This application claims priority to, and the benefit of, U.S. Provisional Application No. 60/613,808, filed on Sep. 28, 2004. This application also relates to co-pending U.S. patent application Ser. No. 11/237,420, filed concurrently with this application on Sep. 28, 2005. The disclosure of the above-mentioned application is hereby incorporated by reference herein in its entirety.
The present invention generally relates to stand-alone films, and more particularly to stand-alone films that are formed from fatty acids.
Different surgical procedures often make use of a method referred to as blunt dissection. Blunt dissection can be generally described as dissection accomplished by separating tissues along natural cleavage lines without cutting. Blunt dissection is executed using a number of different blunt surgical tools, as is understood by those of ordinary skill in the art. Blunt dissection is often performed in cardiovascular, colo-rectal, urology, gynecology, upper GI, and plastic surgery applications, among others.
In accordance with several methods of blunt dissection, a small incision is made in the patient. Specially designed blunt dissection tools having small profiles are inserted through the incision to the desired location in the body. Longer tools may be used to access locations substantially distal from the incision, while shorter tools can be used to access locations closer to the incision.
After the blunt dissection separates the desired tissues into separate areas, there is often a need to maintain the separation of those tissues. In fact, post surgical adhesions can occur following almost any type of surgery, resulting in serious postoperative complications. Adhesions may cause intestinal obstruction, bowel torsion, pain and infertility following general abdominal and pelvic surgery. Adhesions can also develop following orthopedic and cardiac surgery. Surgical adhesion disease is a complex inflammatory disease in which tissues that normally remain separated in the body grow into each other as a result of surgical trauma. Conventional surgical methods make use of anti-adhesion barriers, such as Interceed® from Johnson & Johnson or Seprafilm® from Genzyme Corporation.
Interceed® is a fabric relatively easy to apply and handle. However, effectiveness may be diminished when bleeding has not been completely controlled. Seprafilm® is widely used in general surgery. However, it is challenging for surgeons to apply and handle because of the film's tendency to easily break apart upon exposure to water due to their chemical make up and bio-dissolvable properties. The composition and structural properties of these bio-dissolvable products require that they be handled with dry hands or instruments, which can be difficult during most surgical intervention operations. Furthermore, many of these bio-dissolvable films are made intentionally thin to minimize tissue disruption and consequently end up being structurally weak (i.e., easily torn or folded during handling). In addition, Seprafilm® is composed of two chemically modified biopolymers, sodium hyaluronate (HA) and carboxymethylcellulose (CMC), reacted with an activating agent 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) to form a water insoluble powder, hyaluronic acid-carboxymethylcellulose (HA-CMC). Although it is biodegradable, some of its breakdown products, such as smaller CMC units and ethyl-(3-dimethylaminopropyl)-urea (EDU), are not consumable by the patient's cell tissues. Hence, biodegradable substances, such as polymers, can cause inflammatory response due to either the parent substance or those substances formed during breakdown, and they may or may not be absorbed by tissues.
The present invention relates to a bio-absorbable stand-alone film that can exhibit anti-inflammatory properties, non-inflammatory properties, and anti-adhesion properties, and the corresponding method of making. The stand-alone film is generally formed of a naturally occurring oil, or an oil composition formed in part of a naturally occurring oil. In addition, the oil composition can include a therapeutic agent component, such as a drug or other bioactive agent. The stand-alone film is implantable in a patient for short term or long term applications. As implemented herein, the stand-alone film is a non-polymeric cross-linked gel derived at least in part from a fatty acid compound.
It should be noted that the term cross-linked gel, as utilized herein with reference to the present invention, refers to a gel that is non-polymeric and is derived from an oil composition comprising molecules covalently cross-linked into a three-dimensional network by one or more of ester, ether, peroxide, and carbon-carbon bonds in a substantially random configuration. In various preferred embodiments, the oil composition comprises a fatty acid molecule, a glyceride, and combinations thereof.
In accordance with one embodiment of the present invention, a stand-alone film includes a non-polymeric cross-linked gel material formed at least in part of a fatty acid compound or derivative or analog thereof.
In accordance with aspects of the present invention, the fatty acid compound includes omega-3 fatty acid, fish oil fatty acid, free fatty acid, triglycerides, esters of fish oil, or a combination thereof. The fish oil fatty acid can include one or more of arachidic acid, gadoleic acid, arachidonic acid, eicosapentaenoic acid, docosahexaenoic acid or derivatives, analogs and pharmaceutically acceptable salts thereof. The free fatty acid can include one or more of butyric acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, oleic acid, vaccenic acid, linoleic acid, alpha-linolenic acid, gamma-linolenic acid, behenic acid, erucic acid, lignoceric acid, analogs and pharmaceutically acceptable salts thereof.
In accordance with further aspects of the present invention, the stand-alone film further includes a vitamin E compound forming a portion of the fatty acid compound. The vitamin E compound can include one or more of alpha-tocopherol, beta-tocopherol, delta-tocopherol, gamma-tocopherol, alpha-tocotrienol, beta-tocotrienol, delta-tocotrienol, gamma-tocotrienol, alpha-tocopherol acetate, beta-tocopherol acetate, gamma-tocopherol acetate, delta-tocopherol acetate, alpha-tocotrienol acetate, beta-tocotrienol acetate, delta-tocotrienol acetate, gamma-tocotrienol acetate, alpha-tocopherol succinate, beta-tocopherol succinate, gamma-tocopherol succinate, delta-tocopherol succinate, alpha-tocotrienol succinate, beta tocotrienol succinate, delta-tocotrienol succinate, gamma-tocotrienol succinate, mixed tocopherols, vitamin E TPGS, derivatives, analogs and pharmaceutically acceptable salts thereof.
In accordance with further aspects of the present invention, the fatty acid compound or derivative or analog thereof is cured to increase viscosity to form the film. The stand-alone film is cured using at least one curing method selected from a group of curing methods including application of UV light, application of heat, airflow, and reaction with a gas or chemical cross-linker. It should be noted that curing with respect to the present invention generally refers to thickening, hardening, or drying of a material brought about by heat, UV, or chemical means.
In accordance with further aspects of the present invention, the stand-alone film further includes a therapeutic agent. The therapeutic agent can include an agent selected from the group consisting of antioxidants, anti-inflammatory agents, anti-coagulant agents, drugs to alter lipid metabolism, anti-proliferatives, anti-neoplastics, tissue growth stimulants, functional protein/factor delivery agents, anti-infective agents, imaging agents, anesthetic agents, chemotherapeutic agents, tissue absorption enhancers, anti-adhesion agents, germicides, analgesics, prodrugs, and antiseptics.
In accordance with further aspects of the present invention, the therapeutic agent is combined with the fatty acid compound prior to formation of the film, resulting in the therapeutic agent being interspersed throughout the film. Alternatively, the therapeutic agent is applied to the film in the form of a coating.
In accordance with further aspects of the present invention, the stand-alone film is bioabsorbable. The stand-alone film can further maintain anti-adhesive properties.
In accordance with another embodiment of the present invention, a method of forming a stand-alone film is introduced. The method includes providing a chamber formed of flexible porous material and having an internal wall and filling the chamber with a fatty acid compound in liquid form. The method also includes curing the fatty acid compound proximal to the internal wall to form a film along the internal wall. The method further includes removing the fatty acid compound that remains in liquid form and separating the film from the internal wall of the flexible porous material creating a stand-alone film. In accordance with one aspect of the present invention, the flexible material includes expanded polytetrafluoroethylene (ePTFE).
In accordance with further aspects of the present invention, the fatty acid compound includes omega-3 fatty acid, fish oil fatty acid, free fatty acid, triglycerides, esters of fish oil, or a combination thereof. The fish oil fatty acid can include one or more of arachidic acid, gadoleic acid, arachidonic acid, eicosapentaenoic acid, docosahexaenoic acid or derivatives, analogs and pharmaceutically acceptable salts thereof. The free fatty acid can include one or more of butyric acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, oleic acid, vaccenic acid, linoleic acid, alpha-linolenic acid, gamma-linolenic acid, behenic acid, erucic acid, lignoceric acid, analogs and pharmaceutically acceptable salts thereof.
In accordance with further aspects of the present invention, the method further includes mixing a vitamin E compound to form a portion of the fatty acid compound. The vitamin E compound can include one or more of alpha-tocopherol, beta-tocopherol, delta-tocopherol, gamma-tocopherol, alpha-tocotrienol, beta-tocotrienol, delta-tocotrienol, gamma-tocotrienol, alpha-tocopherol acetate, beta-tocopherol acetate, gamma-tocopherol acetate, delta-tocopherol acetate, alpha-tocotrienol acetate, beta-tocotrienol acetate, delta-tocotrienol acetate, gamma-tocotrienol acetate, alpha-tocopherol succinate, beta-tocopherol succinate, gamma-tocopherol succinate, delta-tocopherol succinate, alpha-tocotrienol succinate, beta-tocotrienol succinate, delta-tocotrienol succinate, gamma-tocotrienol succinate, mixed tocopherols, vitamin E TPGS, derivatives, analogs and pharmaceutically acceptable salts thereof.
In accordance with further aspects of the present invention, the curing includes using at least one curing method selected from a group of curing methods including application of UV light, application of heat, airflow, and reaction with a gas or chemical cross-linker.
In accordance with further aspects of the present invention, the method further includes combining a therapeutic agent with the fatty acid compound. The therapeutic agent can be combined with the fatty acid compound prior to formation of the stand-alone film, interspersing the therapeutic agent throughout the stand-alone film. Alternatively, a therapeutic agent can be applied to the stand-alone film in the form of a coating.
