Chalmers University of Technology Groteborg, Sweden 2015.
J. Porteiro et al., Feasibility of a new domestic CHP trigeneration with heat pump: II. Availability analysis. Design and development, Applied Thermal Engineering 24 (2004) 1421-1429.
ISM, What is Cracking Pressure, 2019.
Swagelok, The right valve for controlling flow direction? Check, 2016.
Technology.org, Check valves how do they work and what are the main type, 2018.
Europump and Hydrualic Institute, Variable Speed Pumping: A Guide to Successful Applications, Elsevier Ltd, 2004.
Capstone Turbine Corporation, Capstone Receives Three Megawatt Order from Large Independent Oil & Gas Company in Eagle Ford Shale Play, Dec. 7, 2010.
Wikipedia, Westinghouse Combustion Turbine Systems Division, https://en.wikipedia.org/wiki/Westinghouse_Combustion_Turbine_Systems_Division, circa 1960.
Wikipedia, Union Pacific GTELs, https://en.wikipedia.org/wiki/Union_Pacific_GTELs, circa 1950.
HCI Jet Frac, Screenshots from YouTube, Dec. 11, 2010. https://www.youtube.com/watch?v=6HjXkdbFaFQ.
AFD Petroleum Ltd., Automated Hot Zone, Frac Refueling System, Dec. 2018.
Eygun, Christiane, et al., URTeC: 2687987, Mitigating Shale Gas Developments Carbon Footprint: Evaluating and Implementing Solutions in Argentina, Copyright 2017, Unconventional Resources Technology Conference.
Walzel, Brian, Hart Energy, Oil, Gas Industry Discovers Innovative Solutions to Environmental Concerns, Dec. 10, 2018.
Frac Shack, Bi-Fuel FracFueller brochure, 2011.
Pettigrew, Dana, et al., High Pressure Multi-Stage Centrifugal Pump for 10,000 psi Frac Pump—HPHPS Frac Pump, Copyright 2013, Society of Petroleum Engineers, SPE 166191.
Elle Seybold, et al., Evolution of Dual Fuel Pressure Pumping for Fracturing: Methods, Economics, Field Trial Results and Improvements in Availability of Fuel, Copyright 2013, Society of Petroleum Engineers, SPE 166443.
Wallace, E.M., Associated Shale Gas: From Flares to Rig Power, Copyright 2015, Society of Petroleum Engineers, SPE-173491-MS.
Williams, C.W. (Gulf Oil Corp. Odessa Texas), The Use of Gas-turbine Engines in an Automated High-Pressure Water-Injection Stations; American Petroleum Institute; API-63-144 (Jan. 1, 1963).
Neal, J.C. (Gulf Oil Corp. Odessa Texas), Gas Turbine Driven Centrifugal Pumps for High Pressure Water Injection; American Institute of Mining, Metallurgical and Petroleum Engineers, Inc.; SPE-1888 (1967).
Porter, John A. (Solar Division International Harvester Co.), Modern Industrial Gas Turbines for the Oil Field; American Petroleum Institute; Drilling and Production Practice; API-67-243 (Jan. 1, 1967).
Cooper et al., Jet Frac Porta-Skid—A New Concept in Oil Field Service Pump Equipments[sic]; Halliburton Services; SPE-2706 (1969).
Ibragimov, É.S., Use of gas-turbine engines in oil field pumping units; Chem Petrol Eng; (1994) 30: 530. https://doi.org/10.1007/BF01154919. (Translated from Khimicheskaya i Neftyanoe Mashinostroenie, No. 11, pp. 24-26, Nov. 1994.).
Kas'yanov et al., Application of gas turbine engines in pumping units complexes of hydraulic fracturing of oil and gas reservoirs; Exposition Oil & Gas; (Oct. 2012) (published in Russian).
American Petroleum Institute. API 674: Positive Displacement Pumps—Reciprocating. 3rd ed. Washington, DC: API Publishing Services, 2010.
American Petroleum Institute. API 616: Gas Turbines for the Petroleum, Chemical, and Gas Industry Services. 5th ed. Washington, DC: API Publishing Services, 2011.
Karassik, Igor, Joseph Messina, Paul Cooper, and Charles Heald. Pump Handbook. 4th ed. New York: McGraw-Hill Education, 2008.
Weir SPM. Weir SPM General Catalog: Well Service Pumps, Flow Control Products, Manifold Trailers, Safety Products, Post Sale Services. Ft. Worth, TX: Weir Oil & Gas. May 28, 2016. https://www.pumpfundamentals.com/pumpdatabase2/weir-spm-general.pdf.
The Weir Group, Inc. Weir SPM Pump Product Catalog. Ft. Worth, TX: S.P.M. Flow Control, Inc. Oct. 30, 2017. https://manage global.weir/assets/files/product%20brochures/SPM_2P140706_Pump_Product_Catalogue_View.pdf.
Shandong Saigao Group Corporation. Q4 (5W115) Quintuplex Plunger Pump. Jinan City, Shandong Province, China: Saigao. Oct. 20, 2014. https://www.saigaogroup.com/product/q400-5w115-quintuplex-plunger-pump.html.
