1. Technical Field
The present disclosure relates to an antenna, in particular, to stand-alone multi-band antenna.
2. Description of Related Art
Most of conventional embedded antennas are designed to be planar inverted-F antenna (PIFA) or monopole antenna, and these two-type antennas must have corresponding ground plates to radiate, such that the antenna can have the good impedance matching and the good radiation performances. Generally speaking, the antenna ground plate is usually the system ground plate of the electronic device, and the system ground plate is used for the layout of the electronic elements. When the displacement of the electronic elements on the system ground plate is changed, the dimension and the shape of the system ground plate may change as well. In other words, the impedance and radiation performances of the antenna will be influenced corresponding to the system ground plate.
For the antenna designer, he or she not only designs the antenna pattern, but also takes the other factors, such as the dimension and the shape of the system ground plate, into the design consideration, such that the design complexity of the antenna is increased dramatically. In the development of the current antenna design, it is understood that stand-alone antenna is gradually applied in the electronic device of the network communication field. The advantage of the stand-alone antenna is that the stand-alone antenna can generate the required operating band without any additional antenna ground plate. However, the stand-alone antenna is easy to be affected by the ambient environment, and in particular, when the metal element exists nearby the stand-alone antenna, the impedance and radiation performances of the stand-alone antenna would be affected dramatically.
Some stand-alone antennas with multi-band operation have been published. Taiwanese Patent No. M377714 disclosures the PIFA-typed stand-alone antenna with multi-band operation having dual paths. Furthermore, the conventional multi-band antenna has the simple structure, and therefore the conventional multi-band antenna is easy to be implemented. However, according to the properties of the planar inverted-F antenna, it is known that the current distribution on the terminal end of the resonant path is weaker than that on the other location, in other words the electrical field on the terminal end of the resonant path is larger than that on the other location, and therefore the fringing-field effects will be generated. When the object (especially, the metal object) is nearby the conventional multi-band antenna, the fringing-field of the conventional multi-band antenna and the nearby object are mutually coupled to each other, and therefore the impedance and radiation performances of the conventional multi-band antenna are dramatically affected. Due to the properties of the conventional multi-band antenna, the arrangement location of the conventional multi-band antenna is limited by the inner environment of the electronic device, and the practical application value of the conventional multi-band antenna is thus reduced.
An exemplary embodiment of the present disclosure provides a stand-alone multi-band antenna, and the stand-alone multi-band antenna comprises an antenna ground plate, a shielding metal wall, a first radiating unit, and signal feed-in source. The first radiating unit is an antenna structure generating a fringing-field. The first radiating unit is connected to at least one side of the antenna ground plate and located above the antenna ground plate. The first radiating unit is used to provide a first operating band and a second operating band. The shielding metal wall is connected to a plurality of the adjacent sides of the antenna ground plate, wherein a height of the shielding metal wall is larger than or equal to a height of the first radiating unit, such that the fringing-field of the first radiating unit is limited within the stand-alone multi-band antenna. The signal feed-in source has a signal feed-in point and a ground point, wherein the signal feed-in point is electrically connected to the first radiating unit, and the ground point is electrically connected to the shielding metal wall.
An exemplary embodiment of the present disclosure provides a stand-alone multi-band antenna, and the stand-alone multi-band antenna comprises an antenna ground plate, a shielding metal wall, a first radiating unit, and signal feed-in source. The first radiating unit is an antenna structure generating a fringing-field. The first radiating unit is connected to at least one side of the antenna ground plate and located above the antenna ground plate. The first radiating unit is used to provide a first operating band and a second operating band. The shielding metal wall is connected to a plurality of the adjacent sides of the antenna ground plate, wherein a height of the shielding metal wall is corresponding to a specific distance between the first radiating unit and shielding metal wall, so as to limit the fringing-field of the first radiating unit in the stand-alone multi-band antenna. The signal feed-in source has a signal feed-in point and a ground point, wherein the signal feed-in point is electrically connected to the first radiating unit, and the ground point is electrically connected to the shielding metal wall.
