This invention relates to stairlifts and, in particular, to the safety system of a stairlift.
In a curved stairlift installation the angle of the stairlift rail varies with respect to a horizontal plane. As the stairlift carriage moves over a transition bend (a bend in a vertical plane) the chair mounted on that carriage, must be kept level. In the embodiment of stairlift described in our European Patent No. 0 738 232 the chair is pivotally mounted on the carriage and a chair levelling motor operates to keep the chair level as the angle of the rail varies.
An arrangement of the type shown in EP 0 738 232 gives rise to a concern that, in the event of failure of the chair levelling motor and/or transmission, the chair could rotate in an uncontrolled manner relative to the carriage. Obviously, in the event of such a failure, a person seated in the chair could be injured. Mindful of the possibility of such failures, EP 0 738 232 also describes the use of a back-up safety arrangement in which a pair of mercury switches trigger the release of a locking pin when the chair angle reaches a predetermined off-level upper limit on either side of a central, level, position. The locking pin, in turn, extends into a locating aperture in the chair interface so as to lock the position of the chair relative to the carriage. The locking mechanism also triggers the main safety circuit which brings the carriage to a halt.
Since the filing of EP 0 738 278 it has become commonplace to substitute a single analogue tilt sensor for the mercury switches however, in common with the mercury switches, a tilt sensor only gives an output signal when the off-level limit is reached.
This off-level limit is typically 5° however, because the chair may have built up considerable momentum before the failure is detected, the locking mechanism triggered, and the locking mechanism engages, the applicable standards prescribe that that chair must be brought to a halt within 15° of vertical.
This problem is addressed in our International Patent Application WO2008/142372. This patent application describes an arrangement in which movement of the levelling drive, and rotational movement of the chair are separately monitored using encoders. In the event that the encoder readings vary, a spring loaded pin is released by a solenoid to engage in a slot formed in an indexing ring attached to the chair. The indexing ring is provided with a series of slots with the intention that, should the locking pin be released, it will engage in that slot which, when the pin is released, is located closest to the pin.
Whilst this solution offers significant improvements over that which preceded it, it still presents the following issues:
It is an object of the invention to provide a safety method and apparatus for a stairlift which will go at least some way in addressing the aforementioned problems; or which will at least provide a novel and useful choice.
Accordingly, in a first aspect the invention provides a method of providing a safety facility for a stairlift having a carriage moveable along a rail; a chair pivotally mounted on said carriage; a levelling motor operable to pivot said chair relative to said carriage; and a transmission linking the output of said levelling motor to said chair, said method being characterised in that it includes providing a geared surface which moves with pivotal movement of said chair; and a locking mechanism in at least partial mesh with said geared surface such that, in the event of failure of said transmission, said geared surface engages said locking mechanism.
In a second aspect the invention provides a stairlift having a carriage moveable along a rail; a chair pivotally mounted on said carriage; a levelling motor operable to pivot said chair relative to said carriage; and a transmission linking the output of said levelling motor to said chair, said stairlift being characterised in that it further includes a geared surface which is moveable with pivotal movement of said chair; and a locking mechanism in at least partial mesh with said driven gear such that, in the event of failure of said transmission, said geared surface engages said locking mechanism.
Preferably said locking mechanism is operatively connected to said transmission.
Preferably said geared surface is incorporated in a wheel, an axis of said wheel coinciding with a pivot axis of said chair.
Preferably said wheel engages with or forms part of said transmission. Preferably said locking mechanism comprises or includes a rotating gear, the speed of said rotating gear being linked to the speed of rotation of said transmission.
Preferably said locking mechanism and said transmission incorporate substantially identical worm gears engaging a worm wheel.
Preferably said worm gears are positioned to engage different arcs of said worm wheel.
Preferably said worm gears are positioned to engage said worm wheel substantially at opposite ends of a diameter of said wheel.
Preferably said worm gears are interconnected by a belt drive configured to effect contra-rotation of the locking gear relative to the transmission gear.
