Stamping a coating of cured field aligned special effect flakes and image formed thereby

Information

  • Patent Grant
  • 8118963
  • Patent Number
    8,118,963
  • Date Filed
    Wednesday, June 27, 2007
    16 years ago
  • Date Issued
    Tuesday, February 21, 2012
    12 years ago
  • Inventors
  • Examiners
    • Lee; Katarzyna Wyrozebski
    • Dodds; Scott W
    Agents
    • Pequignot; Matthew A.
    • Pequignot + Myers LLC
Abstract
A method of forming a security device is disclosed wherein a magnetically aligned pigment coating coated on a first substrate upon a release layer is hot stamped onto another substrate or object. Multiple patches with aligned magnetic flakes can be oriented differently in the form of a patch work or mosaic. For example, a region of stamped aligned flakes having the flakes oriented in a North-South orientation can be stamped onto one region of an object or substrate and another region of stamped same flakes removed from a same substrate can be stamped onto a same object oriented in an E-W orientation. By first aligning and curing flakes onto a releasable substrate, these flakes can be stamped in various shapes and sizes of patches to be adhesively fixed to another substrate or object.
Description
FIELD OF THE INVENTION

This invention relates generally to optically variable pigments, films, devices, and images, and more particularly to aligning or orienting field alignable pigment flakes, such as during a painting or printing process, and subsequently transferring a region of the field aligned pigment flakes to an object or substrate to obtain a desired optical effect useful for example in security applications.


BACKGROUND OF THE INVENTION

The present invention also relates to field alignable pigments such as those that can be aligned or oriented in a magnetic or electric field, for example, flakes having an optically diffractive structure forming diffractive optically variable image devices (“DOVID”), such as orientable diffractive pigment flakes and stereograms, linegrams, graphic element-oriented devices, dot-oriented devices, and pixel-oriented devices, and oriented optically variable pigment flakes.


Optically variable pigments (“OVP's”™) are used in a wide variety of applications. They can be used in paint or ink, or mixed with plastic. Such paint or ink is used for decorative purposes or as an anti-counterfeiting measure on currency. One type of OVP uses a number of thin-film layers on a substrate that form an optical interference structure. Generally, a dielectric spacer layer is often formed on a reflector, and then a layer of optically absorbing material is formed on the spacer layer. Additional layers may be added for additional effects, such as adding additional spacer-absorber layer pairs. Alternatively optical stacks composed of (high-low-high)n or (low-high-low)n dielectric materials, or combinations of both, may be prepared.


U.S. Pat. No. 6,902,807 and U.S. Patent application publication numbers 2007/0058227, 2006/0263539, 2006/0097515, 2006/0081151, 2005/0106367, and 2004/0009309, disclose various embodiments related to the production and alignment of pigment flakes so as to provide images that can be utilized in security applications.


All of the aforementioned patents and applications are incorporated herein by reference, for all intents and purposes.


Although some pigment flakes suspended in a carrier vehicle can be aligned in electric fields, magnetically orientable flakes aligned in a magnetic field are generally more practicable. The term magnetic flakes used hereafter means flakes that can be aligned in a magnetic field. These flakes may or may not be magnetic themselves.


Optically variable devices are used in a wide variety of applications, both decorative and utilitarian, for example, such devices are used as security devices on commercial products. Optically variable devices can be made in numerous ways to achieve a variety of effects. Examples of optically variable devices include the holograms imprinted on credit cards and authentic software documentation, color-shifting images printed on banknotes, and enhancing the surface appearance of items such as motorcycle helmets and wheel covers.


Optically variable devices can be made as film or foil that is attached to an object, and can also be made using optically variable pigments. One type of optically variable pigment is commonly called a colour-shifting pigment because the apparent color of images appropriately printed with such pigments changes as the angle of view and/or illumination is tilted. A common example is the “20” printed with colour-shifting pigment in the lower right-hand corner of a U.S. twenty-dollar bill, which serves as an anti-counterfeiting device.