To sum up, the stand-alone multi-band antenna has the shielding metal wall, and the shielding metal wall can effectively limit the fringing-field of the stand-alone multi-band antenna within the main structure of the stand-alone multi-band antenna, so as to reduce the mutual coupling between the fringing-field and the element nearby the stand-alone multi-band antenna. Accordingly, the stand-alone multi-band antenna has the ability for resisting the effect due to the variation of the ambient environment.
In order to further understand the techniques, means and effects the present disclosure, the following detailed descriptions and appended drawings are hereby referred, such that, through which, the purposes, features and aspects of the present disclosure can be thoroughly and concretely appreciated; however, the appended drawings are merely provided for reference and illustration, without any intention to be used for limiting the present disclosure.
A stand-alone multi-band antenna according to an exemplary embodiment of the present disclosure can be integrated and embedded in one electronic device of the different network communication products, and can be designed to provide a 2.4 GHz (2400˜2484 MHz) operating band, a 5.2 GHz (5150˜5350 MHz) operating band, and a 5.8 GHz (5725˜5825 MHz) operating band, wherein these three operating bands are served as the communication band of the electronic device. In addition, a stand-alone multi-band antenna can be is formed a metal sheet having a plurality of bendings. Different stand-alone antennas according to exemplary embodiments of the present disclosure are illustrated as follows.
[Exemplary Embodiment of Stand-Alone Multi-Band Antenna]
Referring to
Due to the fringing-field generated on the terminal end of the first radiating unit 4 of the stand-alone multi-band antenna 1, the shielding metal wall 3 is located on the side of antenna ground plate 2 and nearby the terminal end of the first radiating unit 4, such that the fringing-field is limited within the stand-alone multi-band antenna 1. Accordingly, when the metal object is nearby the stand-alone multi-band antenna 1, the mutual coupling between the stand-alone multi-band antenna 1 and the metal object is reduced.
In short, the vertical shielding metal wall 3 of the stand-alone multi-band antenna 1 can efficiently limit the fringing-field of the planar inverted-F antenna within the main structure of the stand-alone multi-band antenna 1, such that the mutual coupling among the fringing-field and the other elements nearby the stand-alone multi-band antenna 1 is reduced. Thus, the stand-alone multi-band antenna 1 has the ability for resisting the effect due to the variation of the ambient environment.
The detailed structure of the stand-alone multi-band antenna 1 in
In the exemplary embodiment of the
The first radiating unit 4 is located above the antenna ground plate 2. One end of the first radiating unit 4 is connected to the first short side 22, and the first radiating unit 4 is extending with the first long side 21. The first radiating unit 4 is used to provide a first operating band and a second operating band. The first radiating unit 4 comprises a first metal part 41, a meandering metal part 42, and a second metal part 43, wherein the meandering metal part 42 is connected between the first metal part 41 and the second metal part 43, and one end of the first metal part 41 is connected to the first short side 22.
The first metal part 41 has at least one bending, such that one end of the first metal part 41 is connected to the first short side 22, and a part of the first metal part 41 is extending along with the first long side 21 (i.e. extending to the second short side 24). In short, the first metal part 41 is bent to be an L-shaped metal sheet. The meandering metal part 42 has a plurality of meandering lines, wherein the meandering lines has at least three beadings. One end of the meandering metal part 42 is connected to one side of the first metal part 41, and the other end of the meandering metal part 42 is connected to one side of the second metal part 43. The second metal part 43 is located on the extension direction of the first metal part 41.
One end of the second radiating unit 5 is connected to the first shielding part 31 of the shielding metal wall 3, and the second radiating unit 5 can be an L-shaped metal sheet. One end of the second radiating unit 5 is extending to the first short side 22, and the main body of the second radiating unit 5 is extending along with the second long side 23 (i.e. extending to the second short side 24). The second radiating unit 5 is used to provide a third operating band.