In one embodiment said transmission includes a primary drive stage and a secondary drive stage.
Preferably said locking mechanism is connected to said secondary drive stage.
Preferably said locking mechanism and said secondary drive stage each include a worm gear mounted to rotate about a substantially common axis.
Preferably said secondary drive stage is non back-winding.
Many variations in the way the present invention can be performed will present themselves to those skilled in the art. The description which follows is intended as an illustration only of two possible means of performing the invention and the lack of description of variants or equivalents should not be regarded as limiting. Wherever possible, a description of a specific element should be deemed to include any and all equivalents thereof whether in existence now or in the future.
One preferred form of the invention will now be described with reference to the accompanying drawings in which:
Referring to
The drive pinion 10 engages a rack 11 so that as the drive motor rotates, the carriage 6 is driven along the rail 7.
A chair 12 is mounted on the carriage 6 so that the chair can pivot relative to the carriage 6. As shown the chair is mounted on a chair interface 14 and it is the interface which is directly and pivotally connected to the carriage.
The pivotal movement of the chair 12 relative to the carriage 6 is effected by a motor and transmission which will be described in greater detail below. The motor and transmission, together with a safety back-up arrangement also described in detail below, is contained with box A in
Turning now to
A transmission is provided to transmit the rotation of the motor 15 to the pinion 18. In the form shown this transmission comprises a first worm gear 19 mounted on the output shaft 16 of the motor 15 and arranged to fully mesh with teeth 20 provided about the periphery of the pinion 18 which will be referred to hereafter as a worm wheel. For stairlift seat levelling applications such as described herein, the worm wheel 18 will rotate clockwise and anti-clockwise through a maximum of about 90°.
In our European Patent (EP) 0 738 232 we describe a method of controlling the operation of the motor 15 to ensure that the chair is maintained level as the angle of the rail 7 varies relative to a horizontal plane, however other forms of levelling are also possible and the present invention is not limited in application to the levelling arrangement described in EP0738232.
The present invention has been devised to ensure safety is maintained in the event of failure within the chair levelling motor 15, between the output shaft 16 and the first worm gear 19, or between the first worm gear 19 and the worm wheel 18. In the absence of a suitable safety mechanism, failure of any of these types would result in uncontrolled rotation of the chair 12 and likely injury to a person seated in the chair.
In accordance with the invention a safety back-up arrangement is provided comprising a locking mechanism which is in a least partial mesh with a geared surface. The geared surface, and thus the locking mechanism, move with pivotal movement of the chair in a manner that maintains the partial mesh between the two components yet also maintains a clearance between the two. However, in the event of failure in the chair levelling drive, the locking mechanism and geared surface can engage and lock the position of the chair relative to the carriage.
We have found it convenient to incorporate the geared surface of the back-up arrangement into the worm wheel 18 and to configure the locking mechanism as a second worm gear 21. The second worm gear 21 is rotated in sync with the first worm gear 19 and this can be readily effected by positioning the worm gears to engage opposite ends of a diameter of the worm wheel 18 and inter-linking the gears to ensure synchronicity. In the form shown the worm gears are interconnected using a cross-over belt 22 which runs between pulleys 23 fixed to the upper edges of the gears 19 & 21. This arrangement causes the second worm gear 21 to contra-rotate relative to the first worm gear 19. As an alternative the gears could be interconnected using a gear train or flexi-drive arrangement. As a further alternative the worm gear 21 could be powered by an independent motor and gearbox controlled to operate, in reverse, at a speed linked to that of the motor 15 and worm gear 19.
It will be seen from
An advantage of using a worm gear as the back-up locking gear is that the worm gear 21 is self-locking and will not back-drive. Further, should wear between the drive worm gear 19 and the worm wheel 18 get to such an extent as to allow the worm wheel 18 into contact with the second worm gear 21, the resultant torque would cause the belt 22 to slip or jump with respect to the pulleys 23 thus leading to the system locking and the stairlift being brought to a halt.
