The present subject matter relates generally to ice making appliances, and more particularly to ice making appliances that produce nugget ice.
Ice makers generally produce ice for the use of consumers, such as in drinks being consumed, for cooling foods or drinks to be consumed and/or for other various purposes. Certain refrigerator appliances include ice makers for producing ice. The ice maker can be positioned within the appliance's freezer chamber and direct ice into an ice bucket where it can be stored within the freezer chamber. Such refrigerator appliances can also include a dispensing system for assisting a user with accessing ice produced by the refrigerator appliance's ice maker. However, the incorporation of ice makers into refrigerator appliances can have drawbacks, such as limits on the amount of ice that can be produced and the reliance on the refrigeration system of the refrigerator appliance to form the ice.
Recently, stand-alone ice makers have been developed. These ice makers are separate from refrigerator appliances and provide independent ice supplies. Generally, ice is provided into an interior volume. However, many stand-alone ice makers do not include an interior volume that is visible without opening the ice maker. Condensation and/or insulation may create difficulties in determining how much ice is contemporaneously available within the interior volume. Moreover, removing ice from the interior volume of many existing systems may be difficult. The area defining the interior volume may be provided as a removable bucket. Such systems may become increasingly heavy and/or difficult to remove if, for instance, a large amount of ice is held therein. If any ice within the interior volume has melted, it may be further difficult to remove the liquefied ice or water. Additionally or alternatively, difficulties may arise when trying to add water to the system for producing ice (e.g., without inadvertently spilling water outside the ice maker or within an undesired interior portion of the ice maker).
Accordingly, improved stand-alone ice makers are desired in the art. In particular, cost-effective stand-alone ice makers that address several of the above issues would be advantageous.
Aspects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.
In one exemplary aspect of the present disclosure, a stand-alone ice making appliance is provided. The stand-alone ice making appliance may include an outer casing, a water tank, a pump, an ice maker, and a container. The outer casing may define an internal cavity. The internal cavity may include a primary opening through which the internal cavity may be accessed. The water tank may define a storage volume to receive water. The pump may be in fluid communication with the storage volume of the water tank to actively flow water therefrom. The ice maker may be in fluid communication with the storage volume of the water tank to receive water therefrom. The container may be disposed within the internal cavity. The container may include a plurality of insulated sidewalls received within the internal cavity. The plurality of insulated sidewalls may at least partially define a storage volume to receive ice from the ice maker. The sidewall of the plurality of sidewalls may include an internal panel proximal to the storage volume and an external panel distal to the storage volume. The internal panel and the external panel may define an insulation gap therebetween.
In another exemplary aspect of the present disclosure, a stand-alone ice making appliance is provided. The stand-alone ice making appliance may include an outer casing, a water tank, a pump, an ice maker, a container, and a plug prong. The outer casing may define an internal cavity. The internal cavity may include a primary opening through which the internal cavity may be accessed. The water tank may define a storage volume to receive water. The pump may be in fluid communication with the storage volume of the water tank to actively flow water therefrom. The ice maker may be in fluid communication with the storage volume of the water tank to receive water therefrom. The container may be selectively positioned within the internal cavity. The container may include a plurality of walls defining a storage volume to receive ice from the ice maker, a drain aperture defined through one wall of the plurality of walls, and a biased sealing plug. The drain aperture may be in fluid communication between the storage volume of the container and the storage volume of the water tank. The biased sealing plug may be paired with drain aperture. The biased sealing plug may be urged toward the drain aperture to selectively restrict fluid communication therethrough. The plug prong may be fixed within the outer casing and selectively mated with the biased sealing plug to urge the biased sealing plug away from the drain aperture.