Some anti-counterfeiting devices are covert, while others are intended to be noticed. Unfortunately, some optically variable devices that are intended to be noticed are not widely known because the optically variable aspect of the device is not sufficiently dramatic. For example, the color shift of an image printed with color-shifting pigment might not be noticed under uniform fluorescent ceiling lights, but more noticeable in direct sunlight or under single-point illumination. This can make it easier for a counterfeiter to pass counterfeit notes without the optically variable feature because the recipient might not be aware of the optically variable feature, or because the counterfeit note might look substantially similar to the authentic note under certain conditions.


As need continues to design devices that are difficult to counterfeit and easy to authenticate, more interesting and useful devices become available.


For example, United States Patent application publication number 20060194040 in the name of Raksha et al. discloses a method and image formed by applying a first coating of magnetically alignable flakes; magnetically aligning the first coating of alignable flakes; curing the aligned flakes, and repeating the steps by applying a second coating of magnetically alignable flakes over the first cured aligned coating of flakes, aligning the second coating of flakes in a magnetic field and subsequently curing the second coating. This two-step coating, aligning and curing sequence allows first applied flakes to be magnetically aligned in a different orientation to the second applied flakes.


Although patent application 20060194040 provides a useful result, it would be desirous to achieve similar yet different images wherein fields within an image could be oriented differently, and wherein this two-step coating sequence was not required.


Furthermore, it would be useful to provide a method and resulting image wherein regions of an image formed by field aligning flakes could be utilized to form a mosaic wherein stamped-out aligned portions of an aligned image could be reoriented and applied to an object or substrate so as to form a desired pattern or image that differs from the originally aligned image.


It is an object of the present invention, to provide optically variable images wherein one or more regions of an image of field aligned flakes are stamped out, and are affixed to substrate in a preferred orientation.


SUMMARY OF THE INVENTION

In accordance with the invention there is provided a method of forming an image comprising the steps of:


coating a substrate with a pigment having field alignable flakes therein;


and applying a field to the field alignable flakes so as to align the flakes along applied field lines;


after performing step (b) curing the pigment; and


stamping a region of the cured coated substrate with a stamp having a predetermined shape to yield a stamped transferable image formed of aligned flakes.


In accordance with an aspect of the invention a method of forming an image is provided comprising the steps of:


releasably coating a substrate with a pigment having field alignable flakes therein;


and applying a field to the field alignable flakes so as to align the flakes along applied field lines;


after performing step (b) curing the pigment;


stamping a region of the cured coating with a stamp having a predetermined shape to yield a stamped image formed of aligned flakes; and,


applying the stamped image to a substrate or article.


In accordance with an aspect of this invention, an image is provided comprising a first region of flakes applied to a substrate after being aligned in a magnetic or electric field; and a second region of flakes applied to the same substrate after being aligned in a magnetic or electric field, wherein the first region of flakes on the substrate is oriented differently than the second region of flakes on the same substrate.


In accordance with another aspect of the invention an image is provided comprising a substrate having a first patch applied thereto, wherein the first patch includes aligned pigment flakes cured in a vehicle, wherein said aligned flakes form a discernible pattern, and a second region of aligned flakes cured in a vehicle applied thereto wherein the flakes within the first patch applied to the substrate are oriented differently than the second region of flakes on the same substrate, and wherein the first patch and the second distinct region of flakes are visible at the same time.


In accordance with another aspect of this invention an image is provided comprising a first region of flakes aligned in a magnetic or electric field wherein the first region of flakes were aligned and cured upon a first substrate; removed from the first substrate in the form of a patch of aligned flakes and transferred to a second object or substrate.


In accordance with another aspect of this invention a method of forming an image is provided comprising the steps of:


coating a release coating supported by a substrate with field alignable flakes; exposing the field alignable flakes to a magnetic or electric field to form field aligned flakes;


allowing the field aligned flakes to cure;


removing the field aligned flakes from the substrate while preserving their alignment; and,


transferring the field aligned flakes to an object or another substrate in a predetermined orientation.


In accordance with another aspect of the invention the second stamped image is applied over at least a portion of the first stamped image.





BRIEF DESCRIPTION OF THE DRAWINGS

Exemplary embodiments of the invention will now be described in conjunction with the drawings in which:



FIG. 1 is a plan view of a first ribbon-like substrate having varying shaped diffractive pigment flakes thereon magnetically aligned such that grooves within the diffractive flakes are parallel to one another orthogonal to the longitudinal axis of the ribbon.