In accordance with still another embodiment of the present invention, another method of forming a stand-alone film is introduced. The method includes providing a fatty acid compound in liquid form and applying the fatty acid compound to a substrate. The method also includes curing the fatty acid compound to form the stand-alone film. In accordance with one aspect of the present invention, the substrate includes expanded polytetrafluoroethylene (ePTFE) or polytetrafluoroethylene (PTFE).
In accordance with further aspects of the present invention, the fatty acid compound includes omega-3 fatty acid, fish oil fatty acid, free fatty acid, triglycerides, esters of fish oil, or a combination thereof. The fish oil fatty acid can include one or more of arachidic acid, gadoleic acid, arachidonic acid, eicosapentaenoic acid, docosahexaenoic acid or derivatives, analogs and pharmaceutically acceptable salts thereof. The free fatty acid can include one or more of butyric acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, oleic acid, vaccenic acid, linoleic acid, alpha-linolenic acid, gamma-linolenic acid, behenic acid, erucic acid, lignoceric acid, analogs and pharmaceutically acceptable salts thereof.
In accordance with further aspects of the present invention, the method further includes mixing a vitamin E compound to form a portion of the fatty acid compound. The vitamin E compound can include one or more of alpha-tocopherol, beta-tocopherol, delta-tocopherol, gamma-tocopherol, alpha-tocotrienol, beta-tocotrienol, delta-tocotrienol, gamma-tocotrienol, alpha-tocopherol acetate, beta-tocopherol acetate, gamma-tocopherol acetate, delta-tocopherol acetate, alpha-tocotrienol acetate, beta-tocotrienol acetate, delta-tocotrienol acetate, gamma-tocotrienol acetate, alpha-tocopherol succinate, beta-tocopherol succinate, gamma-tocopherol succinate, delta-tocopherol succinate, alpha-tocotrienol succinate, beta-tocotrienol succinate, delta-tocotrienol succinate, gamma-tocotrienol succinate, mixed tocopherols, vitamin E TPGS, derivatives, analogs and pharmaceutically acceptable salts thereof.
In accordance with further aspects of the present invention, the curing includes using at least one curing method selected from a group of curing methods including application of UV light and application of heat. The UV light can also be applied to set the fatty acid compound by forming a skin on the top surface of the fatty acid compound in liquid form prior to additional curing.
In accordance with further aspects of the present invention, the method further includes combining a therapeutic agent with the fatty acid compound. A therapeutic agent can be combined with the fatty acid compound prior to formation of the stand-alone film, interspersing the therapeutic agent throughout the stand-alone film. Alternatively, a therapeutic agent can be applied to the stand-alone film in the form of a coating.
In accordance with another aspect of the present invention, the method further includes treating the fatty acid compound in liquid form prior to application to the substrate to form a pre-thickened fatty acid compound.
In accordance with further aspects of the present invention, the substrate has an indentation that is used as a mold to shape the stand-alone film. Alternatively, the method can further include the step of cutting the film to a desirable shape.
In accordance with yet another aspect of the present invention, a barrier layer includes a non-polymeric cross-linked gel formed at least in part of a fatty acid compound or derivative or analog thereof.
In accordance with aspects of the present invention, the fatty acid compound includes omega-3 fatty acid, fish oil fatty acid, free fatty acid, triglycerides, esters of fish oil, or a combination thereof. The barrier layer can further include a therapeutic agent. The therapeutic agent includes an agent selected from the group consisting of antioxidants, anti-inflammatory agents, anti-coagulant agents, drugs to alter lipid metabolism, anti-proliferatives, anti-neoplastics, tissue growth stimulants, functional protein/factor delivery agents, anti-infective agents, imaging agents, anesthetic agents, chemotherapeutic agents, tissue absorption enhancers, anti-adhesion agents, germicides, analgesics, prodrugs, and antiseptics.
In accordance with still another embodiment of the present invention, a method of using a stand-alone film includes placing a stand-alone film in between two body tissues, wherein the stand-alone film is formed at least in part of a fatty acid compound or derivative or analog thereof.
The present invention will become better understood with reference to the following description and accompanying drawings, wherein:
The present invention utilizes primarily fatty acids to form a stand-alone film. The phrase stand-alone film is used herein to refer to a film that does not require any additional material to provide structure to the film. A medical device having a coating of fish oil is not a stand-alone film because the coating of fish oil relies on the device to provide structure to the film. The stand-alone films are bioabsorbable and cells may consume the breakdown products, fatty acid, short and long chain alcohol, and glyceride molecules. Bioabsorbable substances break down into substances or components that do not cause an inflammatory response and can be consumed by the cells forming the body tissues. Furthermore, the resultant film is flexible, easy to handle, and relatively strong. The resultant film may be used with many surgical procedures when anti-adhesion is desirable for a pre-determined amount of time.
Stand-alone film 100 is made from fatty acids, such as omega-3 fatty acid, fish oil fatty acid, free fatty acid, triglycerides, esters of fish oil, or a combination thereof. Fish oil fatty acid may further be one or a combination of arachidic acid, gadoleic acid, arachidonic acid, eicosapentaenoic acid, docosahexaenoic acid or derivatives, analogs, and pharmaceutically acceptable salts thereof. Free fatty acid may be one or more of butyric acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, loeic acid, vaccenic acid, linoleic acid, alpha-linolenic acid, gamma-linolenic acid, behenic acid, erucic acid, lignoceric acid, or derivatives, analogs and pharmaceutically acceptable salts thereof.
More specifically, the stand-alone film 100 is formed of a non-polymeric cross-linked gel derived from fatty acid compounds. The fatty acids include omega-3 fatty acids when the oil utilized to form the stand-alone film is fish oil or an analog or derivative thereof. As liquid fish oil is heated, autoxidation occurs with the absorption of oxygen into the fish oil to create hydroperoxides in an amount dependent upon the amount of unsaturated (C═C) sites in the fish oil. However, the (C═C) bonds are not consumed in the initial reaction. Concurrent with the formation of hydroperoxides is the isomerization of (C═C) double bonds from cis to trans in addition to double bond conjugation. It has been demonstrated that hydroperoxide formation increases with temperature. Heating of the fish oil allows for cross-linking between the fish oil unsaturated chains using a combination of peroxide (C—O—O—C), ether (C—O—C), and hydrocarbon (C—C) bridges. The formation of the cross-links results in gelation of the film after the (C═C) bonds have substantially isomerized into the trans configuration. The (C═C) bonds can also form C—C cross-linking bridges in the glyceride hydrocarbon chains using a Diels-Alder Reaction. In addition to solidifying the film through cross-linking, both the hydroperoxide and (C═C) bonds can undergo secondary reactions converting them into lower molecular weight secondary oxidation byproducts including aldehydes, ketones, alcohols, fatty acids, esters, lactones, ethers, and hydrocarbons.
Accordingly, the film derived from fatty acid compounds, such as those of fish oil, includes a cross-linked structure of triglyceride and fatty acid molecules in addition to free and bound glycerol, monoglyceride, diglyceride, and triglyceride, fatty acid, anhydride, lactone, aliphatic peroxide, aldehyde, and ketone molecules. There are a substantial amount of ester bonds remaining after curing in addition to peroxide linkages forming the majority of the cross-links in the film. The film degrades into fatty acid, short and long chain alcohol, and glyceride molecules, which are all non-inflammatory and likewise consumable by cells in the soft tissue to which the film is applied. Thus, the film is bioabsorbable.
The stand-alone film 100 further provides a lubricious and anti-adhesive surface against tissue. The stand-alone film itself, in its substantially cured configuration, can provide a physical anti-adhesion barrier between two sections of tissue. The use of the naturally occurring oil, such as fish oil, provides extra lubrication to the surface of the film, which helps to reduce injury. With less injury, there is less of an inflammatory response, and less healing required. The oily surface of the film provides the anti-adhesion characteristics. One of ordinary skill in the art will appreciate that different oils will have different anti-adhesive properties, and the oils can be modified to be more liquefied or more solid or waxy, as desired. Accordingly, the degree of anti-adhesive properties offered by the film can vary. The modification of the oils from a more liquid physical state to a more solid, but still flexible, physical state is implemented through the curing process. As the oils are cured, especially in the case of fatty acid-based oils such as fish oil, cross-links form creating a gel. As the curing process is performed over increasing time durations and/or increasing temperature conditions and/or increasing UV output, more cross-links form transitioning the gel from a relatively liquid gel to a relatively solid-like, but still flexible, gel structure.
In accordance with one aspect of the present invention, the stand-alone film 100 can further include a therapeutic agent. The therapeutic agent can include an agent selected from the group consisting of antioxidants, anti-inflammatory agents, anti-coagulant agents, drugs to alter lipid metabolism, anti-proliferatives, anti-neoplastics, tissue growth stimulants, functional protein/factor delivery agents, anti-infective agents, imaging agents, anesthetic agents, chemotherapeutic agents, tissue absorption enhancers, anti-adhesion agents, germicides, analgesics, prodrugs, and antiseptics. The therapeutic agent may be added to the fatty acid compound prior to forming a stand-alone film so that the therapeutic agent is interspersed throughout the stand-alone film 100. Alternatively, the therapeutic agent may be applied to the stand-alone film 100 to form a coating on a surface of the stand-alone film after the fatty acid compound has formed a stand-alone film.
In accordance with one aspect of the present invention, the therapeutic agent can include a vitamin E compound. The vitamin E compound may include one or more of alpha-tocopherol, beta-tocopherol, delta-tocopherol, gamma-tocopherol, alpha-tocotrienol, beta-tocotrienol, delta-tocotrienol, gamma-tocotrienol, alpha-tocopherol acetate, beta-tocopherol acetate, gamma-tocopherol acetate, delta-tocopherol acetate, alpha-tocotrienol acetate, beta-tocotrienol acetate, delta-tocotrienol acetate, gamma-tocotrienol acetate, alpha-tocopherol succinate, beta-tocopherol succinate, gamma-tocopherol succinate, delta-tocopherol succinate, alpha-tocotrienol succinate, beta-tocotrienol succinate, delta-tocotrienol succinate, gamma-tocotrienol succinate, mixed tocopherols, vitamin E TPGS, derivatives, analogs and pharmaceutically acceptable salts thereof.