Marine Turbine. Turbine Powered Frac Units. Franklin, Louisiana: Marine Turbine Technologies, 2020.
Rotating Right. Quintuplex Power Pump Model Q700. Edmonton, Alberta, Canada: Weatherford International Ltd. https://www.rotatingright.com/pdf/weatherford/RR%2026-Weatherford%20Model%20Q700.pdf, 2021.
CanDyne Pump Services, Inc. Weatherford Q700 Pump. Calgary, Alberta, Canada: CanDyne Pump Services. Aug. 15, 2015. http://candyne.com/wp-content/uploads/2014/10/181905-94921.q700-quintuplex-pump.pdf.
Arop, Julius Bankong. Geomechanical review of hydraulic fracturing technology. Thesis (M. Eng.). Cambridge, MA: Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering. Oct. 29, 2013. https://dspace.mit.edu/handle/1721.1/82176.
Final written decision of PGR2021-00102 dated Feb. 6, 2023.
Final written decision of PGR2021-00103 dated Feb. 6, 2023.
Rigmaster Machinery Ltd., Model: 2000 RMP-6-PLEX, brochure, downloaded at https://www.rigmastermachinery.com/_files/ugd/431e62_eaecd77c9fe54af8b13d08396072da67.pdf.
De Gevigney et al., “Analysis of no-load dependent power losses in a planetary gear train by using thermal network method”, International Gear Conference 2014: Aug. 26-28, 2014, Lyon, pp. 615-624.
Special-Purpose Couplings for Petroleum, Chemical, and Gas Industry Services, API Standard 671 (4th Edition) (2010).
The Application of Flexible Couplings for Turbomachinery, Jon R. Mancuso et al., Proceedings of the Eighteenthturbomachinery Symposium (1989).
Pump Control With Variable Frequency Drives, Kevin Tory, Pumps & Systems: Advances in Motors and Drives, Reprint from Jun. 2008.
Fracture Design and Stimulation, Mike Eberhard, P.E., Wellconstruction & Operations Technical Workshop Insupport of the EPA Hydraulic Fracturing Study, Mar. 10-11, 2011.
General Purpose vs. Special Purpose Couplings, Jon Mancuso, Proceedings of the Twenty-Third Turbomachinerysymposium (1994).
Overview of Industry Guidance/Best Practices on Hydraulic Fracturing (HF), American Petroleum Institute, © 2012.
API Member Companies, American Petroleum Institute, WaybackMachine Capture, https://web.archive.org/web/20130424080625/http://api.org/globalitems/globalheaderpages/membership/api-member-companies, accessed Jan. 4, 2021.
API's Global Industry Services, American Petroleum Institute, © Aug. 2020.
About API, American Petroleum Institute, https://www.api.org /about, accessed Dec. 30, 2021.
About API, American Petroleum Institute, WaybackMachine Capture, https://web.archive.org/web/20110422104346 / http://api.org/aboutapi/, captured Apr. 22, 2011.
Publications, American Petroleum Institute, WaybackMachine Capture, https://web.archive.org/web/20110427043936 / http://www.api.org:80/Publications/, captured Apr. 27, 2011.
Procedures for Standards Development, American Petroleum Institute, Third Edition (2006).
WorldCat Library Collections Database Records for API Standard 671 and API Standard 674, https://www.worldcat.org/title/positive-displacement-pumps-reciprocating/oclc/ 858692269&referer=brief_results, accessed Dec. 30, 2021; and https://www.worldcat.org/title/special-purpose-couplings-for-petroleum-chemical-and-gas-industry-services/oclc/871254217&referer=brief_results, accessed Dec. 22, 2021.
2011 Publications and Services, American Petroleum Institute (2011).
Standards, American Petroleum Institute, WaybackMachine Capture, https://web.archive.org/web/20110207195046/ http:/www.api.org/Standards/, captured Feb. 7, 2011; and https://web.archive.org/web/20110204112554/http://global.ihs.com/?RID=API1, captured Feb. 4, 2011.
IHS Markit Standards Store, https://global.ihs.com/doc_detail.cfm?document_name=API%20STD%20674&item_s_key=00010672#doc-detail-history-anchor, accessed Dec. 30, 2021; and https://global.ihs.com/doc_detail.cfm?&input_doc_number=671&input_doc_title=&document_name=API%20STD%20671&item_s_key=00010669&item_key_date=890331&origin=DSSC, accessed Dec. 30, 2021.
Dziubak, Tadeusz, “Experimental Studies of Dust Suction Irregularity from Multi-Cyclone Dust Collector of Two-Stage Air Filter”, Energies 2021, 14, 3577, 28 pages.
Related Publications (1)
Number Date Country
20230092199 A1 Mar 2023 US
Provisional Applications (2)
Number Date Country
62705356 Jun 2020 US
62705332 Jun 2020 US
Continuations (4)
Number Date Country
Parent 17555919 Dec 2021 US
Child 18072478 US
Parent 17500217 Oct 2021 US
Child 17555919 US
Parent 17308330 May 2021 US
Child 17500217 US
Parent 17182489 Feb 2021 US
Child 17308330 US