In yet another exemplary aspect of the present disclosure, a stand-alone ice making appliance is provided. The stand-alone ice making appliance may include an outer casing, a pump, a water tank, a plug prong, an ice maker, and a container. The outer casing may define an internal cavity. The internal cavity may include a first primary opening and a second primary opening through which the internal cavity may be accessed. The pump may be disposed within the outer casing to actively flow water therethrough. The water tank may be selectively positioned within the internal cavity through the second primary opening in fluid communication with the pump. The water tank may include a plurality of walls defining a storage volume to receive water upstream from the pump. The fluid outlet may be defined through one wall of the plurality of walls. The fluid aperture may be in fluid communication between the storage volume of the water tank and the pump. The biased sealing plug may be paired with fluid aperture. The biased sealing plug may be urged toward the fluid aperture to selectively restrict fluid communication therethrough. The plug prong may be fixed within the outer casing and selectively mated with the biased sealing plug to urge the biased sealing plug away from the fluid aperture. The ice maker may be in fluid communication with the storage volume of the water tank to receive water therefrom. The container may be selectively positioned within the internal cavity through the first primary opening. The container may define a storage volume to receive ice from the ice maker.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures.
Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
Referring now to
A container 14 of appliance 10 is also illustrated. Container 14 defines a first storage volume 16 for the receipt and storage of ice 18 therein. A user of the appliance 10 may access ice 18 within the container 14 for consumption or other uses, as described in detail below. Container 14 may include multiple walls, including one or more sidewalls 20 and a base wall 22, which may together define the first storage volume 16. In exemplary embodiments, at least one sidewall 20 may be formed in part from a clear, see-through (i.e., transparent or translucent) material, such as a clear glass or plastic, such that a user can see into the first storage volume 16 and thus view ice 18 therein. For instance, at least one sidewall 20 may include a separate external panel and internal panel formed from a clear, see-through (i.e., transparent or translucent) material, such as a clear glass or plastic. Further, in exemplary embodiments, container 14 may be removable, such as from the outer casing 12, by a user. This facilitates advantageous easy access by the user to ice within the container 14, as discussed below.
Appliances 10 in accordance with the present disclosure are advantageously stand-alone appliances, and thus are not connected to refrigerators or other appliances. Additionally, in exemplary embodiments, such appliances are not connected to plumbing or another water source that is external to the appliance 10, such as a refrigerator water source. Rather, in exemplary embodiments, water is initially supplied to the appliance 10 manually by a user, such as by pouring water into water tank 24 and/or a reservoir. Optionally, in exemplary embodiments, water tank 24 may be removable, such as from the outer casing 12, by a user. This facilitates advantageous easy access by the user to water tank 24 (e.g., in order to easily fill water tank 24), as discussed below.
Notably, appliances 10 as discussed herein include various features which allow the appliances 10 to be affordable and desirable to typical consumers. For example, the stand-alone feature reduces the cost associated with the appliance 10 and allows the consumer to position the appliance 10 at any suitable desired location, with the only requirement in some embodiments being access to an electrical source. In exemplary embodiments, such as those shown in
As discussed herein, appliance 10 is configured to make nugget ice, which is becoming increasingly popular with consumers. Ice 18 may be nugget ice. Generally, nugget ice is ice that that is maintained or stored (i.e., in first storage volume 16 of container 14) at a temperature greater than the melting point of water or greater than about thirty-two degrees Fahrenheit. Accordingly, the ambient temperature of the environment surrounding the container 14 may be at a temperature greater than the melting point of water or greater than about thirty-two degrees Fahrenheit. In some embodiments, such temperature may be greater than forty degrees Fahrenheit, greater than fifty degrees Fahrenheit, or greater than sixty degrees Fahrenheit.
Still referring to
As discussed, in exemplary embodiments, water is provided to the water tank 24 for use in forming ice. Accordingly, appliance 10 may further include a pump 32. Pump 32 may be in fluid communication with the second storage volume 26. For example, water may be flowable from the second storage volume 26 through a fluid outlet 31 defined in the water tank 24, such as in a sidewall 28 thereof, and may flow through a conduit to and through pump 32. Pump 32 may, when activated, actively flow water from the second storage volume 26 therethrough and from the pump 32.