One of ordinary skill in the art will appreciate that the stand-alone film of the present invention may be applied with other therapeutic agents that are not listed above. These therapeutic agents are added for healing purposes and not to provide structure to the stand-alone film. Furthermore, the stand-alone film can be formed in a manner that creates the potential for controlled long term release of a therapeutic agent, while still maintaining the benefits of the natural oil component of the film. With the present invention, and in the field of soft tissue applications, the uptake of the therapeutic agent is facilitated by the delivery of the therapeutic agent to the cell membrane by the bio-absorbable stand-alone film.
The stand-alone film 100 can be formed in many different shapes. In accordance with one aspect of the present invention, the stand-alone film 100 can have a rectangular shape with square corners as illustrated in
One of ordinary skill in the art will appreciate that the present invention is not limited to the specific shapes and dimensions that are disclosed herein and the illustrative embodiments are merely for demonstration purposes only.
One of ordinary skill in the art will appreciate that the mold may be used to shape the resultant stand-alone film. Additionally, patterns or words may be included in the mold to identify certain properties or features of the stand-alone films, such as names of one or more therapeutic agents that are included in the film, or the side of the film that has a coating of one or more therapeutic agents, thickness of the film, name of the company that produces the films, and etc.
One of ordinary skill in the art will also appreciate that sheets of stand-alone films can be cut to different shapes prior to shipping the stand-alone films to customers. In this manner, customers can choose to purchase different shapes of films for different purposes. This provides the surgeons the convenience to use pre-cut films that are suitable for different surgeries.
One form of fatty acid is omega-3 fatty acid, which can act as an anti-inflammatory agent. Other therapeutic agents may also be utilized to enhance this feature. Therapeutic agents may also be added to a stand-alone film made of fatty acids to provide additional healing functions, such as through drug loading or drug coating.
As utilized herein, the phrase “therapeutic agent(s)” refers to a number of different drugs or agents available, as well as future agents that may be beneficial for use with the stand-alone film of the present invention. The therapeutic agent can take a number of different forms including anti-oxidants, anti-inflammatory agents, anti-coagulant agents, drugs to alter lipid metabolism, anti-proliferatives, anti-neoplastics, tissue growth stimulants, functional protein/factor delivery agents, anti-infective agents, anti-imaging agents, anesthetic agents, therapeutic agents, tissue absorption enhancers, anti-adhesion agents, germicides, anti-septics, analgesics, prodrugs, and any additional desired therapeutic agents such as those listed in Table 1 below.
Some specific examples of therapeutic agents useful in the anti-restenosis realm include cerivastatin, cilostazol, fluvastatin, lovastatin, paclitaxel, pravastatin, rapamycin, a rapamycin carbohydrate derivative (for example, as described in US Patent Application Publication 2004/0235762), a rapamycin derivative (for example, as described in U.S. Pat. No. 6,200,985), everolimus, seco-rapamycin, seco-everolimus, and simvastatin. With systemic administration, the therapeutic agent is administered orally or intravenously to be systemically processed by the patient. However, there are drawbacks to a systemic delivery of a therapeutic agent, one of which is that the therapeutic agent travels to all portions of the patient's body and can have undesired effects at areas not targeted for treatment by the therapeutic agent. Furthermore, large doses of the therapeutic agent only amplify the undesired effects at non-target areas. As a result, the amount of therapeutic agent that results in application to a specific targeted location in a patient may have to be reduced when administered systemically to reduce complications from toxicity resulting from a higher dosage of the therapeutic agent.
Accordingly, an alternative to the systemic administration of a therapeutic agent is the use of a targeted local therapeutic agent delivery approach. With local delivery of a therapeutic agent, the therapeutic agent is administered using a medical device or apparatus, directly by hand, or sprayed on the tissue, at a selected targeted tissue location of the patient that requires treatment. The therapeutic agent emits, or is otherwise delivered, from the medical device apparatus, and/or carrier, and is applied to the targeted tissue location. The local delivery of a therapeutic agent enables a more concentrated and higher quantity of therapeutic agent to be delivered directly at the targeted tissue location, without having broader systemic side effects. With local delivery, the therapeutic agent that escapes the targeted tissue location dilutes as it travels to the remainder of the patient's body, substantially reducing or eliminating systemic side effects.
Targeted local therapeutic agent delivery using a medical device can be further broken into two categories, namely, short term and long term ranging generally within a matter of seconds or minutes to a few days or weeks to a number of months. Typically, to achieve the long term delivery of a therapeutic agent, the therapeutic agent must be combined with a delivery agent, or otherwise formed with a physical impediment as a part of the medical device, to slow the release of the therapeutic agent.
Prior attempts to create films and drug delivery platforms, such as in the field of stents, primarily make use of high molecular weight synthetic polymer based materials to provide the ability to better control the release of the therapeutic agent. Essentially, the polymer in the platform releases the drug or agent at a predetermined rate once implanted at a location within the patient. Regardless of how much of the therapeutic agent would be most beneficial to the damaged tissue, the polymer releases the therapeutic agent based on properties of the polymer. Accordingly, the effect of the therapeutic agent is substantially local at the surface of the tissue making contact with the medical device having the coating. In some instances the effect of the therapeutic agent is further localized to the specific locations of, for example, stent struts or mesh pressed against the tissue location being treated. These prior approaches can create the potential for a localized toxic effect.
The stand-alone film 100 of the present invention, however, makes use of the natural oils to form a non-polymeric natural oil based therapeutic agent delivery platform, if desired. Furthermore, the stand-alone film 100 can be formed in a manner that creates the potential for controlled long term release of a therapeutic agent, while still maintaining the benefits of the natural oil component of the stand-alone film 100.
For drug loading, a therapeutic agent is combined with a fatty acid compound prior to formation of the film in accordance with one embodiment of the present invention. Hence, the resultant film has the therapeutic agent interspersed throughout the film. For drug coating, a therapeutic agent is applied in the form of a coating on a stand-alone film. In one embodiment, a coating can be applied by overlaying a drug-loaded fatty acid compound on a stand-alone film. After a therapeutic agent is dissolved in an appropriate solvent, it is blended with a fatty acid compound to form a coating material. The solvent is evaporated prior to applying the coating material as a coating on a stand-alone film. Alternatively, the therapeutic agent may be blended directly into the fatty acid compound without the use of a solvent. The coating material can be, for example, sprayed or brushed onto a stand-alone film. The coating material can also be cast directly on top of a stand-alone film. The stand-alone film with the coating material is heated or exposed to UV light to raise the viscosity of the coating material beyond the gelation point and hence create a cross-linked gel coating on the stand-alone film. Alternatively, the coating material can be left in a state of lower viscosity to preserve drug recovery rate or to alter the release characteristics of the therapeutic agent used in the coating material.
In accordance with one embodiment of the present invention, a coating can be applied using a polyionic layer-by-layer (LBL) technique. A stand-alone film is contacted by a cationic solution (+ charged) for a period of time, after which the stand-alone film is rinsed with deionized water. This results in the stand-alone film being added with a layer of positively charged polyelectrolyte coating. Another layer of coating is then applied by contacting the stand-alone film with an anionic solution (− charged) for a period of time, after which the stand-alone film is again rinsed with deionized water. One or ordinary skill in the art will appreciate that the concentration of the polyelectrolytes can be varied. A therapeutic agent is coated onto the stand-alone film by substituting the therapeutic agent for one of the polyelectrolyte components of the LBL system. After the therapeutic agent is applied, the stand-alone film may be rinsed with deionized water. Using this general procedure, a single drug layer can be coated on the surface of the stand-alone film. Alternatively, a capping polyelectrolyte bilayer can be applied after the drug is coated onto the surface of the stand-alone film and the procedure can be repeated several times to create multiple buried drug layers.
In accordance with yet another embodiment of the present invention, a coating can be applied by dipping a stand-alone film in a solvent-therapeutic mixture to load the therapeutic agent onto the stand-alone film. A therapeutic agent is dissolved in an appropriate solvent. The stand-alone film is then dipped into the solution for a period of time to coat the surface of the film or to allow the film to swell and absorb some of the solution. The stand-alone film is then removed and the solvent in the film is evaporated. Examples of solvents that may be used with this method include, but are not limited to, ethanol and nMP.
The stand-alone film of the present invention may be used as a barrier to keep tissues separated to avoid adhesion. Application examples for adhesion prevention include abdominal surgeries, spinal repair, orthopedic surgeries, tendon and ligament repairs, gynecological and pelvic surgeries, and nerve repair applications. The stand-alone film may be applied over the trauma site or wrapped around the tissue or organ to limit adhesion formation. The addition of therapeutic agents to the stand-alone films used in these adhesion prevention applications can be utilized for additional beneficial effects, such as pain relief or infection minimization. Other surgical applications of the stand-alone film may include using a stand-alone film as a dura patch, buttressing material, internal wound care (such as a graft anastomotic site), and internal drug delivery system. The stand-alone film may also be used in applications in transdermal, wound healing, and non-surgical fields. The stand-alone film may be used in external wound care, such as a treatment for burns or skin ulcers. The stand-alone film may be used without any therapeutic agent as a clean, non-permeable, non-adhesive, non-inflammatory, anti-inflammatory dressing, or the stand-alone film may be used with one or more therapeutic agents for additional beneficial effects. The stand-alone film may also be used as a transdermal drug delivery patch when the stand-alone film is loaded or coated with one or more therapeutic agents.