FIG. 2
a is a plan view of a stamping die in the form of an arrow;



FIG. 2
b is a plan view of a stamped-out foil patch of aligned flakes in the shape of the arrow stamped from the first ribbon-like substrate shown in FIG. 1 with the die shown in FIG. 2a.



FIG. 3 is a plan view of the first ribbon-like substrate oriented 90 degrees to the orientation of the substrate shown in FIG. 1 relative to the second stamping die conveniently having its stamped out region with the flakes oriented 90 degrees to the stamped out region of FIG. 2b.



FIG. 4
a is a plan view of a circular stamping dye having an arrow-shaped opening in a center thereof.



FIG. 4
b is a circular stamped region stamped from the first ribbon-like substrate with the circular stamping die shown in FIG. 4a.



FIG. 4
c is a plan view of the final image having the stamped arrow foil placed on the stamped circular region, wherein the orientation of the diffractive grating in the diffractive pigment flakes forming the arrow foil are orthogonal to the diffractive structures in the circular stamped foil region.



FIG. 5 is a photograph of a region of magnetically aligned flakes aligned to yield a 3D image wherein some of the flakes are out of plane from the substrate.



FIG. 6 is an illustration of a painting or printing station wherein a moving ribbon with a releasable hard coat is coated with ink or paint having magnetic flakes therein and wherein the ribbon passes over a cylinder having magnets therein which align magnetic flakes in a desired orientation.





DETAILED DESCRIPTION

In one particular embodiment described in more detail hereafter, the present invention utilizes magnetically aligned diffractive pigment flakes disposed in a magnetic field and subsequently cured to print images. Diffractive pigment flakes are generally small particles used in paints, inks, films, and plastics that provide variable perceived color, lightness, hue, and/or chroma, depending on the angle of view and angle of incident light. Some diffractive pigments, such as ones including Fabry-Perot-type interference structures, shift the observed color, as well as providing diffractive effects. Thin-film interference structures using dielectric layers can also be combined with a microstructure diffraction pattern. Some embodiments of this invention include a diffractive reflector layer in combination with a spacer layer and an absorber layer to form a flake having both diffraction and thin-film interference.


Depending on frequency, pigments with diffraction gratings separate light into spectral components, similar to a prism, so that the perceived color changes with viewing angle. It has been found that pigment flakes can be oriented with magnetic fields if the pigment flake includes a magnetic material. For the purposes of this application, “magnetic” materials can be ferro- or ferri-magnetic. Nickel, cobalt, iron, gadolinium, terbium, dysprosium, erbium, and their alloys and oxides, Fe/Si, Fe/Ni, Fe/Co, Fe/Ni/Mo, SmCo5, NdCo5, Sm2Co17, Nd2Fe14B, TbFe2, Fe3O4, NiFe2O4, and CoFe2O4, are a few examples of magnetic materials. It is not necessary that the magnetic layer, or the magnetic material of the magnetic layer, be capable of being permanently magnetized, although it could be. In some embodiments, magnetic material capable of being permanently magnetized is included in a flake, but remains unmagnetized until after it is applied to form an image. In a further embodiment, flakes with permanent magnet material are applied to a substrate to form a visual image, and subsequently magnetized to form a magnetic image, in addition to the visual image. Some magnetic flakes tend to clump together if the remnant magnetization is too high prior to forming the image or mixing with a paint or ink vehicle.


Exemplary Flake Structures are described in United States patent publication number 20060263539 in the name of Argoitia, filed Aug. 2, 2006 incorporated herein by reference and various substrate materials are described as suitable for supporting diffractive pigment flakes in an ink vehicle.


Referring now to FIG. 1 a thin PET substrate 10 is shown having coated thereon a coating of groove oriented diffractive flakes 20 fixed in a carrier together forming a ribbon 14 that can be used in security applications. Each flake has a diffractive pattern of grooves shown in FIG. 1 to be aligned such that the grooves on respective flakes are parallel to one another. This groove alignment of the flakes 20 was achieved by coating the substrate with an ink having a clear carrier containing the diffractive flakes, and subsequently applying a magnetic field to the coating wherein the magnetic field lines are substantially parallel and orthogonal to the longitudinal axis of the substrate 10. When the field is applied, the flakes align themselves such that their grooves or lines follow the magnetic field lines. The coating is subsequently cured so that the flakes 20 are fixed in this preferred alignment. Depending upon the applied field, the flakes 20 may be flat lying coplanar with the substrate 10 or the flakes may be partially or full upstanding upon the substrate 10.