Water actively flowed from the pump 32 may be flowed (e.g., through a suitable conduit) to a reservoir 34. For example, reservoir 34 may define a third storage volume 36. In some embodiments, third storage volume 36 is defined by one or more sidewalls 38 and a base wall 40. Third storage volume 36 may, for example, be in fluid communication with the pump 32 and may thus receive water that is actively flowed from the water tank 24, such as through the pump 32. During operation, water may be flowed into the third storage volume 36 through an opening 44 defined in the reservoir 34.
Reservoir 34 and third storage volume 36 thereof may receive and contain water to be provided to an ice maker 50 for the production of ice. Accordingly, third storage volume 36 may be in fluid communication with ice maker 50. For example, water may be flowed, such as through an opening 42 and through suitable conduits, from third storage volume 36 to ice maker 50.
Ice maker 50 generally receives water, such as from reservoir 34, and freezes the water to form ice 18. In exemplary embodiments, ice maker 50 is a nugget ice maker, and in particular is an auger-style ice maker, although other suitable styles of ice makers and/or appliances are within the scope and spirit of the present disclosure. As shown, ice maker 50 may include a casing 52 into which water from third storage volume 36 is flowed. Casing 52 is thus in fluid communication with third storage volume 36. For example, casing 52 may include one or more sidewalls 54 which may define an interior volume 56, and an opening may be defined in a sidewall 54. Water may be flowed from third storage volume 36 through the opening (such as via a suitable conduit) into the interior volume 56.
As illustrated, an auger 60 may be disposed at least partially within the casing 52. During operation, the auger 60 may rotate. Water within the casing 52 may at least partially freeze due to heat exchange, such as with a refrigeration system as discussed herein. The at least partially frozen water may be lifted by the auger 60 from casing 52. Further, in exemplary embodiments, the at least partially frozen water may be directed by auger 60 to and through an extruder 62. The extruder 62 may extrude the at least partially frozen water to form ice, such as nuggets of ice 18.
Formed ice 18 may be provided by the ice maker 50 to container 14, and may be received in the first storage volume 16 thereof. For example, ice 18 formed by auger 60 and/or extruder 62 may be provide to the container 14. In exemplary embodiments, appliance 10 may include a chute 70 for directing ice 18 produced by the ice maker 50 towards the first storage volume 16. For example, as shown, chute 70 is generally positioned above container 14 along the vertical direction V. Thus, ice can slide off of chute 70 and drop into storage volume 16 of container 14. Chute 70 may, as shown, extend between ice maker 50 and container 14, and may include a body 72, which defines a passage 74 therethrough. Ice 18 may be directed from the ice maker 50 (such as from the auger 60 and/or extruder 62) through the passage 74 to the container 14. In some embodiments, for example, a sweep 64, which may be connected to and rotate with the auger, may contact the ice emerging through the extruder 62 from the auger 60 and direct the ice 18 through the passage 74 to the container 14.
As discussed, water within the casing 52 may at least partially freeze due to heat exchange, such as with a refrigeration system. In exemplary embodiments, ice maker 50 may include a sealed refrigeration system 80. The sealed refrigeration system 80 may be in thermal communication with the casing 52 to remove heat from the casing 52 and interior volume 56 thereof, thus facilitating freezing of water therein to form ice. Sealed refrigeration system 80 may, for example, include a compressor 82, a condenser 84, a throttling device 86, and an evaporator 88. Evaporator 88 may, for example, be in thermal communication with the casing 52 in order to remove heat from the interior volume 56 and water therein during operation of sealed system 80. For example, evaporator 88 may at least partially surround the casing 52. In particular, evaporator 88 may be a conduit coiled around and in contact with casing 52, such as the sidewall(s) 54 thereof.
It should additionally be noted that, in exemplary embodiments, a controller 200 may be in operative communication with the sealed system 80, such as with the compressor 82 thereof, and may activate the sealed system 80 as desired or required for ice making purposes.