The process of wound healing involves tissue repair in response to injury and it encompasses many different biologic processes, including epithelial growth and differentiation, fibrous tissue production and function, angiogenesis, and inflammation. The cross-linked gel used to make the inventive stand-alone film has been shown in an animal model not to produce an inflammatory response, but still provide excellent cellular overgrowth with little to no fibrous capsule formation. Accordingly, the stand-alone film provides an excellent material suitable for wound healing applications.
In general, the thicker the film, the longer it takes for the film to be absorbed by a patient's body. Furthermore, processing parameters, such as processing time, processing temperature, and processing method, can also influence the breakdown characteristic of a stand-alone film. Additionally, the thicker the film, the stronger the film as measured with tensile strength. Tensile strength varies with processing time and processing temperature.
The stand-alone film of the present invention has shown improved tensile strength properties compared to Seprafilm® manufactured by Genzyme Corporation. When Seprafilm is dry, the tensile strength is about 13.5 lbf. However, when exposed to normal saline in conditions similar to 30 seconds after implantation, Seprafilm's tensile strength reduces to 0.059 lbf due to hydration. On the other hand, a stand-alone film in accordance with the present invention with a thickness that is about the same as Seprafilm has a tensile strength of 0.48 lbf (when the film was made using the same process as the samples shown in
One example of making a stand-alone film using the methods shown in
Another example of making a stand-alone film using the method shown in
An example of making a stand-alone film using the method shown in
One example of using drug loading was demonstrated by using Cyclosporine. Pure fish oil was heated at 200° F. to obtain a viscosity of 15,000-20,000 cps at 24° C. to form a pre-treated or pre-thickened fish oil. 3.1 g of the pre-treated or pre-thickened fish oil is then mixed with 64.6 mg of Cyclosporine A (CSA). The mixture was then heated to 150° F. for 20 minutes to allow the CSA to dissolve in the fish oil. This resulted in a 2.0% CSA in fish oil formulation by weight. After heating, the mixture was cast onto a Teflon mat with a casting knife to form a thin film. The thin film was then placed under a UV lamp for 15 minutes. The UV lamp had a power of 15 watts and emitted UV light with a 254 nm wavelength. After exposure to UV light, the thin film was heated in an oven at 200° F. for 24 hours, after which the thin film was removed from the oven and allowed to cool for 1 hour. After the thin film was cooled, it was peeled from the Teflon mat to form a stand-alone film. The resultant film had a thickness of approximately 0.005″. Drug extraction and dissolution were performed on the film by high performance liquid chromatography (HPLC). The extraction result shows a CSA load of 311 μg on a 1″ by 1″ sample. The dissolution results are shown in
An example of using drug coating was demonstrated by overlaying a drug-loaded fish oil on a stand-alone film. Pure fish oil was heated at 200° F. to obtain a viscosity greater than 100,000 cps at 24° C. to form pre-cured fish oil. 3.33 g of pre-cured fish oil was mixed with 71.1 mg of CSA to form a mixture. This resulted in a 2.1% CSA in fish oil formulation by weight. After the CSA was solubilized in the pre-cured fish oil, the mixture was brushed onto a 1″ by 1½ piece of stand-alone film. The film with the drug coating was then heated at 125° F. for 64 hours. Drug extraction and dissolution were performed on the film by HPLC. The extraction result shows a CSA load of 3.2 mg on a 1″ by 1½″ sample.
Another example of drug coating was demonstrated by using the polyionic LBL technique. A coating of Marcaine was added to a piece of stand-alone film by applying a polyelectrolyte coating (LBL) on a 1″ by 1½″ of stand-alone film. The cationic component was 0.01M polyethylene amine (PEI) while the anionic component was 0.01M poly acrylic acid (PAA). A 10-layer system was added to the stand-alone film beginning with PEI and ending with PAA, with a 5-minute soak for each component followed by a deionized water rinse. 103.2 mg of Marcaine was added to 3.5 ml of water to form a 29.5 mg/ml Marcaine solution. The stand-alone film was then dipped into the Marcaine solution for 5 minutes and allowed to air dry.
Still another example of drug coating was demonstrated by allowing a stand-alone film to swell with a solution including a therapeutic agent. 40.1 mg of RAP was mixed with 3.6 g of EtOH. This resulted in a 10% RAP in Ethanol formulation by weight. A 1″ by 1½″ of stand-alone film was dipped into the RAP formulation and allowed to swell. The stand-alone film was then allowed to air dry. The resultant film was approximately 0.005″ in thickness. Drug extraction and dissolution were performed on the film by HPLC. The extraction result shows a RAP load of 4.7 mg on a 1″ by 1½″ sample. Dissolution results are shown in
For the development of the present invention, experiments were performed using native fish oil with various substrates, such as metal plates, glass plates, PTFE coated pans, non-porous PTFE, and polyvinyl alcohol (PVA) films. The native fish oil was coated on the various substrates and then heated at a set temperature and time to cure the native fish oil. In this manner, the fish oil cures or sets at the exposed surface (top-down) forming a skin (solidified fish oil) on the surface. It was determined that the amount of fish oil required to form a film is limited due to pooling on the substrate. Additionally, the fish oil does not spread out in an even manner due to surface tension. Therefore, there is a limit on how thin the fish oil may be cast on the substrates using this method. Furthermore, the film may start to wrinkle during the curing process or the fish oil may flow and run off the substrate when the substrate is not perfectly leveled in the oven. The resultant film may be of poor quality or may not be reproduced consistently when certain substrates are used. However, using a porous substrate, such as ePTFE, with liquid fish oil or a non-porous substrate with a pre-thickened fish oil can resolve the above mentioned difficulties. Liquid fish oil penetrates into the porous substrate and thus creates a mechanical lock during the curing process to prevent the film from wrinkling. One of ordinary skill in the art will appreciate that any drying or semi-drying oils may also be used with a porous substrate. Using a pre-thickened fish oil on a non-porous substrate provides a different surface tension between the fish oil and the substrate so that the thickened fish oil may be spread out evenly on the substrate.
The present invention provides methods for making stand-alone films from fatty acids. The bioabsorbable nature of the stand-alone film results in the film being completely absorbed over time by the cells of the body tissue. There is no breakdown of the stand-alone film into components and substances that are inflammatory and are eventually distributed throughout the body and in some instances disposed of by the body, as in the case with biodegradable synthetic polymer surgical films. In addition, the stand-alone film also provides a lubricious or anti-adhesive surface against body tissues. The fatty acid derived cross-linked gel that makes up the stand-alone film maintains anti-inflammatory and/or non-inflammatory properties that helps lower the inflammatory response of the body tissues. The reduced inflammation also reduces adhesions. A stand-alone film made from fatty acid compounds is flexible, easy to handle, and can be shaped easily. A therapeutic agent may be applied to a stand-alone film through drug loading or drug coating. Hence, the stand-alone film not only provides anti-adhesion but also therapeutic healing functions.
Numerous modifications and alternative embodiments of the present invention will be apparent to those skilled in the art in view of the foregoing description. Accordingly, this description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the best mode for carrying out the present invention. Details of the structure may vary substantially without departing from the spirit of the invention, and exclusive use of all modifications that come within the scope of the disclosed invention is reserved.