In the exemplary embodiment of
The dimensions, such as lengths, widths, and distances, of the elements of the stand-alone multi-band antenna 1 in
In the exemplary embodiment of
The length of first metal part 41 connected to one end of the first short side 22 is 5.5 millimeters, and the length of the first metal part 41 extending along with the first long side 21 is L. The length of the meandering metal part 42 extending along with the first long side 21 is LMP, the length of the second metal part 43 extending with the first long side 21 is LEP, and the summation length of the lengths LMP and LEP is 8.5 millimeters. In addition, the line width of the meandering line is 0.5 millimeter (referring to
The distance between the second radiating unit 5 and the first radiating unit 4 is 2 millimeters, and the length of the side of the second radiating unit 5 connected to the first shielding part 31 is 6 millimeters. The length of the main body of the second radiating unit 5 is 17.5 (i.e. 11.5+6) millimeters, and the distance between the main body of the second radiating unit 5 and the first shielding part 31 is 1.5 millimeters. The width of the main body of the second radiating unit 5 is 3 (i.e. 4.5−1.5) millimeters. The distance between the projection of the signal feed-in point 61 on the antenna ground plate 2 and the first short side 21 is 3.5 millimeters, and distance between the projection of the ground point 62 on the antenna ground plate 2 and the first short side 21 is also 3.5 millimeters.
Referring to
The first shielding part 31 is connected to the second radiating unit 5. After the first shielding part 31 and the second shielding part 32 are bending, the second radiating unit 5 is bending with the angle of 90° by taking the connected side of the first shielding part 31 connected to the second radiating unit 5 as the pivot axis, so as to from the second radiating unit 5 vertical to the first shielding part 31 as shown in
Still referring to
In addition, though the antenna ground plate 2 in the exemplary embodiment of
In the exemplary embodiment, the terminal end of the first radiating unit 4 and the shielding metal wall 3 have a specific distance therebetween. The smaller the specific distance is, the greater the effect of the fringing-field on the fringing-field metal object nearby the stand-alone multi-band antenna 1 is. Meanwhile, the height of the shielding metal wall 3 (i.e. the vertical distance between the shielding metal wall 3 and the antenna ground plate 2) is larger than or equal to the height of the first radiating unit 4 (i.e. the vertical distance between the shielding metal wall 3 and the antenna ground plate 2). By contrast, the longer the specific distance is, the less the effect of the fringing-field on the fringing-field metal object nearby the stand-alone multi-band antenna 1 is. Meanwhile the height of the shielding metal wall 3 may be less than the height of the first radiating unit 4. In other words, the height of the shielding metal wall 3 is corresponding to the specific distance between the terminal end of the first radiating unit 4 and the shielding metal wall 3, and when the specific distance is larger than a specific value, the height of the shielding metal wall 3 can be less than the height of the first radiating unit 4.
Furthermore, the shielding metal wall 3 may be located nearby the side edge of the first radiating unit 4 (i.e. the side edge may the terminal end, the side, and other open end). Generally speaking, the side edge of the first radiating unit 4 usually still has the fringing-field, and the fringing-field on the terminal end of the first radiating unit 4 is stronger than that on the other location. Thus, in the exemplary embodiment of
Furthermore, as stated above, the shielding metal wall 3 may be not vertical to the antenna ground plate 2. However, the effective height of shielding metal wall 3 (i.e. the vertical distance between the shielding metal wall 3 and the antenna ground plate 2) is still corresponding to the specific distance between the terminal end of the first radiating unit 4 and the shielding metal wall 3. In other words, if specific distance between the terminal end of the first radiating unit 4 and the shielding metal wall 3 is less than a specific value, the effective height of the shielding metal wall 3 is larger than or equal to the height of the first radiating unit 4. If specific distance between the terminal end of the first radiating unit 4 and the shielding metal wall 3 is larger than a specific value, the effective height of the shielding metal wall 3 is less than or equal to the height of the first radiating unit 4.