In exemplary embodiments, controller 200 is in operative communication with the pump 32. Such operative communication may be via a wired or wireless connection, and may facilitate the transmittal and/or receipt of signals by the controller 200 and pump 32. Controller 200 may be configured to activate the pump 32 to actively flow water. For example, controller 200 may activate the pump 32 to actively flow water therethrough when, for example, reservoir 34 requires water. A suitable sensor(s), for example, may be provided in the third storage volume 36. The sensor(s) may be in operative communication with the controller 200 and may be configured to transmit signals to the controller 200, which indicate whether or not additional water is desired in the reservoir 34. When controller 200 receives a signal that water is desired, controller 200 may send a signal to pump 32 to activate pump 32.
Turning to
As described above, container 14 includes one or more sidewalls and a base wall 22 that define first storage volume 16. In some embodiments, a plurality of sidewalls is provided, including a front wall 102, a rear wall 104, and a pair of oppositely-disposed lateral walls 106. Generally, sidewalls 102, 104, 106 correspond to sidewalls 20 shown in
Exemplary embodiments of container 14 include one or more insulated walls. For instance, one or all of sidewalls (e.g., front wall 102, rear wall 104, and/or lateral walls 106) may be insulated. Optionally, a plurality of insulated sidewalls may be provided at front wall 102, rear wall 104, and/or lateral walls 106. Additionally or alternatively, base wall 22 may be an insulated base wall extending below the sidewalls (e.g., plurality of insulated sidewalls). Advantageously, insulated walls may maintain the temperature of ice within storage volume 16 and/or prevent the formation of condensation on the outer surfaces of container 14.
In some embodiments, an insulated wall (e.g., each insulated wall) includes an internal panel 112 proximal to the storage volume 16 and an external panel 110 distal to the storage volume 16. As shown, internal panel 112 and the external panel 110 define an insulation gap 122 therebetween. For instance, insulation gap 122 may be provided as a sealed volume. The sealed volume may generally prevent the passage of air or oxygen to or from insulation gap 122. In exemplary embodiments, transparent insulation gap 122 is substantially evacuated as a vacuum. In alternative exemplary embodiments, insulation gap 122 is filled with a set mass of a predetermined gas, such as nitrogen, oxygen, argon, or a suitable inert gas. In further alternative exemplary embodiments, insulation gap 122 is filled with a solid insulating material, such as rigid polyurethane insulating foam.
In exemplary embodiments, front wall 102 is provided as an insulated wall. In some such embodiments, when container 14 is inserted into internal volume 13, insulated front wall 102 is positioned across primary opening 11. As shown, insulated front wall 102 includes an external front panel 110 and an internal rear panel 112. Each of front panel 110 and rear panel 112 extend from base wall 22. In some such embodiments, base wall 22 is positioned below a portion of insulated sidewall 102 such that base wall 22 is beneath the rear panel 112 along the vertical direction V. Optionally, each of front panel 110 and rear panel 112) extend vertically from base wall 22 to a top portion 116 of container 14. Front panel 110 and rear panel 112 are spaced apart, e.g., in the transverse direction T at base wall 22. A bottom lip 118 may extend below at least a portion of base wall 22 (e.g., an internal panel 112 of base wall 22) along the vertical direction V from front panel 110. A roof segment 120 may span the distance between front panel 110 and rear panel 112 at the top portion 116 of container 14, e.g., above a transparent insulation gap 122.
In some embodiments, insulation gap 122 is provided as a transparent insulation gap that is defined between front panel 110 and rear panel 112. In optional embodiments, an intermediate panel 124 is disposed within the transparent insulation gap 122. As illustrated in the exemplary embodiment of
As illustrated in
In the second position of
As shown, some embodiments of container 14 may include a selective sealing system 149A to selectively permit or restrict water from exiting container 14. In exemplary embodiments, a resilient plug 150A is paired to drain aperture 114. In the illustrated embodiments of
In certain embodiments, resilient plug 150A includes a rigid guide shaft 166A (e.g., integrally formed with the enlarged head). Optionally, guide shaft 166A may be slidably disposed within drain aperture 114 (e.g., at least partially through insulation gap 122 of rear wall 104) to move between drain aperture 114 and the storage volume 16.