One limitation of forming a ribbon in this manner is that image formed on the substrate by the pattern of the flakes is dependent upon the shape of the applied field. Conveniently, this invention provides a method and image wherein regions of aligned fixed flakes can be combined in a mosaic like pattern of patches of aligned flakes to yield more complex and interesting images and security devices.


Prior to coating the substrate 10 with ink in FIG. 1, the substrate is coated with a release layer that allows the layer of ink to be removed as removable sheet or coated region consisting of cured ink having aligned flakes therein. This coating is suitable for hot-stamping or other similar methods of transfer.


Hot stamp transfer foils have been provided in conjunction with hot stamp machines to affix images onto various substrates such as paper, plastic film and even rigid substrates. Hot stamping is a dry process. One commercially available machine for hot stamping images onto substrates is the Malahide E4-PK produced by Malahide Design and Manufacturing Inc. Machines of this type are shown and described on the Internet at www.hotstamping.com. Simplistically, in a hot-stamping process, a die is attached to the heated plate which is pressed against a load roll of hot stamping foil to affix the foil to an article or substrate. A roll on transfer process could also be used in this invention. In this case, the article substrate and the adhesive (UV or heat activated) is brought together at a nip to effect the transfer of the hot stamp layer to the article substrate.


An image is typically formed by utilizing a metal or silicone rubber die into which the desired image has been cut. This die is placed in the hot stamping machine and is used to press the image into hot stamp foil utilizing a combination of heat and pressure. The back side of the foil is generally coated with a dry heat activated, thermo set adhesive, for example an acrylate based adhesive. Upon the application of heat, the adhesive becomes tacky in regions of the heated image and adheres to the paper or plastic substrate. Hot stamping is described or mentioned in the U.S. Pat. Nos. 5,002,312, 5,059,245, 5,135,812, 5,171,363, 5,186,787, 5,279,657 and 7,005,178, in the name of Roger Phillips of Flex Products Inc. of Santa Rosa Ca.



FIG. 2
a is a plan view of a first stamping die 30 in accordance with this invention, in the form of an arrow that is used to produce the stamped coating shown in FIG. 2b. As the ribbon 14 is moved through a stamping station, the stamping die 30 stamps the coating in the shape of the arrow shown for transfer to a substrate. The arrow can be oriented as shown, wherein the grooves of the flakes are aligned in the direction of the arrow, or alternatively, other orientations could have been used.


Therefore stamping die 30 after stamping the ribbon 14 produces a patch of aligned flakes in the form of an arrow with diffractive grooves oriented up-down as the ribbon 14 moves through the stamping apparatus. In a preferred embodiment of the invention, this invention, this is a first step in a hot-stamping process. In the presence of heat and pressure, this arrow shaped patch is hot-stamped to a substrate.


Referring now to FIG. 3, at a second stamping station the same ribbon 14 is shown moving under the stamping die 40 such that the aligned flakes are oriented orthogonally with respect to the cut-out arrow in the die 40. This allows the single ribbon 14 with flakes oriented in a particular orientation to provide stamped areas with flakes having their grooves oriented at different angles simply by changing the angle in which the ribbon is fed into the stamping equipment. This different orientation of two regions of otherwise essentially same flakes provides different visual effects from the two regions in lighting conditions other than normal incidence and is also useful as a means of authentication of an article or product the composite images are applied to.


As is illustrated in FIG. 4b, the stamping die 40 after stamping the ribbon 14 produces a patch of aligned flakes in the form of a circular area surrounding an arrow with the grooves oriented left to right. The ribbon 14 stamped by the die 40 may be the same or a different ribbon as 14 with the grooves of the diffractive flakes oriented in the same way as in ribbon 14. Therefore the same ribbon can be used for both stamping stations, or a different ribbon having flakes oriented in a same manner can be used.