Number | Name | Date | Kind |
---|---|---|---|
2368306 | Kiefer et al. | Jan 1945 | A |
2986540 | Posnansky | May 1961 | A |
3464413 | Goldfarb et al. | Sep 1969 | A |
3556294 | Walck et al. | Jan 1971 | A |
3567820 | Sperti | Mar 1971 | A |
3803109 | Nemoto et al. | Apr 1974 | A |
3967728 | Gordon et al. | Jul 1976 | A |
4308120 | Pennewiss et al. | Dec 1981 | A |
4323547 | Knust et al. | Apr 1982 | A |
4557925 | Lindahl et al. | Dec 1985 | A |
4664114 | Ghodstain | May 1987 | A |
4813210 | Masuda et al. | Mar 1989 | A |
4814329 | Harsanyi et al. | Mar 1989 | A |
4847301 | Murray | Jul 1989 | A |
4880455 | Blank | Nov 1989 | A |
4883667 | Eckenhoff | Nov 1989 | A |
4886787 | De Belder et al. | Dec 1989 | A |
4894231 | Moreau et al. | Jan 1990 | A |
4895724 | Cardinal et al. | Jan 1990 | A |
4911707 | Heiber et al. | Mar 1990 | A |
4938763 | Dunn et al. | Jul 1990 | A |
4941308 | Grabenkort et al. | Jul 1990 | A |
4952419 | Ferguson et al. | Aug 1990 | A |
4968302 | Schluter et al. | Nov 1990 | A |
5017229 | Burns et al. | May 1991 | A |
5132115 | Wolter et al. | Jul 1992 | A |
5147374 | Fernandez | Sep 1992 | A |
5151272 | Engstrom et al. | Sep 1992 | A |
5171148 | Wasserman et al. | Dec 1992 | A |
5176956 | Jevne et al. | Jan 1993 | A |
5179174 | Elton | Jan 1993 | A |
5254105 | Haaga | Oct 1993 | A |
5356432 | Rutkow et al. | Oct 1994 | A |
5368602 | de la Torre | Nov 1994 | A |
5371109 | Engstrom et al. | Dec 1994 | A |
5380328 | Morgan | Jan 1995 | A |
5387658 | Schroder et al. | Feb 1995 | A |
5403283 | Luther | Apr 1995 | A |
5447940 | Harvey et al. | Sep 1995 | A |
5464650 | Berg et al. | Nov 1995 | A |
5480653 | Aguadish et al. | Jan 1996 | A |
5509899 | Fan et al. | Apr 1996 | A |
5579149 | Moret et al. | Nov 1996 | A |
5580923 | Yeung et al. | Dec 1996 | A |
5591230 | Horn et al. | Jan 1997 | A |
5593441 | Lichtenstein et al. | Jan 1997 | A |
5612074 | Leach | Mar 1997 | A |
5614284 | Kranzler et al. | Mar 1997 | A |
5627077 | Dyllick-Brenzinger et al. | May 1997 | A |
5637113 | Tartaglia et al. | Jun 1997 | A |
5665115 | Cragg | Sep 1997 | A |
5695525 | Mulhauser et al. | Dec 1997 | A |
5700286 | Tartaglia et al. | Dec 1997 | A |
5736152 | Dunn | Apr 1998 | A |
5753259 | Engstrom et al. | May 1998 | A |
5760081 | Leaf et al. | Jun 1998 | A |
5766246 | Mulhauser et al. | Jun 1998 | A |
5766710 | Turnlund et al. | Jun 1998 | A |
5789465 | Harvey et al. | Aug 1998 | A |
5817343 | Burke | Oct 1998 | A |
5824082 | Brown | Oct 1998 | A |
5837313 | Ding et al. | Nov 1998 | A |
5843919 | Burger | Dec 1998 | A |
5874470 | Nehne et al. | Feb 1999 | A |
5879359 | Dorigatti et al. | Mar 1999 | A |
5898040 | Shalaby et al. | Apr 1999 | A |
5906831 | Larsson et al. | May 1999 | A |
5931165 | Reich et al. | Aug 1999 | A |
5955502 | Hansen et al. | Sep 1999 | A |
5986043 | Hubbell et al. | Nov 1999 | A |
6005004 | Katz et al. | Dec 1999 | A |
6010766 | Braun et al. | Jan 2000 | A |
6010776 | Exsted et al. | Jan 2000 | A |
6015844 | Harvey et al. | Jan 2000 | A |
6028164 | Loomis | Feb 2000 | A |
6040330 | Hausheer et al. | Mar 2000 | A |
6056970 | Greenawalt et al. | May 2000 | A |
6077698 | Swan et al. | Jun 2000 | A |
6083950 | Anand et al. | Jul 2000 | A |
6090809 | Anand et al. | Jul 2000 | A |
6093792 | Gross et al. | Jul 2000 | A |
6117911 | Grainger et al. | Sep 2000 | A |
6120789 | Dunn | Sep 2000 | A |
6132765 | DiCosmo et al. | Oct 2000 | A |
6146358 | Rowe | Nov 2000 | A |
6152944 | Holman et al. | Nov 2000 | A |
6176863 | Kugel et al. | Jan 2001 | B1 |
6193746 | Strecker | Feb 2001 | B1 |
6197357 | Lawton et al. | Mar 2001 | B1 |
6203551 | Wu | Mar 2001 | B1 |
6206916 | Furst | Mar 2001 | B1 |
6211315 | Larock et al. | Apr 2001 | B1 |
6228383 | Hansen et al. | May 2001 | B1 |
6229032 | Jacobs et al. | May 2001 | B1 |
6245811 | Harrobin et al. | Jun 2001 | B1 |
6254634 | Anderson et al. | Jul 2001 | B1 |
6262109 | Clark et al. | Jul 2001 | B1 |
6273913 | Wright et al. | Aug 2001 | B1 |
6284268 | Mishra et al. | Sep 2001 | B1 |
6299604 | Ragheb et al. | Oct 2001 | B1 |
6326360 | Kanazawa et al. | Dec 2001 | B1 |
6331568 | Horrobin | Dec 2001 | B1 |
6342254 | Soudant et al. | Jan 2002 | B1 |
6346110 | Wu | Feb 2002 | B2 |
6358556 | Ding et al. | Mar 2002 | B1 |
6364893 | Sahatjian et al. | Apr 2002 | B1 |
6368658 | Schwarz et al. | Apr 2002 | B1 |
6369039 | Palasis et al. | Apr 2002 | B1 |
6387379 | Goldberg et al. | May 2002 | B1 |
6410587 | Grainger et al. | Jun 2002 | B1 |
6444318 | Guire et al. | Sep 2002 | B1 |
6451373 | Hossainy et al. | Sep 2002 | B1 |
6465525 | Guire et al. | Oct 2002 | B1 |
6471980 | Sirhan et al. | Oct 2002 | B2 |
6479683 | Abney et al. | Nov 2002 | B1 |
6491938 | Kunz | Dec 2002 | B2 |
6500453 | Brey et al. | Dec 2002 | B2 |
6503556 | Harish et al. | Jan 2003 | B2 |
6525145 | Gevaert et al. | Feb 2003 | B2 |
6527801 | Dutta | Mar 2003 | B1 |
6534693 | Fischell et al. | Mar 2003 | B2 |
6548081 | Sadozai et al. | Apr 2003 | B2 |
6565659 | Pacetti et al. | May 2003 | B1 |
6569441 | Kunz et al. | May 2003 | B2 |
6599323 | Melican et al. | Jul 2003 | B2 |
6610035 | Yang et al. | Aug 2003 | B2 |
6610068 | Yang et al. | Aug 2003 | B1 |
6630151 | Tarletsky et al. | Oct 2003 | B1 |
6630167 | Zhang | Oct 2003 | B2 |
6632822 | Rickards et al. | Oct 2003 | B1 |
6641611 | Jayaraman | Nov 2003 | B2 |
6645547 | Shekalim | Nov 2003 | B1 |
6663880 | Roorda et al. | Dec 2003 | B1 |
6669735 | Pelissier | Dec 2003 | B1 |
6670355 | Azrolan et al. | Dec 2003 | B2 |
6677342 | Wolff et al. | Jan 2004 | B2 |
6677386 | Giezen et al. | Jan 2004 | B1 |
6685956 | Chu et al. | Feb 2004 | B2 |
6730064 | Ragheb et al. | May 2004 | B2 |
6753071 | Pacetti | Jun 2004 | B1 |
6761903 | Chen et al. | Jul 2004 | B2 |
6764509 | Chinn et al. | Jul 2004 | B2 |
6776796 | Falotico et al. | Aug 2004 | B2 |
6794485 | Shalaby et al. | Sep 2004 | B2 |
6833004 | Ishii et al. | Dec 2004 | B2 |
6852330 | Bowman et al. | Feb 2005 | B2 |
6875230 | Morita et al. | Apr 2005 | B1 |
6884428 | Binette et al. | Apr 2005 | B2 |
6887270 | Miller et al. | May 2005 | B2 |
6899729 | Cox et al. | May 2005 | B1 |
6918927 | Bates et al. | Jul 2005 | B2 |
6996952 | Gupta et al. | Feb 2006 | B2 |
7070858 | Shalaby et al. | Jul 2006 | B2 |
7101381 | Ford et al. | Sep 2006 | B2 |
7152611 | Brown et al. | Dec 2006 | B2 |
7323189 | Pathak | Jan 2008 | B2 |
7415811 | Gottlieb et al. | Aug 2008 | B2 |
8124127 | Faucher et al. | Feb 2012 | B2 |
8263102 | Labrecque et al. | Sep 2012 | B2 |
8312836 | Corbeil et al. | Nov 2012 | B2 |
8367099 | Herweck et al. | Feb 2013 | B2 |
8501229 | Faucher et al. | Aug 2013 | B2 |
8722077 | Labrecque et al. | May 2014 | B2 |
20010025034 | Arbiser | Sep 2001 | A1 |
20010025196 | Chinn et al. | Sep 2001 | A1 |
20010051595 | Lyons et al. | Dec 2001 | A1 |
20020002154 | Guivarc'h et al. | Jan 2002 | A1 |
20020007209 | Scheerder et al. | Jan 2002 | A1 |
20020012741 | Heinz et al. | Jan 2002 | A1 |
20020026899 | McLaughlin et al. | Mar 2002 | A1 |
20020026900 | Huang et al. | Mar 2002 | A1 |
20020032414 | Ragheb et al. | Mar 2002 | A1 |
20020055701 | Fischell et al. | May 2002 | A1 |
20020098278 | Bates et al. | Jul 2002 | A1 |
20020116045 | Eidenschink | Aug 2002 | A1 |
20020120333 | Keogh et al. | Aug 2002 | A1 |
20020122877 | Harish et al. | Sep 2002 | A1 |
20020142089 | Koike et al. | Oct 2002 | A1 |
20020193829 | Kennedy et al. | Dec 2002 | A1 |
20030003125 | Nathan et al. | Jan 2003 | A1 |
20030003221 | Zhong et al. | Jan 2003 | A1 |
20030004564 | Elkins et al. | Jan 2003 | A1 |
20030055403 | Nestenborg et al. | Mar 2003 | A1 |
20030065292 | Darouiche et al. | Apr 2003 | A1 |
20030065345 | Weadock | Apr 2003 | A1 |
20030069632 | De Scheerder et al. | Apr 2003 | A1 |
20030072784 | Williams | Apr 2003 | A1 |