In some embodiments, a spring 152A is attached to plug 150A in biased engagement (e.g., outside of storage volume 16 and/or within the insulation gap 122 of rear wall 104). Spring 152A may generally urge plug 150A toward drain aperture 114. For instance, spring 152A may be embodied as a compression spring 152A coaxially disposed about rigid shaft 166A. Spring 152A may be positioned between a support tab 156A of rigid shaft 166A and internal panel 112. Optionally, aperture walls 168A may extend through insulation gap 122, radially outward from spring 152A between the internal and external panels 112, 110 of rear wall 104. Any water exiting drain aperture 114 may be required to first pass between through insulation gap 122 as guided by aperture walls 168A. Moreover, aperture walls 168A may direct movement of plug 150A and spring 152A, e.g., along the transverse direction T.
A plug prong 162A may be provided in some embodiments of sealing system 149A. As illustrated, plug prong 162A extends through at least a portion of internal volume 13. Plug prong 162A may be fixed to a portion of appliance or casing, e.g., within internal volume 13. When container 14 is in a mounted condition (see
In certain embodiments, a perforated plate 164A is positioned over resilient plug 150A. For instance, perforated plate 164A may extend from base wall 22 to rear wall 104, separating resilient plug 150A and drain aperture 114 from storage volume 16. As shown, perforated plate 164A may be positioned between the storage volume 16 and the drain aperture 114. In some such embodiments, perforated plate 164A encloses the portion of resilient plug 150A inside of container 14 (e.g., the portion of resilient plug 150A that is not disposed through drain aperture 114 or within insulation gap 122). Generally, a plurality of perforations through perforated plate 164A permit water (e.g., from melted ice within storage volume 16) to pass through perforated plate 164A. Advantageously, perforated plate 164A may support ice above resilient plug 150A and permit uninterrupted movement thereof (e.g., along the transverse direction T).
Turning to
In certain embodiments, resilient plug 150A includes a rigid guide shaft 166A (e.g., integrally formed with the enlarged head). Optionally, guide shaft 166A may be slidably disposed within drain aperture 114 (e.g., at least partially through insulation gap 122 of base wall 22) to move between drain aperture 114 and the storage volume 16.
In some embodiments, a spring 152A is attached to plug 150A in biased engagement (e.g., outside of storage volume 16 and/or within the insulation gap 122 of base wall 22). Spring 152A may generally urge plug 150A toward drain aperture 114. For instance, spring 152A may be embodied as a compression spring 152A coaxially disposed about rigid shaft 166A. Spring 152A may be positioned between a support tab 156A of rigid shaft 166A and internal panel 112. Optionally, aperture walls 168A may extend through insulation gap 122, radially outward from spring 152A between the internal and external panels 112, 110 of rear wall 104. Any water exiting drain aperture 114 may be required to first pass between insulation gap 122 as guided by aperture walls 168A. Moreover, aperture walls 168A may direct movement of plug 150A and spring 152A, e.g., along the transverse direction T.