As well as locking the worm wheel 18 to the second worm gear 21 in the event of failure in the levelling drive, the invention also provides a facility for cutting power to the main stairlift drive motor 10 and the levelling motor 15 in the event of the safety back-up being activated. In the embodiment shown this facility allows the second worm gear 21 to be linearly displaced along its axis in a manner which will be better understood with reference to
Depending on the orientation of the stairlift in the event of failure in the levelling drive system and the resultant engagement of the second worm gear 21 by the worm wheel 18, the second worm gear 21 will be displaced axially up (
Turning now to
In broad terms the transmission housing 42 contains a primary drive stage, a secondary drive stage and a safety back-up stage or locking mechanism to ensure safety in the event of failure of secondary drive stage. In this particular embodiment the safety back-up stage does not provide back-up in the event of failure in the primary drive stage however failure of the primary drive stage is effectively addressed by making the secondary drive stage non back-driving i.e. the internal friction or resistance of the secondary drive stage is such that the secondary drive stage will, effectively, lock in the event of failure in the primary drive stage.
As can be seen in
Through the combination of gears described, rotation of the drive motor 41 is thus transmitted to rotation of the hub 43 to effect levelling of the stairlift chair.
The safety back-up stage is similar in configuration to the secondary drive stage described above. In the form shown the safety back-up stage comprises a safety main shaft 55 that is co-axial with the secondary drive shaft 46. The safety main shaft 55 is supported at one end by the secondary drive shaft 46 and, at the other end, by a further supporting end cap 56. At the inner end of the safety main shaft 55 is a forked spigot 57 that is engaged in an axial bore 58 provided in the secondary drive shaft 46. This arrangement allows the safety main shaft 55 to slide axially with respect to the secondary drive shaft 46 for reasons that will become apparent from the description that follows. A dowel pin 60 is mounted on the secondary drive shaft 46 and projects diametrically through the bore 58 and through the forked spigot 57 to transfer rotation of the shaft 46 to the safety main shaft 55.
As can be seen the safety main shaft 55 also carries a worm gear 61 that is in approximate though non-contacting mesh with safety worm wheel 62. As is best seen in
To ensure that the worm gear 61 on safety main shaft 55 is only in approximate and non-contacting mesh with the safety worm wheel 62, the geared surfaces are formed with greater clearances than on the secondary drive side. Further, the safety worm wheel 62 is preferably fixed to safety transfer shaft 63 by a relatively fine toothed splined joint to enable the position of the worm wheel 62 to be adjusted to ensure that the requisite amount of clearance can be achieved.
In normal operation the safety worm wheel 62 is driven from the hub 43 which, in turn, is driven from the secondary drive stage. The safety main shaft 55 is driven in timed relationship from the secondary drive shaft 46. As described above, the configuration of the back-up is such that, during normal operation, there is no contact between the safety worm gear 61 and the safety worm wheel 62. What constitutes normal operation, and two modes of safety back-up, will now be described in greater detail with reference to
Before describing the different operating configurations, additional features of the safety back-up stage need to be described. As is best seen in
In the normal operating position shown in
Depending on the position of the carriage on the rail, and the configuration or geometry of the rail, in the event of failure of the levelling drive, the chair interface may free fall to the right, as shown in
If, as shown in
In both cases, as the slider 65 is displaced, the power cut-out plunger 69 is also displaced from detent groove 68 thus cutting power to the motors 10 and 41.
It will thus be appreciated that the levelling drive and safety back-up arrangement, at least in the case of the working embodiment described herein, has a number of significant advantages including:
Number | Date | Country | Kind |
---|---|---|---|
1103716.5 | Mar 2011 | GB | national |
This application is a U.S. National Phase of PCT/GB2012/050481, filed Mar. 5, 2012, which claims priority to GB 1103716.5, filed Mar. 4, 2011, the contents of both of which are incorporated herein in their entirety.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB2012/050481 | 3/5/2012 | WO | 00 | 11/18/2013 |