In the embodiments described heretofore, diffractive flakes having grooves or lines therein have been used in such a manner as to be aligned in a particular direction with respect to the substrate. Then regions of the cured coating were stamped out and applied via a hot stamp or other process to a different substrate. Of course other suitable forms of adhesion between the stamped diffractive substrate and the object or substrate to which the stamped region is to be joined with can be utilized. The direction of the dispersion of light in a diffractive pigment is a function of the frequency of the gratings. For low frequencies the observer will get only a dark-bright contrast instead of a change of hue. Frequency can be changed depending of the dynamic effect desired.


In an alternative embodiment non diffractive planar flakes can be used wherein the flakes are field aligned upon a release layer of a substrate and cured. These aligned non-diffractive flakes can then be removed from the substrate as a cured region of aligned flakes and reapplied to a different substrate or object, in a same manner as has been described. This is particularly interesting when out of plane alignment is utilized by applying magnetic fields that result in upstanding flakes. It is also possible to provide out of plane diffractive flakes and to subsequently stamp out a cured region of these flakes for reapplication to a different substrate.


Turning now to FIG. 5 an image 50 having out-of-plane upstanding flakes is shown where some of the flakes 53 lie in a plane parallel to the substrate and wherein other of the flakes 55 are upstanding on the substrate nearly orthogonal to it.



FIG. 6 shows a configuration wherein a ribbon 60 comprising a releasable hard coat is painted with a magnetic pigment 63 as it is carried over a rotating cylinder 64 having circular magnets 66 therein. The flakes within the magnetic pigment 63 are aligned by the field generated from the magnets within the cylinder and the resulting 3D images 68 formed in the pigment are cured. The cured 3D images 68 are then applied to other objects or substrates after being stamped and released from the ribbon substrate.


In summary, this invention provides a novel and inventive way in which to apply magnetically aligned flakes from a substrate onto a substrate or article wherein the orientation of the aligned flakes can be changed upon transfer. Of course numerous other embodiments may be envisaged without departing from the spirit and scope of the invention.

Claims
  • 1. A method of forming an image comprising the steps of: a) coating a first substrate with a pigment coating having field alignable flakes in a carrier; wherein the field alignable flakes are diffractive flakes having a diffractive pattern of grooves therein;b) applying a magnetic or electric field to the pigment coating so as to align the flakes therewithin along field lines of the magnetic or electric field so that the grooves are parallel to the field lines;c) after performing step (b) curing the pigment coating;d) stamping a first region of the cured coated first substrate with a stamp having a first shape to yield a first stamped transferable image formed of aligned flakes;e) stamping a second region of the first substrate or of a second substrate to yield a second stamped transferable image formed of aligned flakes wherein the aligned flakes have grooves; and,f) transferring the first and second stamped transferable images to a third substrate or object, wherein the grooves of the aligned flakes in the first stamped transferable image are oriented differently than the grooves of the aligned flakes in the second stamped transferable image providing different visual effects from the first and second stamped transferable images in lighting conditions other than normal incidence.
  • 2. A method as defined in claim 1 wherein the first stamped transferable image is transferred to the third substrate or object while it is being stamped.
  • 3. A method as defined in claim 1 wherein the first stamped transferable image is transferred to the third substrate or object by hot stamping.
  • 4. A method as defined in claim 1 wherein the first stamped transferable image is adhesively transferred to the object.
  • 5. A method as defined in claim 1 wherein the first substrate has a release coating thereon so that the stamped image can be released from the release coating.
  • 6. A method as defined in claim 1 wherein step (d) is performed a plurality of times so as to yield a plurality of stamped images formed of aligned flakes.
  • 7. A method as defined in claim 6 wherein at least some of the applied stamped images are disposed next to each other on the third substrate or object such that their diffractive patterns are not parallel.
  • 8. A method as defined in claim 6, wherein the stamped images are subsequently transferred to the third substrate or object and wherein one stamped image is applied at least partially over another.
  • 9. A method as defined in claim 1 wherein the field alignable flakes are color-shifting diffractive flakes.
  • 10. A method as defined in claim 1 wherein the first and second stamped transferable images have different shapes or sizes.
  • 11. A method of forming an image comprising the steps of: a) coating a first substrate with a pigment coating having field alignable flakes in a carrier therein;b) applying a magnetic or electric field to the pigment coating so as to align the flakes therewithin along field lines of the magnetic or electric field;c) after performing step (b) curing the pigment coating;d) stamping a first region of the cured coated first substrate with a stamp having a first shape to yield a first stamped transferable image formed of aligned flakes;e) stamping a second region of the first substrate or of a second substrate to yield a second stamped transferable image formed of aligned flakes; and,f) transferring the first and second stamped transferable images to a third substrate or object, wherein the aligned flakes in the first stamped transferable image are oriented differently than the aligned flakes in the second stamped transferable image providing different visual effects from the first and second stamped transferable images in lighting conditions other than normal incidence;wherein step (b) results in the flakes being aligned at an angle to the first substrate so that at least some of the flakes are substantially upstanding with their faces orthogonal to the substrate.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation-in-part of U.S. patent application Ser. No. 11/028,819 filed Jan. 4, 2005 now U.S. Pat. No. 7,300,695, which is a divisional application of U.S. patent application Ser. No. 10/243,111 filed on Sep. 13, 2002, now issued as U.S. Pat. No. 6,902,807 Jun. 7, 2005, the disclosures of which are hereby incorporated herein by reference. The present application claims priority from application Ser. No. 60/807,103 filed Jul. 12, 2006, which is incorporated herein by reference.

