In crafting, stamps are widely used to apply designs, lettering and other images to an article. As discussed further below, a typical stamp includes a base and a raised stamping surface of substantially uniform height. The stamp can be affixed to a handle or some other stamping tool such as a stamp press. In operation, a user would apply ink to the stamping surface. This is usually done by pressing the stamp into an ink source such as an ink pad, though one could simply apply the ink directly to the stamping surfaces with a cloth or brush or sponge or other applicator. Once the stamping surface has ink applied, the stamp is pressed onto an article to be stamped. Typical articles that can be stamped include but are not limited to paper, cardboard, wood, glass and metal.
When in proper use, only the stamping surfaces will make contact with the article when the stamp is pressed down. When a stamped image of uniform shading is desired, such a stamping system is perfectly adequate.
Prior art stamping systems have generally discussed the use of dot matrix to allow for shading in stamping devices. However, for best detailed stamping, it is preferred to have areas of high density stamping surfaces, areas of low density stamping surfaces and also areas of solid stamping surfaces. The systems described in the prior art do not allow for the solid stamping surfaces and as such, even when dots are close together, it allows for areas where there is no ink. As such, portions of the stamped image can look grainy when solid color is desired. Moreover, even when the dots are close together, there is still the possibility that the ink will not uniformly spread between such dots and may end up in the spaces between. As such, much of the desired detail can be lost.
The present invention in its various embodiments allows for a single stamp to create an image that has a variety of shading elements and thus a higher level of realism.
The present invention in its various embodiments is an improved stamp. The stamp comprises a base and a stamping surface. The stamping surface includes one or more singularities; one or more conjoined singularities; and one or more fused singularity sections all of substantially uniform height. The singularities can be protrusions separated by one or more gaps. The singularities can be substantially polygonal in cross-sectional shape or substantially circular in cross-sectional shape. The singularities can have a top surface that is substantially flat or substantially rounded. The gaps can be substantially polygonal or substantially circular. The conjoined singularities can include one or more connections between them, wherein the connections are substantially the same height as the stamping surface and can be part of the stamping surface. The connections can be substantially horizontal, substantially vertical or substantially diagonal.
A method of manufacturing a stamp is also disclosed. In the method a graphical stamp image is created. The graphical stamp image has a dots per inch (DPI) setting of approximately 300-1500; a bitmap setting of approximately 600-1500; a lines per square inch (LSI) setting of approximately 45-85 and a lightest area setting of approximately 7-80 percent black. A three-dimensional likeness of the graphical stamp image is engraved into a quantity of magnesium. One or more matrix boards is formed from the engraved three-dimensional likeness of the graphical stamp image in the magnesium. A quantity of precursor material is deposited into the matrix boards and heat is applied. As the precursor materials melt, they assume the negative shape of the matrix boards. Once cooled, they are removed from the matrix boards thereby forming the stamp. In one embodiment, the graphical stamp image has a dots per inch (DPI) setting of approximately 600; a bitmap setting of approximately 1200; a lines per square inch (LSI) setting of approximately 65-80 and a lightest area setting of approximately 15 percent black. The precursor materials can be red rubber. The magnesium can be in the form of a magnesium plate.
Referring to
In operation, a user would apply ink to the stamping surface 104. This could be done by pressing the stamp 100 into an ink source such as an ink pad or one could simply apply the ink directly to the stamping surfaces 104 with a cloth or brush or sponge or other applicator as would be apparent to one skilled in the art. Once the stamping surfaces 104 have ink applied, the stamp 100 is then pressed onto an article to be stamped. Typical articles that can be stamped include but are not limited to paper, cardboard, wood, glass and metal. A block or other similar handle device 108 can be used in pressing the stamp 100 to the article.
When in proper use, only the stamping surfaces 104 will make contact with the article when the stamp 100 is pressed down. Spaces 106 in the stamping surfaces 104 may have residual ink in them, but will not generally come into contact with the article when the stamp 100 is used.
As noted above, when a stamped image of uniform shading is desired as depicted at 110 in
Referring to
Surrounding the singularities 208 are gaps 206. The gaps 206 are recessed relative to the singularities 208. As such, when applied to an ink source, the ink will generally not adhere to the gaps 206. Even if it does (e.g. because the user presses too deeply into the ink source), when properly used, that ink will generally not come into contact with the article being stamped. As such, when the stamp is lifted, the gaps 206 correspond to inkless sections on the stamped article. Gaps 206 can vary in size, shape and depth. In certain embodiments, they can be substantially square or polygonal. In other embodiments, they could be substantially circular in shape. In certain embodiments, the shape of the gaps 206 could also vary within a single stamp 200. Similarly, the depth of the gaps 206 relative to the top surface of the singularities 208 can vary from embodiment to embodiment. In order to properly function as gaps 206, it is only necessary that they be sufficiently recessed to substantially prevent the transfer of ink to the article being stamped.
The conjoined singularities 212 can be seen in
The larger sections of fused singularities 210 act as a substantially uniform stamping surface and because of the larger stamping surface area, they allow larger quantities of ink to be applied to an article that corresponds to more darkly shaded areas. As can be seen in
With regard to manufacturing, in a typical red rubber stamp, graphical artwork is created that is used as a template for a magnesium plate that then serves as a mold for a matrix board which is in turn a mold for the red rubber. The use of such templates in chemical etching techniques is well known and is not discussed in detail herein. However, it has been discovered that specific adjustments in pixilation settings in the graphical artwork allow for better magnesium etching that translates into a working stamp with viable singularities 208 capable of transferring ink from an ink source to an article being stamped. Referring to
However, in other embodiments, the pixilation settings could be anywhere in the range of approximately 300-1500 dots per inch (DPI); bitmap settings at approximately 600-1500; and LSI settings of approximately 45-85 with approximately 7-80 percentage black. Thus, by adjusting the artwork resolution settings, an optimized balance of clarity and manufacturing viability is achieved.
The graphical artwork output is typically in PDF or TIFF format, though other suitable outputs would be apparent to one skilled in the art. Various software systems can be utilized to create the desired output including but not limited to Adobe Photoshop and Adobe Illustrator available from Adobe Systems of San Jose, Calif.
Numerous known etching techniques could then be utilized to capture the artwork onto a magnesium plate. Chemical etching has been specifically referred to, but other etching techniques as would be apparent to one skilled in the art could also be utilized including, but not limited to photoengraving and laser engraving.
Once the magnesium plate has been created, it can be used through known techniques to form matrix boards which serve as the molds for the rubber stamps.
The methods discussed above refer to the use of chemical etching techniques in creating the magnesium plate. However, the present invention is not intended to be limited to this one particular process. Rather, the invention contemplates any other plate engraving methods as would be apparent to one skilled in the art into which the pixilation settings as discussed above can be incorporated and by which viable singularities 208 can ultimately be molded. In certain embodiments, metals other than magnesium may also be desirable in creating the plate.
Moreover, while the drawings depict the present invention as a red rubber stamp, it is noted that other known stamping materials could be utilized including, but not limited to photopolymers. With respect to manufacturing of the photopolymer stamps, a similar graphical artwork output can be utilized. However, instead of creating a magnesium plate, in photopolymer production a mask and negative is created that can then be printed on acetate or other backing materials through known techniques.
Numerous other modifications and alternative arrangements may be devised by those skilled in the art without departing from the spirit and scope of the present invention.