A plug prong 162A may be provided in some embodiments of sealing system 149A as a sloped member. In particular, plug prong 162A may be sloped along the transverse direction T to taper from a relatively narrow forward tip to a relatively wide rear base fixed to a portion of appliance or casing e.g., within internal volume 13. As shown, a receiving channel 170A may be defined along base wall 22 (e.g., along the transverse direction T) to receive plug prong 162A therein. As plug prong 162A is received within receiving channel 170A, plug prong 162A may urge resilient plug 150A upward (e.g., along the vertical direction V). When container 14 is in a mounted condition (see
In certain embodiments, a perforated plate 164A is positioned over resilient plug 150A. For instance, perforated plate 164A may extend from base wall 22 to rear wall 104, separating resilient plug 150A and drain aperture 114 from storage volume 16. As shown, perforated plate 164A may be positioned between the storage volume 16 and the drain aperture 114. In some such embodiments, perforated plate 164A encloses the portion of resilient plug 150A inside of container 14 (e.g., the portion of resilient plug 150A that is not disposed through drain aperture 114 or within insulation gap 122). Generally, a plurality of perforations through perforated plate 164A permit water (e.g., from melted ice within storage volume 16) to pass through perforated plate 164A. Advantageously, perforated plate 164A may support ice above resilient plug 150A and permit uninterrupted movement thereof (e.g., along the vertical direction V).
Turning now to
In some embodiments, top wall 207 defines a water opening 208 above the second storage volume 26. A removable lid 218 may be selectively disposed over or through water opening 208 (e.g., to restrict access thereto). As shown in
Turning now to
As illustrated, exemplary embodiments of water tank 24 are selectively moveable between various positions on or within appliance 10. For instance, water tank 24 may be selectively positionable in a distinct first position (see
In the second position of
As shown, some embodiments of water tank 24 include a selective sealing system 149B to selectively permit or restrict water from exiting water tank 24. In exemplary embodiments, a resilient plug 150B is paired to fluid outlet 31. In the illustrated embodiments of
In certain embodiments, resilient plug 150B includes a rigid guide shaft 166B (e.g., integrally formed with the enlarged head). Optionally, guide shaft 166B may be slidably disposed within fluid outlet 31 (e.g., at least partially through rear wall 204) to move along the transverse direction T between the fluid outlet 31 of rear wall 204 and the storage volume 26.
In some embodiments, a spring 152B is attached to plug 150B in biased engagement (e.g., within rear wall 204). Spring 152B may generally urge plug 150B toward fluid outlet 31. For instance, spring 152B may be embodied as a compression spring 152B coaxially disposed about rigid shaft 166B. Spring 152B may be positioned between a support tab 156B of rigid shaft 166B and an internal panel or surface of rear wall 204. Any water exiting fluid outlet 31 may be required to first pass through rear wall 204.
A plug prong 162B may be provided in some embodiments of sealing system 149B. As illustrated, plug prong 162B extends through at least a portion of internal volume 13. Plug prong 162B may be fixed to a portion of appliance or casing, e.g., within internal volume 13. When water tank 24 is in a mounted condition (see
In certain embodiments, a perforated plate 164B is positioned over resilient plug 150B. For instance, perforated plate 164B may extend from base wall 30 to rear wall 204, separating resilient plug 150B and fluid outlet 31 from storage volume 26. As shown, perforated plate 164B may be positioned between the storage volume 26 and the fluid outlet 31. In some such embodiments, perforated plate 164B encloses the portion of resilient plug 150B inside of water tank 24 (e.g., the portion of resilient plug 150B that is not disposed through fluid outlet 31). Generally, a plurality of perforations through perforated plate 164B permit water to pass through perforated plate 164B. Advantageously, perforated plate 164B may prevent damage to resilient plug 150B and permit uninterrupted movement thereof (e.g., along the transverse direction T).
Turning to
In certain embodiments, resilient plug 150B includes a rigid guide shaft 166B (e.g., integrally formed with the enlarged head). Optionally, guide shaft 166B may be slidably disposed within fluid outlet 31 (e.g., at least partially through base wall 30) to move along the vertical direction V between the fluid outlet 31 of base wall 31 and the storage volume 26.
In some embodiments, a spring 152B is attached to plug 150B in biased engagement (e.g., within base wall 30). Spring 152B may generally urge plug 150B toward fluid outlet 31. For instance, spring 152B may be embodied as a compression spring 152B coaxially disposed about rigid shaft 166B. Spring 152B may be positioned between a support tab 156B of rigid shaft 166B and an internal panel or surface of base wall 30. Any water exiting fluid outlet 31 may be required to first pass through base wall 30.