US Referenced Citations (177)
Number Name Date Kind
2570856 Pratt et al. Oct 1951 A
3011383 Sylvester et al. Dec 1961 A
3123490 Bolomey et al. Mar 1964 A
3293331 Doherty Dec 1966 A
3338730 Slade et al. Aug 1967 A
3610721 Abramson et al. Oct 1971 A
3627580 Krall Dec 1971 A
3633720 Tyler Jan 1972 A
3640009 Komiyama Feb 1972 A
3676273 Graves Jul 1972 A
3790407 Merten et al. Feb 1974 A
3791864 Steingroever Feb 1974 A
3845499 Ballinger Oct 1974 A
3853676 Graves Dec 1974 A
3873975 Miklos et al. Mar 1975 A
4011009 Lama et al. Mar 1977 A
4054922 Fichter Oct 1977 A
4066280 LaCapria Jan 1978 A
4099838 Cook et al. Jul 1978 A
4126373 Moraw Nov 1978 A
4155627 Gale et al. May 1979 A
4168983 Vittands et al. Sep 1979 A
4197563 Michaud Apr 1980 A
4242400 Smith et al. Dec 1980 A
4244998 Smith Jan 1981 A
4271782 Bate et al. Jun 1981 A
4310180 Mowry, Jr. et al. Jan 1982 A
4310584 Cooper et al. Jan 1982 A
4398798 Krawczak et al. Aug 1983 A
4434010 Ash Feb 1984 A
4543551 Petersen Sep 1985 A
4657349 Labes et al. Apr 1987 A
4668597 Merchant May 1987 A
4705300 Berning et al. Nov 1987 A
4705356 Berning et al. Nov 1987 A
4721217 Phillips et al. Jan 1988 A
4756771 Brodalla et al. Jul 1988 A
4779898 Berning et al. Oct 1988 A
4788116 Hochberg Nov 1988 A
4838648 Phillips et al. Jun 1989 A
4867793 Franz et al. Sep 1989 A
4867795 Ostertag et al. Sep 1989 A
4925215 Klaiber May 1990 A
4930866 Berning et al. Jun 1990 A
4931309 Komatsu et al. Jun 1990 A
5002312 Phillips et al. Mar 1991 A
5009486 Dobrowolski et al. Apr 1991 A
5037101 McNulty Aug 1991 A
5059245 Phillips et al. Oct 1991 A
5079058 Tomiyama et al. Jan 1992 A
5079085 Hashimoto et al. Jan 1992 A
5084351 Philips et al. Jan 1992 A
5106125 Antes Apr 1992 A
5128779 Mallik Jul 1992 A
5135812 Phillips et al. Aug 1992 A
5142383 Mallik Aug 1992 A
5171363 Phillips et al. Dec 1992 A
5177344 Pease Jan 1993 A
5186787 Phillips et al. Feb 1993 A
5192611 Tomiyama et al. Mar 1993 A
5199744 Shenton Apr 1993 A
5214530 Coombs et al. May 1993 A
5215576 Carrick Jun 1993 A
5223360 Prengel et al. Jun 1993 A
5254390 Lu Oct 1993 A
5278590 Phillips et al. Jan 1994 A
5279657 Phillips et al. Jan 1994 A
5339737 Lewis et al. Aug 1994 A
5364467 Schmid et al. Nov 1994 A
5364689 Kashiwagi et al. Nov 1994 A
5368898 Akedo Nov 1994 A
5411296 Mallik May 1995 A
5424119 Phillips et al. Jun 1995 A
5437931 Tsai et al. Aug 1995 A
5447335 Haslop Sep 1995 A
5464710 Yang Nov 1995 A
5474814 Komatsu et al. Dec 1995 A
5549774 Miekka et al. Aug 1996 A
5549953 Li Aug 1996 A
5571624 Phillips et al. Nov 1996 A