20030077272 | Pathak | Apr 2003 | A1 |
20030077310 | Pathak et al. | Apr 2003 | A1 |
20030077452 | Guire et al. | Apr 2003 | A1 |
20030083740 | Pathak | May 2003 | A1 |
20030086958 | Arnold et al. | May 2003 | A1 |
20030094728 | Tayebi | May 2003 | A1 |
20030108588 | Chen et al. | Jun 2003 | A1 |
20030130206 | Koziak et al. | Jul 2003 | A1 |
20030152609 | Fischell et al. | Aug 2003 | A1 |
20030175408 | Timm et al. | Sep 2003 | A1 |
20030176915 | Wright et al. | Sep 2003 | A1 |
20030181975 | Ishii et al. | Sep 2003 | A1 |
20030191179 | Joshi-Hangal et al. | Oct 2003 | A1 |
20030204168 | Bosma et al. | Oct 2003 | A1 |
20030204618 | Foster et al. | Oct 2003 | A1 |
20030207019 | Shekalim et al. | Nov 2003 | A1 |
20030211230 | Pacetti et al. | Nov 2003 | A1 |
20030220297 | Berstein et al. | Nov 2003 | A1 |
20040006296 | Fischell et al. | Jan 2004 | A1 |
20040014810 | Horrobin | Jan 2004 | A1 |
20040018228 | Fischell et al. | Jan 2004 | A1 |
20040039441 | Rowland et al. | Feb 2004 | A1 |
20040060260 | Gottlieb et al. | Apr 2004 | A1 |
20040071756 | Fischell et al. | Apr 2004 | A1 |
20040072849 | Schreiber et al. | Apr 2004 | A1 |
20040073284 | Bates et al. | Apr 2004 | A1 |
20040131755 | Zhong et al. | Jul 2004 | A1 |
20040133275 | Mansmann | Jul 2004 | A1 |
20040137066 | Jayaraman | Jul 2004 | A1 |
20040137179 | Shojiro et al. | Jul 2004 | A1 |
20040142094 | Narayanan | Jul 2004 | A1 |
20040146546 | Gravett et al. | Jul 2004 | A1 |
20040156879 | Muratoglu et al. | Aug 2004 | A1 |
20040161464 | Domb | Aug 2004 | A1 |
20040167572 | Roth et al. | Aug 2004 | A1 |
20040170685 | Carpenter et al. | Sep 2004 | A1 |
20040192643 | Pressato et al. | Sep 2004 | A1 |
20040215219 | Eldridge et al. | Oct 2004 | A1 |
20040224003 | Schultz | Nov 2004 | A1 |
20040230176 | Shanahan et al. | Nov 2004 | A1 |
20040234574 | Sawhney et al. | Nov 2004 | A9 |
20040241211 | Fischell | Dec 2004 | A9 |
20040256264 | Israelsson et al. | Dec 2004 | A1 |
20050010078 | Jamiolkowski et al. | Jan 2005 | A1 |
20050084514 | Shebuski et al. | Apr 2005 | A1 |
20050095267 | Campbell et al. | May 2005 | A1 |
20050100655 | Zhong et al. | May 2005 | A1 |
20050106209 | Ameri et al. | May 2005 | A1 |
20050112170 | Hossainy et al. | May 2005 | A1 |
20050113849 | Popadiuk et al. | May 2005 | A1 |
20050129787 | Murad | Jun 2005 | A1 |
20050158361 | Dhondt et al. | Jul 2005 | A1 |
20050159809 | Hezi-Yamit et al. | Jul 2005 | A1 |
20050165476 | Furst et al. | Jul 2005 | A1 |
20050165477 | Anduiza et al. | Jul 2005 | A1 |
20050182485 | Falotico et al. | Aug 2005 | A1 |
20050187376 | Pacetti | Aug 2005 | A1 |
20050203635 | Hunter et al. | Sep 2005 | A1 |
20050203636 | McFetridge | Sep 2005 | A1 |
20050223679 | Gottlieb et al. | Oct 2005 | A1 |
20050232971 | Hossainy et al. | Oct 2005 | A1 |
20050249775 | Falotico et al. | Nov 2005 | A1 |
20050283229 | Dugan et al. | Dec 2005 | A1 |
20060008501 | Dhont et al. | Jan 2006 | A1 |
20060036311 | Nakayama et al. | Feb 2006 | A1 |
20060058881 | Trieu | Mar 2006 | A1 |
20060067974 | Labrecque | Mar 2006 | A1 |
20060067975 | Labrecque et al. | Mar 2006 | A1 |
20060067976 | Ferraro et al. | Mar 2006 | A1 |
20060067977 | Labrecque et al. | Mar 2006 | A1 |
20060067983 | Swanick et al. | Mar 2006 | A1 |
20060068674 | Dixit et al. | Mar 2006 | A1 |
20060078586 | Ferraro | Apr 2006 | A1 |
20060083768 | Labrecque et al. | Apr 2006 | A1 |
20060088596 | Labrecque | Apr 2006 | A1 |
20060093643 | Stenzel | May 2006 | A1 |
20060110457 | Labrecque et al. | May 2006 | A1 |
20060121081 | Labrecque et al. | Jun 2006 | A1 |
20060124056 | Behnisch et al. | Jun 2006 | A1 |
20060134209 | Labhasetwar et al. | Jun 2006 | A1 |
20060158361 | Chou | Jul 2006 | A1 |
20060204738 | Dubrow et al. | Sep 2006 | A1 |
20060210701 | Chappa et al. | Sep 2006 | A1 |
20060240069 | Utas et al. | Oct 2006 | A1 |
20060246105 | Molz et al. | Nov 2006 | A1 |
20070015893 | Hakuta et al. | Jan 2007 | A1 |
20070071798 | Herweck et al. | Mar 2007 | A1 |
20070084144 | Labrecque et al. | Apr 2007 | A1 |
20070093894 | Darouiche | Apr 2007 | A1 |
20070141112 | Falotico et al. | Jun 2007 | A1 |
20070202149 | Faucher et al. | Aug 2007 | A1 |
20070212411 | Fawzy et al. | Sep 2007 | A1 |
20070264460 | Del Tredici | Nov 2007 | A1 |
20070275074 | Holm et al. | Nov 2007 | A1 |
20070280986 | Gil et al. | Dec 2007 | A1 |
20070286891 | Kettlewell et al. | Dec 2007 | A1 |
20070299538 | Roeber | Dec 2007 | A1 |
20080038307 | Hoffmann | Feb 2008 | A1 |
20080044481 | Harel | Feb 2008 | A1 |
20080045557 | Grainger et al. | Feb 2008 | A1 |
20080086216 | Wilson et al. | Apr 2008 | A1 |
20080109017 | Herweck et al. | May 2008 | A1 |
20080113001 | Herweck et al. | May 2008 | A1 |
20080118550 | Martakos et al. | May 2008 | A1 |
20080206305 | Herweck et al. | Aug 2008 | A1 |
20080279929 | Devane et al. | Nov 2008 | A1 |
20080286440 | Scheer | Nov 2008 | A1 |
20080289300 | Gottlieb et al. | Nov 2008 | A1 |
20090011116 | Herweck et al. | Jan 2009 | A1 |
20090047414 | Corbeil et al. | Feb 2009 | A1 |
20090181937 | Faucher | Jul 2009 | A1 |
20090208552 | Faucher | Aug 2009 | A1 |
20100183697 | Swanick et al. | Jul 2010 | A1 |
20100209473 | Dhont et al. | Aug 2010 | A1 |
20100233232 | Swanick et al. | Sep 2010 | A1 |
20110274823 | Labrecque et al. | Nov 2011 | A1 |
20120016038 | Faucher et al. | Jan 2012 | A1 |
20120213839 | Faucher et al. | Aug 2012 | A1 |
Number | Date | Country |
---|---|---|
0471566 | Feb 1992 | EP |
0610731 | Aug 1994 | EP |
0623354 | Nov 1994 | EP |
0730864 | Sep 1996 | EP |
0790822 | Aug 1997 | EP |
0873133 | Oct 1998 | EP |
0917561 | May 1999 | EP |
1140243 | Oct 2001 | EP |
1181943 | Feb 2002 | EP |
1270024 | Jan 2003 | EP |
1273314 | Jan 2003 | EP |
1364628 | Nov 2003 | EP |
1520795 | Apr 2005 | EP |
1557183 | Jul 2005 | EP |
2083875 | Aug 2009 | EP |
1402906 | Jun 2011 | EP |
20080025986 | Mar 2008 | KR |
WO 8600912 | Jul 1984 | WO |
WO 9001969 | Mar 1990 | WO |
WO 9526715 | Oct 1995 | WO |
WO 9702042 | Jan 1997 | WO |
WO 9709367 | Mar 1997 | WO |
WO 9713528 | Apr 1997 | WO |
WO 9830206 | Jul 1998 | WO |
WO 9854275 | Dec 1998 | WO |
WO 9925336 | May 1999 | WO |
WO 0040278 | Jul 2000 | WO |
WO 0040278 | Jul 2000 | WO |
WO 0062830 | Oct 2000 | WO |
WO 0062830 | Oct 2000 | WO |
WO 0124866 | Apr 2001 | WO |
WO 0126585 | Apr 2001 | WO |
WO 0137808 | May 2001 | WO |
WO 0160586 | Aug 2001 | WO |
WO 0166036 | Sep 2001 | WO |
WO 0176649 | Oct 2001 | WO |
WO 0249535 | Jun 2002 | WO |
WO 02100455 | Dec 2002 | WO |
WO 02100455 | Dec 2002 | WO |
WO 03000308 | Jan 2003 | WO |
WO 03000308 | Jan 2003 | WO |
WO 03015748 | Feb 2003 | WO |
WO 03028622 | Apr 2003 | WO |
WO 03037397 | May 2003 | WO |
WO 03037398 | May 2003 | WO |
WO 03039612 | May 2003 | WO |
WO 03041756 | May 2003 | WO |
WO 03039612 | May 2003 | WO |
WO 03070125 | Aug 2003 | WO |
WO 03092741 | Nov 2003 | WO |
WO 03092779 | Nov 2003 | WO |
WO 2004004598 | Jan 2004 | WO |
WO 2004006976 | Jan 2004 | WO |
WO 2004006978 | Jan 2004 | WO |
WO 2004028583 | Apr 2004 | WO |
WO 2004091684 | Oct 2004 | WO |
WO 2005000165 | Jan 2005 | WO |
WO 2005016400 | Feb 2005 | WO |
WO 2005053767 | Jun 2005 | WO |
WO 2005073091 | Aug 2005 | WO |
WO 2005116118 | Dec 2005 | WO |
WO-2005116118 | Dec 2005 | WO |
WO 2006024488 | Mar 2006 | WO |
WO 2006036967 | Apr 2006 | WO |
WO 2006102374 | Sep 2006 | WO |
WO 2007047028 | Apr 2007 | WO |
WO-2007047028 | Apr 2007 | WO |
WO 2008057328 | May 2008 | WO |
WO 2012009707 | Jan 2012 | WO |
Entry |
---|
International Search Report for Application No. PCT/US05/34682, dated Jul. 20, 2006. |
European Office Action for Application No. 07838216.5, dated Feb. 11, 2010. |
Redman, L.V. et al., “The drying rate of raw paint oils—a comparison,” The Journal of Industrial and Engineering Chemistry, vol. 5: 630-636 (1913). |
