1. Field of the Invention
The present invention relates generally to work benches. More specifically the present invention relates to a work bench for assembling stair stringers.
2. Discussion of the Related Art
A typical staircase is comprised of an alternating series of treads and risers that form the individual steps of the staircase. The treads, and in most cases the risers, are supported by a pair of stair stringers that form part of the staircase structure. Stair stringers are frequently constructed at a construction worksite where the staircase is to be constructed.
To construct a typical stair stringer, a carpenter will “layout” a stair stringer by marking a single 2×12, 2×14 or other sized piece of lumber with layout lines. The layout lines identify the contour or shape of the stair stringer. The shape of the stair stringer generally comprises an elongated beam with multiple triangular edges that support the individual treads and risers. The carpenter saws along the layout lines that define the triangular edges leaving a stair stringer. The carpenter will then usually dispose of the remaining pieces of lumber as waste.
A matching stair stinger is constructed similarly. The carpenter carefully marks a single piece of lumber with layout lines and saws a complementary stair stringer from the single piece of lumber. The carpenter typically disposes of the remaining lumber as waste. The stair stringer and the matching stair stringer are then installed parallel to each other. Treads and risers are attached to the pair of stair stringer forming a staircase.
It can be appreciated that the carpenter must carefully layout and saw the stair stringer and matching stair stringer to allow accurate placement of the treads and risers. It can also be appreciated that the task of cutting stair stringers from a single piece of lumber is a time consuming task; particularly, since most carpenters at a worksite spend a very small proportion of their time at this task. Moreover, lumber waste is an undesirable residue of this process.
Those skilled in the art will recognize that there is a need for an apparatus that allows a carpenter to: quickly, easily and accurately construct the stair stringers of a staircase with little lumber waste. It can also be appreciated that an apparatus that can be used to make stair stringers at a lumberyard would allow carpenters to specialize in constructing stair stringers, allowing mass production of stair stringers for multiple construction worksites. Applicant's invention addresses these needs as well as other needs.
In one embodiment, the invention can be characterized as a stair making apparatus, comprising: a bench adapted to support a plurality of members and a beam; a stop fixture connected to the bench, the stop fixture having a plurality of stops for individually engaging each of the plurality of members; and one or more fasteners connected with the bench, the one or more fasteners configured to cooperate with the plurality of stops to brace the beam and the plurality of members in a form of a stair stringer.
In a further embodiment, the invention may be characterized as a stop fixture for making stair stringers, the stop fixture comprising: a rotatable shaft having a first threaded end and a second threaded end, a first stop coupled to the first threaded end of the rotatable shaft, the first stop for engaging a first member; and a last stop coupled to the second threaded end of the rotatable shaft, the last stop for engaging a last member.
In still another embodiment, the invention may be characterized as a stop fixture for making stair stringers, the stop fixture comprising: a shaft; a first stop coupled to the shaft for engaging a first member; a second stop adjacent to the first stop and coupled to the shaft at a predetermined distance from the first stop, the second stop for engaging a second member; a third stop adjacent to the second stop and coupled to the shaft at the predetermined distance from the second member, the third stop for engaging a third member; and means for translating the second stop and the third stop, wherein when the second stop and the third stop are translated a first distance between the first stop and the second stop remains substantially equal to a second distance between the second stop and the third stop.
The above and other aspects, features and advantages of several embodiments of the present invention will be more apparent from the following more particular description thereof, presented in conjunction with the following drawings.
Corresponding reference characters indicate corresponding components throughout the several views of the drawings. Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of various embodiments of the present invention. Also, common but well-understood elements that are useful or necessary in a commercially feasible embodiment are often not depicted in order to facilitate a less obstructed view of these various embodiments of the present invention.
The following description is not to be taken in a limiting sense, but is made merely for the purpose of describing the general principles of exemplary embodiments. The scope of the invention should be determined with reference to the claims.
The stair stringer assembly bench 102 shown in
The stair stringer assembly bench 102 supports the beam 120 and the plurality of members 122. The plurality of stops 118 in this embodiment are spaced uniformly and are shaped to engage the substantially right angle tips of the plurality of members 122. The plurality of stops 118 cooperates with the plurality of fasteners 108 to secure the plurality of members 122 and the beam 120 in the form of a stair stringer. In this and many other embodiments the hand wheel 114 is operable to uniformly adjust the distance between stops allowing the carpenter to increase or decrease the separation between the plurality of members 122. This provides the bench with the capability to accommodate different sizes and shapes of beams and members for a variety of different types and sizes of stair stringers.