5591527 Lu Jan 1997 A
5613022 Odhner et al. Mar 1997 A
5624076 Miekka et al. Apr 1997 A
RE35512 Nowak et al. May 1997 E
5627663 Horan et al. May 1997 A
5629068 Miekka et al. May 1997 A
5630877 Kashiwagi et al. May 1997 A
5648165 Phillips et al. Jul 1997 A
5650248 Miekka et al. Jul 1997 A
5672410 Miekka et al. Sep 1997 A
5700550 Uyama et al. Dec 1997 A
5742411 Walters Apr 1998 A
5744223 Abersfelder et al. Apr 1998 A
5763086 Schmid et al. Jun 1998 A
5811775 Lee Sep 1998 A
5815292 Walters Sep 1998 A
5838466 Mallik Nov 1998 A
5856048 Tahara et al. Jan 1999 A
5858078 Andes et al. Jan 1999 A
5907436 Perry et al. May 1999 A
5912767 Lee Jun 1999 A
5981040 Rich et al. Nov 1999 A
5989626 Coombs et al. Nov 1999 A
5991078 Yoshitake et al. Nov 1999 A
6013370 Coulter et al. Jan 2000 A
6031457 Bonkowski et al. Feb 2000 A
6033782 Hubbard et al. Mar 2000 A
6043936 Large Mar 2000 A
6045230 Dreyer et al. Apr 2000 A
6068691 Miekka et al. May 2000 A
6103361 Batzar et al. Aug 2000 A
6112388 Kimoto et al. Sep 2000 A
6114018 Phillips et al. Sep 2000 A
6150022 Coulter et al. Nov 2000 A
6157489 Bradley, Jr. et al. Dec 2000 A
6160046 Bleikolm et al. Dec 2000 A
6168100 Kato et al. Jan 2001 B1
6241858 Phillips et al. Jun 2001 B1
6242510 Killey Jun 2001 B1
6243204 Bradley, Jr. et al. Jun 2001 B1
6403169 Hardwick et al. Jun 2002 B1
6549131 Cote et al. Apr 2003 B1
6565770 Mayer et al. May 2003 B1
6586098 Coulter et al. Jul 2003 B1
6589331 Ostertag et al. Jul 2003 B2
6643001 Faris Nov 2003 B1
6649256 Buczek et al. Nov 2003 B1
6686027 Caporaletti et al. Feb 2004 B1
6692031 McGrew Feb 2004 B2
6692830 Argoitia et al. Feb 2004 B2
6712399 Drinkwater et al. Mar 2004 B1
6729656 Kubert et al. May 2004 B2
6749777 Argoitia et al. Jun 2004 B2
6749936 Argoitia et al. Jun 2004 B2
6751022 Phillips Jun 2004 B2
6759097 Phillips et al. Jul 2004 B2
6761959 Bonkowski et al. Jul 2004 B1
6815065 Argoitia et al. Nov 2004 B2
6818299 Phillips et al. Nov 2004 B2
6838166 Phillips et al. Jan 2005 B2
6841238 Argoitia et al. Jan 2005 B2
6901043 Zhang et al. May 2005 B2
6902807 Argoitia et al. Jun 2005 B1
6987590 Phillips et al. Jan 2006 B2
7005178 Bonkowski et al. Feb 2006 B2
7029525 Mehta Apr 2006 B1
7047883 Raksha et al. May 2006 B2
20020182383 Phillips et al. Dec 2002 A1
20030058491 Holmes et al. Mar 2003 A1
20030087070 Souparis May 2003 A1
20030134939 Vuarnoz et al. Jul 2003 A1
20030190473 Argoitia et al. Oct 2003 A1
20040009309 Raksha et al. Jan 2004 A1
20040028905 Phillips et al. Feb 2004 A1
20040051297 Raksha Mar 2004 A1