Guler et al. (Some empirical equations for oxopolymerization of linseed oil. Progress in Organic Coatings 2004, vol. 51, 365-371). |
“Cure” in Academic Press Dictionary of Science and Technology (1992). |
Autosuture, “Parietex™ Composite OS SERIES MESH,” retrieved online at http://www.autosuture.com/AutoSuture/pagebuilder.aspx?topicID=135734&breadcrumbs=135601:0 (2007). |
Binder et al., “Chromatographic Analysis of Seed Oils. Fatty Acid Composition of Castor Oil,” The Journal of the American Oil Chemists' Society, vol. 39:513-517 (1962). |
Camurus, “In our endeavors to create the unique, we start with the best. Your product.” |
CECW-EE, “Ch. 4: Coating Types and Characteristics,” Engineering and Design—Painting: New Construction and Maintenance, pp. 4-1 to 4-24 (1995). |
De Scheerder, Ivan K., et al. “Biocompatibility of polymer-coated oversized metallic stents implanted in normal porcine coronary arteries,” Atherosclerosis, vol. 114:105-114. |
Drummond, Calum J., et al., “Surfactant self-assembly objects as novel drug delivery vehicles,” Current Opinion in Colliod & Interface Science, vol. 4:449-456 (2000). |
Engstrom, Sven, “Drug Delivery from Cubic and Other Lipid-water Phases,” Lipid Technology, vol. 2(2):42-45 (1990). |
Guler, et al. “Some empirical equations for oxopolymerization of linseed oil,” Progress in Organic Coatings, vol. 51:365-371 (2004). |
Hwang, Chao-Wei, et al, “Physiological Transport Forces Govern Drug Distribution for Stent-Based Delivery,” Circulation, vol. 104:600-605 (2001). |
Mallegol, et al., “Drier Influence on the Curing of Linseed Oil,” Progress in Organic Coatings 39:107-113 (2000). |
Morse, Richard “Molecular Distillation of Polymerized Drying Oils,” Industrial and Engineering Chemisry 33:1039-1043 (1941). |
Oberhoff, Martin, et al, “Local and Systemic Delivery of Low Molecular Weight Heparin Following PTCA: Acute Results and 6-Month Follow-Up of the Initial Clinical Experience With the Porous Balloon (PILOT-Study),” Catheterization and Cardiovascular Diagnosis, vol. 44:267-274 (1998). |
Salu, Koen J., et al, “Addition of cytochalasin D to a biocompatible oil stent coating inhibits intimal hyperplasia in a porcine coronary model,” Coronary Artery Disease, vol. 14(8):545-555 (2003). |
Scheller, Bruno, et al, “Addition of Paclitaxel to Contrast Media Prevents Restenosis After Coronary Stent Implantation,” Journal of the American College of Cardiology, vol. 42(8):1415-1420 (2003). |
Van der Giessen, Willem J., et al, “Marked Inflammatory Sequelae to Implantation of Biodegradable and Nonbiodegradable Polymers in Porcine Coronary Arteries,” Circulation, vol. 94:1690-1697 (1996). |
Wikipedia, “Sirolimus,” pp. 1-13, available online at http://en.wikipedia.org/wiki/Sirolimus, date accessed May 11, 2011. |
Crivello et al., “Epoxidized triglycerides as renewable monomers in photoinitiated cationic polymerization,” Chem. Mater, 1992:692-699. |
Encylopedia Britannica Online, “Surface Coating,” available online at http://www.britannica.com/EBchecked/topic/575029/surface-coating>, date accessed Jun. 17, 2011. |
Timir-Balizsy et al., “Chemical Principals of Textile Conservation,” Oxford: Elsevier Science Ltd., 1998:117-119. |
International Search Report for International Application PCT/US05/034601, dated Apr. 10, 2006. |
International Search Report for International Application PCT/US05/034610, dated Mar. 16, 2006. |
International Search Report for International Application PCT/US05/034614, dated Aug. 29, 2006. |
International Search Report for International Application PCT/US05/034615, dated May 16, 2006. |
International Search Report for International Application PCT/US05/034678, dated Aug. 28, 2006. |
nternational Search Report for International Application PCT/US05/034681, dated Jul. 26, 2006. |
International Search Report for International Application PCT/US05/034682, dated Jul. 20, 2006. |
International Search Report for International Application PCT/US05/034836, dated Jul. 6, 2006. |
International Search Report for International Application PCT/US06/037184, dated Feb. 22 2007. |
International Preliminary Report on Patentability for International Application PCT/US06/040753, dated Oct. 3, 2008. |
International Search Report for International Application PCT/US06/040753, dated Sep. 24, 2007. |
International Search Report for International Application PCT/US07/019978, dated May 7, 2009. |
International Search Report for Internat onal Applicat on PCT/US07/022860, dated Apr. 22, 2009. |
International Search Report for International Application PCT/US07/022944, dated Apr. 8, 2009. |
International Search Report for International Appl cation PCT/US08/000565, dated May 4, 2009. |
International Preliminary Examination Report for International Application PCT/US08/071547, dated Aug. 26, 2010. |
International Search Report for International Application PCT/US08/071547, dated Oct. 22, 2008. |
International Preliminary Report on Patentability for International Application PCT/US08/071565, dated Aug. 27, 2009. |
International Search Report for International Application PCT/US08/071565, dated Nov. 10, 2008. |
International Search Report o nternational Application PCT/US08/085386, dated Feb. 4, 2009. |
International Search Report for International Application PCT/US09/037364, dated Aug. 27, 2009. |
International Search Report for International Application PCT/US10/026521, dated Jun. 23, 2010. |
International Search Report for International Application PCT/US10/052899, dated Jan. 10, 2011. |
Supplementary European Search Report for Application No. EP 05 80 2894, dated Jul. 27, 2011. |
Supplementary European Search Report in Application No. 05 800 844, dated Aug. 19, 2011. |
Supplementary European Search Report in Application No. EP 05 80 4291, dated Jul. 26, 2011. |
Supplementary European Search Report in Application No. EP 05 85 8430, dated Aug. 18, 2011. |
Supplementary European Serach Report for Application No. EP 08877338.7, dated Aug. 16, 2012. |
Supplementary European Search Report for Application No. EP09819594.4, dated Aug. 14, 2012. |
Non-Final Office Action for U.S. Appl. No. 11/236,908, mailed Mar. 25, 2006. |
Final Office Action for U.S. Appl. No. 11/236,908, mailed May 17, 2011. |
Non-final Office Action for U.S. Appl. No. 11/236,908, mailed Aug. 24, 2009. |
Non-final Office Action for U.S. Appl. No. 11/236,977, mailed Aug. 3, 2009. |
Final Office Action for U.S. Appl. No. 11/237,263, mailed Jul. 7, 2010. |
Non-final Office Action for U.S. Appl. No. 1/237,263, mailed Oct. 7, 2009. |
Final Office Action for U.S. Appl. No. 11/237,264, mailed Jun. 2, 2010. |
Non-final Office Action for U.S. Appl. No. 11/237,264, mailed Oct. 5, 2009. |
Final Office Action for U.S. Appl. No. 11/701,799, mailed Nov. 23, 2010. |
Non-final Office Action for U.S. Appl. No. 11/237,420, mailed Mar. 5, 2009. |
Final Office Action for U.S. Appl. No. 11/237,420, mailed Nov. 4, 2009. |
Non-final Office Action for U.S. Appl. No. 11/237,420, mailed Dec. 6, 2010. |
Non-final Office Action for U.S. Appl. No. 11/238,532, mailed Mar. 30, 2009. |
Final Office Action for U.S. Appl. No. 11/238,532, mailed Sep. 9, 2009. |
Final Office Action for U.S. Appl. No. 11/238,554, mailed May 12, 2010. |
Non-final Office Action for U.S. Appl. No. 11/238,554, mailed Oct. 9, 2009. |
Final Office Action for U.S. Appl. No. 11/238,554, mailed May 1, 2009. |
Non-final Office Action for U.S. Appl. No. 11/238,554, mailed Jul. 25, 2008. |
Non-final Office Action for U.S. Appl. No. 11/238,564, mailed Apr. 16, 2008. |
Final Office Action for U.S. Appl. No. 11/238,564, mailed Aug. 6, 2009. |
Non-final Office Action for U.S. Appl. No. 11/239,555, mailed Mar. 30, 2009. |