A plug prong 162B may be provided in some embodiments of sealing system 149B as a sloped member. In particular, plug prong 162B may be sloped along the transverse direction T to taper from a relatively narrow forward tip to a relatively wide rear base fixed to a portion of appliance or casing e.g., within internal volume 13. As shown, a receiving channel 170B may be defined along base wall 30 (e.g., along the transverse direction T) to receive plug prong 162B therein. As plug prong 162B is received within receiving channel 170B, plug prong 162B may urge resilient plug 150B upward (e.g., along the vertical direction V). When water tank 24 is in a mounted condition (see
In certain embodiments, a perforated plate 164B is positioned over resilient plug 150B. For instance, perforated plate 164B may extend from base wall 30 to rear wall 204, separating resilient plug 150B and fluid outlet 31 from storage volume 26. As shown, perforated plate 164B may be positioned between the storage volume 26 and the fluid outlet 31. In some such embodiments, perforated plate 164B encloses the portion of resilient plug 150B inside of water tank 24 (e.g., the portion of resilient plug 150B that is not disposed through fluid outlet 31). Generally, a plurality of perforations through perforated plate 164B permit water to pass through perforated plate 164B. Advantageously, perforated plate 164B may prevent damage to resilient plug 150B and permit uninterrupted movement thereof (e.g., along the vertical direction V).
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
Number | Name | Date | Kind |
---|---|---|---|
2542892 | Bayston | Feb 1951 | A |
2569113 | Munshower | Sep 1951 | A |
2672016 | Muffly | Mar 1954 | A |
2672017 | Muffly | Mar 1954 | A |
2682155 | Ayres | Jun 1954 | A |
2722110 | Denzer | Nov 1955 | A |
2774224 | Bayston | Dec 1956 | A |
2787890 | Muffly | Apr 1957 | A |
2791103 | Guild | May 1957 | A |
2806357 | Pichler | Sep 1957 | A |
2834189 | Jaeger | May 1958 | A |
2860027 | Swanson | Nov 1958 | A |
2866322 | Muffly | Dec 1958 | A |
2877632 | Chaplik | Mar 1959 | A |
2887852 | Thomas | May 1959 | A |
2937508 | Garland | May 1960 | A |
2963885 | Loewenthal | Dec 1960 | A |
2997860 | Muffly | Aug 1961 | A |
3009336 | Bayston | Nov 1961 | A |
3021686 | Alt | Feb 1962 | A |
3144755 | Kattis | Aug 1964 | A |
3205666 | Gould | Sep 1965 | A |
3423952 | Pugh | Jan 1969 | A |
4055053 | Elfving | Oct 1977 | A |
4347713 | Morrison | Sep 1982 | A |
4519219 | Prepodnik | May 1985 | A |
4706466 | Yingst | Nov 1987 | A |
4722199 | Hibino | Feb 1988 | A |
4942983 | Bradbury | Jul 1990 | A |
4966015 | Wessa | Oct 1990 | A |
5056334 | Hooper | Oct 1991 | A |
5345782 | Takahashi | Sep 1994 | A |
8756950 | Brunner et al. | Jun 2014 | B2 |
9273894 | Whitty | Mar 2016 | B1 |
20080083235 | Wang | Apr 2008 | A1 |
20140196493 | Mitchell | Jul 2014 | A1 |
20170248357 | Gardner et al. | Aug 2017 | A1 |
20180017305 | Tarr | Jan 2018 | A1 |
Entry |
---|
Firstbuild, Opal Nugget Ice Maker, Indiegogo, Aug. 27, 2015, https://www.indiegogo.com/projects/opal-nugget-ice-maker#/. |
Number | Date | Country | |
---|---|---|---|
20190316824 A1 | Oct 2019 | US |