A positioning tape 116 in many embodiments allows the carpenter to easily inspect the distance between members. Markings may be used in conjunction with the position tape place to show typical distances or indicate appropriate stop positions for a variety of different sizes and types of stair stringers. The positioning tape 116 thus may be used by the carpenter to quickly adjust the stop distances using the hand wheel 114.
Those skilled in the art will readily recognize that there are many alternative embodiments that include different stop separation measuring features. For example, some embodiments feature a meter mechanically connected to the hand wheel that provides numeric indicia of the separation between the plurality of stops 118. Other embodiments feature no positioning tape 116 or measuring device.
In this embodiment, the fasteners 108 are wing nut clamps and the plurality of stops 118 have embedded springs. The wing nut clamps can be tightened forcing the beam 120 and the plurality of members 122 up against the plurality of stops 118 compressing the embedded springs and bracing the beam 120 and the plurality of members 122 in the form of a stair stringer.
Alternate embodiments feature different types of fasteners 108 and stops. In some embodiments the plurality of stops 118 do not include embedded springs. In some embodiments the fasteners 108 are spring loaded. In some embodiments the stair stringer assembly bench 102 features grooved edges and cutouts for securing the beam 120 to the plurality of members 122.
In this embodiment, the pneumatic press 106 is slide-ably mounted on the stair stringer assembly bench 120. The pneumatic press 106 can be moved along the bench as can be seen by the different positions of the pneumatic press 106 in
In alternate embodiments, the pneumatic press 106 is embodied as a mechanical, hydraulic or other type of press. Still other embodiments feature no press at all with the carpenter securing the beam 120 to the plurality of members 122 with other fastening products such as glue, non-press ties or the like. The use of both metallic and nonmetallic ties in conjunction with the stair stringer assembly bench 120 is contemplated.
The left support 110 and right support 112 can be used to hold the beam 120 or in other embodiments a plurality of beams. A convenient use of the left support 110 and right support 112 is manifest by placing the beam 120 in the supports before the plurality of members 122 are placed on the plurality of stops 118. The beam 120 may then easily be lifted, rotated into place and secured with the fasteners 108 as shown in
It can be appreciated that the stair stringer assembly bench can be used to quickly and accurately assemble a stair stringer. The carpenter adjusts the plurality of stops 118 using the hand wheel 114. He then places the plurality of members 122 into the plurality of stops 118, lifts and rotates the beam 120 into place and uses the pneumatic press 106 to apply ties to secure the beam 120 to the plurality of members 122. The carpenter then flips the resulting stair stringer form and pushes the beam 120 against the plurality of stops 118 and applies ties to the other side of the stair stringer form completing the stair stringer.
Those skilled in the art will recognize that the stair stringer assembly bench may be used in an assembly line fashion. Lumberyards and other retailers can use the assembly bench to mass produce stair stringer assemblies for contractors saving the contractors time, effort and money.
To construct the members of the stair stringer, the riser dimension 406 and tread dimension 408 are determined. In this exemplary case, the riser dimension 406 and the tread dimension 408 are both 9.0 inches. The riser dimension 406 of 9.0 inches and the tread dimension 408 of 9.0 inches results in a step to step dimension of about 12.75 inches. The step to step dimension for different riser dimensions and tread dimensions can be calculated using the Pythagorean Theorem.
Step to Step Dimension=Square root of [(riser dimension)2+tread dimension squared)2]
To fashion two of the plurality of members 122 the carpenter can cut a rectangular piece from corner to corner. The rectangular piece should have a precut riser dimension 412 and tread dimension 414 that accounts for cutting loss. In this case, the precut riser dimension 412 and the precut tread dimension 414 are both 9.07 inches.
In this example, the riser dimension 406 and tread dimension 408 are the same. However, the calculations are equally valid for stair stringers having different sized treads and risers.
Dimension A 402 represents the upper portion of the stair stringer that will extend beyond the risers and the treads. Dimension B 404 represents the lower portion of the stair stringer that will extend beyond the risers and the treads. Those skilled in the art will recognize that the carpenter assembling the stair stringer should know either dimension A 402 or dimension B 404 when assembling the stair stringer, to insure proper alignment of the 120 beam with the plurality of members 122 on the stair stringer assembly bench (not shown).
Those skilled in the art will recognize that this is an exemplary embodiment of the stair stringer assembly bench and that in other embodiments some of the parts shown may be embodied as different structures or their function may be incorporated in other parts.
In this embodiment, turning the hand wheel 114 rotates the shaft causing the first stop assembly 603 to translate along the threaded section 610 and causing the last stop assembly 605 to translate along the reverse threaded section 612. This results in the panagraph 608 expanding or contracting depending on the direction of rotation of the hand wheel 114. The expansion or contraction of the panagraph 608 causes the plurality of stop assemblies 604 to move sympathetically. As the stop assemblies 604 move sympathetically, the distances between the plurality of stops 118 changes synchronously and uniformly.