Non-final Office Action for U.S. Appl. No. 11/525,328, mailed Apr. 30, 2007. |
Non-final Office Action for U.S. Appl. No. 11/525,390, mailed Jul. 14, 2010. |
Final Office Action for U.S, Appl. No. 11/525,390, mailed Feb. 21, 2011. |
Final Office Action for U.S. Appl. No. 11/582,135, mailed May 12, 2011. |
Non-final Office Action for U.S. Appl. No. 11/582,135, mailed Nov. 9, 2010. |
Non-final Office Action for U.S. Appl. No. 11/582,135, mailed Jan. 6, 2010. |
Non-final Office Action for U.S. Appl. No. 11/582,135, mailed May 12, 2009. |
Non-final Office Action for U.S. Appl. No. 11/701,799, mailed Apr. 12, 2010. |
Non-final Office Action for U.S. Appl. No. 11/978,840, mailed Dec. 3, 2010. |
Non-final Office Action for U.S. Appl. No. 11/980,155, mailed Mar. 24, 2011. |
Non-final Office Action for U.S. Appl. No. 12/075,223, mailed Dec. 8, 2010. |
Non-final Office Action for U.S. Appl. No. 12/325,546, mailed Feb. 25, 2010. |
Final Office Action for U.S. Appl. No. 12/325,546, mailed Aug. 31, 2010. |
Non-final Office Action for U.S. Appl. No. 12/364,763, mailed Dec. 11, 2009. |
Final Office Action for U.S. Appl. No. 12/364,763, mailed Sep. 21, 2010. |
Interview summary for U.S. Appl. No. 11/236,908 mailed May 5, 2009. |
Interview summary for U.S. Appl. No. 11/236,908 mailed Dec. 2, 2010. |
Interview summary for U.S. Appl. No. 11/237,420 mailed May 5, 2009. |
Interview summary for U.S. Appl. No. 11/582,135 mailed Dec. 7, 2010. |
Interview summary for U.S. Appl. No. 12/325,546 mailed Dec. 2, 2010. |
Interview summary for U.S. Appl. No. 12/364,763 mailed Dec. 2, 2010. |
Final Office Action for U.S. Appl. No. 11/237,420, mailed Jul. 13, 2011. |
Final Office Action for U.S. Appl. No. 11/978,840, mailed Jun. 22, 2011. |
Final Office Action for U.S. Appl. No. 12/075,223, mailed Aug. 11, 2011. |
Non-final Office Action for U.S. Appl. No. 11/525,390, mailed Jul. 11, 2011. |
Non-Final Office Action for U.S. Appl. No. 11/701,799, mailed Aug. 17, 2011. |
Non-Final Office Action for U.S. Appl. No. 11/582,135, mailed Oct. 14, 2011. |
Final Office Action for U.S. Appl. No. 11/980,155, mailed Oct. 21, 2011. |
Non-Final Office Action for U.S. Appl. No. 11/236,908, mailed Dec. 2, 2011. |
Non-Final Office Action for U.S Appl. No. 12/182,261, mailed Dec. 21, 2011. |
Non-Final Office Action for U.S. Appl. No. 12/401,243, mailed Jan. 5, 2012. |
Notice of Allowance for U.S. Appl. No. 11/582,135, mailed Jan. 9, 2012. |
Non-Final Office Action for U.S. Appl. No. 12/182,165, mailed Jan. 5, 2012. |
Final Office Action for U.S. Appl. No. 11/701,799, mailed Feb. 13, 2012. |
Non-Final Office Action for U.S. Appl. No. 12/581,582, mailed Mar. 14, 2012. |
Final Office Action for U.S. Appl. No. 12/182,165, mailed Apr. 6, 2012. |
Final Office Action for U.S. Appl. No. 12/182,261 mailed Apr. 30, 2012. |
Notice of Allowance for U.S. Appl. No. 11/236,908, mailed May 11, 2012. |
Final Office Action for U.S. Appl. No. 12/401,243, mailed Jun. 11, 2012. |
Notice of Allowance for U.S. Appl. No. 12/182,261, mailed Jul. 23, 2012. |
Advisory Action for U.S. Appl. No. 12/401,243, mailed Aug. 27, 2012. |
Final Office Action for U.S. Appl. No. 12/581,582 mailed Aug. 29, 2012. |
Ackman, R.G., “Fish Oils”, Bailey's Industrial Oil and Fat Products, 6th Edition, 279-317 (2005). |
Ahuja et al. Journal of Indian Pediatric Surgery 2002 7:15-20. |
Andes, et al. “Antiproliferative Strategies for the Treatment of Vascular Proliferative Disease”, Current Vascular Pharmacology, 1)1): 85-98 (2003). |
A paper entitled “Evaluation of the Biocompatibility and Drug Delivery Capabilities of Biological Oil Based Stent Coatings” by Shengqio Li of the Katholieke Universiteit Leuven. |
Jorge, N., “Grasas y Aceites”, 48(1): 17-24, (1997). |
Jonasson, Lena et al., “Cyclosporon A inhibits smooth muscle proliferation in the vascular response to injury,” Proc. Natl. Acad. Sci. USA, vol. 85: 2303-2306 (1988). |
Lipids, Chapter 19, pp. 1-12 (2002). |
Ogunniyi, D.S., “Castor oil: A vital industrial raw material,” Biosource Technology, vol. 97: 1086-1091 (2006). |
Polymerization Merriam-Webster Online Dictionary, retrieved from <www.merriam-webster.com> on Dec. 13, 2009; Merriam-Webster's Inc. 2009; pp. 1. |
Redman, L.V. et al., “The drying rate of raw paint oils—a comparison,” The Journal of Industrial and Engineering Chemistry vol. 5: 630-636 (1913). |
Rutkow, Ira M. et al., “Tension-free' inguinal herniorrhaphy: A preliminary report on the ‘mesh plug’ technique,” Surgery, vol. 114:3-8 (1993). |
Shahidi, Fereidoon ed.; “Bailey's Industrial Oil and Fats Products” 2005; John Wiley and Sons; vol. 5, Edible Oil and Fat Products: Processing Technologies, pp. 1-15. |
Websters Dictionary Online, Accessed on Feb. 13, 2009, entry for “polymer” p. 1 of 1. |
Winter, et al., “Physical and Chemical Gelation” Encyclopedia of Materials—Science and Technology, vols. 1-11: 6691-6999 (2001). |
International Search Report for International Application No. PCT/US05/34941, dated May 4, 2006. |
International Search Report for PCT/US2011/44292, dated Dec. 6, 2011. |
Supplementary European Search Report for Application No. EP 12004057, dated Apr. 10, 2013. |
International Search Report for International Application PCT/US2013/044653, dated Sep. 4, 2013. |
Notice of Allowance for U.S. Appl. No. 11/525,390, mailed Oct. 4, 2012. |
Advisory Action for U.S. Appl. No. 12/581,582, dated Nov. 14, 2012. |
Notice of Allowance for U.S. Appl. No. 11/525,390, dated Nov. 20, 2012. |
Notice of Allowance for U.S. Appl. No. 11/525,390, mailed Nov. 30, 2012. |
Non-Final Office Action for U.S. Appl. No. 13/404,487, dated Dec. 20, 2012. |
Non-Final Office Action for U.S. Appl. No. 13/184,512, dated Jan. 31, 2013. |
Non-Final Office Action for U.S. Appl. No. 11/978,840, dated Feb. 19, 2013. |
Non-Final Office Action for U.S. Appl. No. 13/682,991, dated Mar. 18, 2013. |
Notice of Allowance for U.S. Appl. No. 13/404,487, dated Apr. 2, 2013. |
Non-Final Office Action for U.S. Appl. No. 11/236,943, dated Apr. 22, 2013. |
Final Office Action for U.S. Appl. No. 13/184,512, date Jun. 25, 2013. |
Non-Final Office Action for U.S. Appl. No. 13/593,656, dated Jul. 15, 2013. |
Notice of Allowance for U.S. Appl. 13/682,991, dated Aug. 1, 2013. |
Notice of Allowance for U.S. Appl. No. 11/978,840, dated Aug. 6, 2013. |
Mallegol, “Long-Term Behavior of Oil-Based Varnishes and Paints Photo-and Thermooxidation of Cured Linseed Oil”, Journal of the American Oil Chemists' Society, 77:257-263 (2000). |
Non-Final Office Action for U.S. Appl. No. 11/237,420, dated Nov. 12, 2013. |
Non-Final Office Action for U.S. Appl. No. 12/075,223, dated Nov. 12, 2013. |
Non-Final Office Action for U.S. Appl. No. 11/980,155, dated Nov. 12, 2013. |
Notice of Allowance for U.S. Appl. No. 13/593,656, dated Jan. 24, 2014. |
Final Office Action for U.S. Appl. No. 11/236,943, dated Dec. 4, 2013. |
Notice of Allowance for U.S. Appl. No. 11/237,263 (listed on SB-08 as U.S. Publication No. US-2006-0110457), dated Mar. 27, 2014. |
Supplementary European Search Report for Application No. EP 10825447, dated Mar. 31, 2014. |
Non Final Office Action for U.S. Appl. No. 12/325,546 (listed on SB-08 as U.S. Publication No. US-2009-0181937), dated Apr. 22, 2014. |
Non Final Office Action for U.S. Appl. No. 12/364,763 (listed on SB-08 as U.S. Publication No. US-2009-0208552), dated Apr. 23, 2014. |
Non Final Office Action for U.S. Appl. No. 12/401,243 (listed on SB/08 as US 2010-0233232), mailed May 8, 2014. |
Non Final Office Action for U.S. Appl. No. 12/581,582 (listed on SB-08 as U.S. Publication 2010-0183697), dated May 29, 2014. |
Number | Date | Country | |
---|---|---|---|
20060067983 A1 | Mar 2006 | US |
Number | Date | Country | |
---|---|---|---|
60613808 | Sep 2004 | US |