20040052976 Buczek et al. Mar 2004 A1
20040094850 Bonkowski et al. May 2004 A1
20040100707 Kay et al. May 2004 A1
20040101676 Phillips et al. May 2004 A1
20040105963 Bonkowski et al. Jun 2004 A1
20040151827 Argoitia et al. Aug 2004 A1
20040166308 Raksha et al. Aug 2004 A1
20050037192 Argoitia et al. Feb 2005 A1
20050063067 Phillips et al. Mar 2005 A1
20050106367 Raksha et al. May 2005 A1
20050123755 Argoitia et al. Jun 2005 A1
20050128543 Phillips et al. Jun 2005 A1
20050133584 Finnerty et al. Jun 2005 A1
20050189060 Huang et al. Sep 2005 A1
20060035080 Argoitia Feb 2006 A1
20060077496 Argoitia et al. Apr 2006 A1
20060081151 Raksha et al. Apr 2006 A1
20060097515 Raksha et al. May 2006 A1
20060194040 Raksha et al. Aug 2006 A1
20060198998 Raksha et al. Sep 2006 A1
20060263539 Argoitia Nov 2006 A1
20070058227 Raksha et al. Mar 2007 A1
Foreign Referenced Citations (64)
Number Date Country
488652 Nov 1977 AU
1696245 Jan 1972 DE
3932505 Apr 1991 DE
4212290 May 1993 DE
4343387 Jun 1995 DE
19611383 Sep 1997 DE
19731968 Jan 1999 DE
19744953 Apr 1999 DE
19639165 Oct 2003 DE
0138194 Oct 1984 EP
0185396 Dec 1985 EP
0341002 Nov 1989 EP
0420261 Apr 1991 EP
0453131 Oct 1991 EP
0556449 Aug 1993 EP
0406667 Jan 1995 EP
0660262 Jan 1995 EP
0170439 Apr 1995 EP
0710508 May 1996 EP
0756945 Feb 1997 EP
0395410 Aug 1997 EP
0698256 Oct 1997 EP
0741370 May 1998 EP
0914261 May 1999 EP
0953937 Nov 1999 EP
0978373 Feb 2000 EP
1174278 Jan 2002 EP
1239307 Sep 2002 EP
1 353 197 Oct 2003 EP
1353197 Oct 2003 EP
1 498 545 Jan 2005 EP
1516957 Mar 2005 EP
1529653 May 2005 EP
1669213 Jun 2006 EP
1674282 Jun 2006 EP
1719636 Nov 2006 EP
1 741 757 Jan 2007 EP
1745940 Jan 2007 EP
1760118 Mar 2007 EP
1107395 Mar 1968 GB
1131038 Oct 1968 GB
1546806 May 1979 GB
63172779 Jul 1988 JP
11010771 Jan 1999 JP
WO8807214 Sep 1988 WO
9323251 Nov 1993 WO
9517475 Jan 1995 WO
WO9513569 May 1995 WO
9719820 Jun 1997 WO
9812583 Mar 1998 WO
WO0008596 Feb 2000 WO
WO0103945 Jan 2001 WO
WO 0153113 Jul 2001 WO
0200446 Jan 2002 WO
0204234 Jan 2002 WO
WO0240599 May 2002 WO
WO0240600 May 2002 WO
WO02053677 Jul 2002 WO
WO02090002 Nov 2002 WO
WO03102084 Dec 2003 WO
WO2004007096 Jan 2004 WO
2004024836 Mar 2004 WO
WO 2005017048 Feb 2005 WO
WO2005017048 Feb 2005 WO
Related Publications (1)
Number Date Country
20080003413 A1 Jan 2008 US
Provisional Applications (1)
Number Date Country
60807103 Jul 2006 US
Divisions (1)
Number Date Country
Parent 10243111 Sep 2002 US
Child 11028819 US
Continuation in Parts (1)
Number Date Country
Parent 11028819 Jan 2005 US
Child 11769274 US