Those skilled in the art will recognize that this synchronous and uniform change allows a carpenter to easily adjust the distance between the plurality of stops 118. The distance can thus easily be set to the step to step distance of the stair stringer. After setting the distance the carpenter can quickly and easily place the plurality of members (not shown) flush against the stops.
It can be readily recognized that the parts used to construct stop fixture 104 are exemplary and that other embodiments feature different designs and structures that allow a carpenter to easily adjust the distance between the plurality of stops 118.
When a carpenter turns the hand wheel 806 the rotation gear 808 turns proportionately. The rotation gear 808 turns the meter gear 810 as well as the shaft supporting the stop assemblies (not shown). The display 804 shows the amount of movement of the stop assemblies connected to the shaft. A reset button 814 allows the carpenter to reset the display value to a nominal value. Using the shaft rotation assembly and meter assembly 800 the carpenter can easily adjusts the relative distances between stops allowing the carpenter to set the appropriate step to step distance for the stair stringer the carpenter is assembling.
The spring 910 applies a force to the base 902 and the head 904. The force separates the base 902 from the head 904 when the stop 900 is in its quiescent state. When the edge of one of the plurality of members (not shown) is pressed up against the contoured tip 906, a force is applied the spring 910 compressing the spring 910 and applying a reaction force to the member. As explained above, the stop 900 cooperates with the plurality of fasteners 108 to hold the beam (not shown) and the plurality of members (not shown) in the form of a stair stringer.
The pneumatic press 106 is generally U shaped and is attached to a mount 1002 via a pin 1004. The mount 1002 is slide-ably attached to the stair stringer assembly bench 102. The mount 1002 has a rotation guide 1006 proximate to the pneumatic press 106. The pneumatic press 106 includes a piston chamber 1008 surrounding a piston 1012 that terminates in a press 1010. The piston chamber 1008 and the piston are mounted via a rotating joint 1013. In complementary relationship with the press 1010 is a rotating anvil 1014.
Apparent in
In operation, air forces the piston 1012 down on to one of the plurality of ties 202. The force causes the rotating joint 1013 to rotate and the rotatable anvil 1014 to swivel substantially normal to the applied force. In addition, the pneumatic press 106 rotates relative to the mount via pin 1004 and is guided by the guide 1006. The rotating joint 1013, the rotating anvil 1014 and the pin 1004 cooperate and insure that most of the pneumatic forces during operation are distributed throughout the pneumatic press 106 with only a small amount of force being transferred the stair stringer assembly bench.
While the invention herein disclosed has been described by means of specific embodiments, examples and applications thereof, numerous modifications and variations could be made thereto by those skilled in the art without departing from the scope of the invention set forth in the claims.
Number | Name | Date | Kind |
---|---|---|---|
1647365 | Kalgren | Nov 1927 | A |
2017775 | Thrasher | Oct 1935 | A |
3250014 | Watson | May 1966 | A |
3579184 | Forestal | May 1971 | A |
4033025 | Jureit et al. | Jul 1977 | A |
4047282 | Jureit et al. | Sep 1977 | A |
4427191 | Hess | Jan 1984 | A |
4552345 | Benda et al. | Nov 1985 | A |
4628577 | Dahlgren et al. | Dec 1986 | A |
4635416 | Ayala | Jan 1987 | A |
4673011 | Lapeyre et al. | Jun 1987 | A |
4764015 | Bieringer et al. | Aug 1988 | A |
4817693 | Schuler | Apr 1989 | A |
4874156 | Goldzweig | Oct 1989 | A |
5098066 | Willcox, III | Mar 1992 | A |
5190266 | Barrera | Mar 1993 | A |
5205093 | Schuette | Apr 1993 | A |
5305992 | Kish | Apr 1994 | A |
5330216 | Schnell | Jul 1994 | A |
5592793 | Damratowski et al. | Jan 1997 | A |
6088977 | Lawrence | Jul 2000 | A |
6125598 | Lanphier | Oct 2000 | A |
6481767 | Pool | Nov 2002 | B2 |
RE37928 | Howard | Dec 2002 | E |
6675541 | Mackey | Jan 2004 | B2 |
7587790 | McCue et al. | Sep 2009 | B2 |
7587802 | Tsuchiya et al. | Sep 2009 | B2 |
7600744 | Liou | Oct 2009 | B2 |
7798187 | Duginske | Sep 2010 | B1 |
20020195446 | Galloway | Dec 2002 | A1 |
20090308004 | Mannon | Dec 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20090308004 A1 | Dec 2009 | US |