In the resonant path of the first radiating unit 4, the bending number of the meandering metal part 42 with the plurality of the beadings and the resonant length may be adjusted to efficiently control the operating frequency ratio of the first operating band and the second operating band excited by the first radiating unit 4. The length of the second radiating unit 5 is about 0.25 wavelength of the central frequency of the third operating band.
For example, to make the first operating band and the second operating band respectively be the 2.4 GHz operating band (central frequency thereof is 2442 MHz) and the 5.8 GHz operating band (central frequency thereof is 5775 MHz), the bending number of the meandering line 42 and the resonant length are adjusted to control the operating frequency ratio of the first operating band and the second operating band to be 1:2. In addition, the length of the second radiating unit 5 can be also adjusted to make the third operating band be the 5.2 GHz operating band (central frequency thereof is 5250 MHz). Accordingly, the third operating band and the second operating band can be combined to form a wider operating band, such that the stand-alone multi-band antenna 1 can perform the multi-band operation (i.e. operating in the 2.4 GHz, 5.2 GHz and 5.8 GHz operating bands).
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
[Other Exemplary Embodiment of Stand-Alone Multi-Band Antenna]
Referring to
[Other Exemplary Embodiment of Stand-Alone Multi-Band Antenna]
Referring to
[Other Exemplary Embodiment of Stand-Alone Multi-Band Antenna]
Referring to
[Other Exemplary Embodiment of Stand-Alone Multi-Band Antenna]
Referring to
[Exemplary Embodiment of Stand-Alone Multi-Band Antenna Applied on Electronic Device]
The stand-alone multi-band antenna can be applied on one of the different electronic devices. Since the stand-alone multi-band antenna has a shielding metal wall, even a shielding metal wall vertical to the antenna ground plate, to limit the fringing-field generated on the terminal end of the radiating unit within the main structure of the stand-alone multi-band antenna mostly, the effect on the stand-alone multi-band antenna due to the other elements in the electronic device may be reduced.
Referring to
In the exemplary embodiment, the impedance and the bandwidth of the stand-alone multi-band antenna 1′ can satisfy the requirements of the 7.3 dB return loss (assuming the VSWR is 2.5:1), and the stand-alone multi-band antenna 1′ can still have the good radiation property. In addition, it is noted that the stand-alone multi-band antenna 1′ may any one of the stand-alone multi-band antennas of the above exemplary embodiments. Furthermore, the notebook 99 may comprise more than one stand-alone multi-band antenna 1′, such the notebook 99 is the multiple input multiple output (MIMO) communication system.
[Possible Result of Exemplary Embodiment]
Accordingly, the stand-alone multi-band antenna has the shielding metal wall connected to the antenna ground plate, and the shielding metal wall can efficiently limit the fringing-field of the stand-alone multi-band antenna within the main structure of the stand-alone multi-band antenna, such that the mutual coupling between the fringing-field and the elements nearby the stand-alone multi-band antenna is reduced. In short, the stand-alone multi-band antenna has the ability for resisting the effect due to the variation of the ambient environment. Meanwhile, according to the measured results stated above, the stand-alone multi-band antenna has the good radiation efficiency and the good antenna gain.
Furthermore, compared to the conventional planar inverted-F antenna, the stand-alone multi-band antenna can efficiently generate multiple operating bands without the additional antenna ground plate. Moreover, the stand-alone multi-band antenna has the simple structure and the small dimension, such that the stand-alone multi-band antenna can widely applied in the electronic devices of the different network communication product (such as the notebook, the wireless liquid crystal display device, and the multimedia playing device with the wireless communication function).
By the way, more and more electronic devices of the marketed communication products use the MIMO technology, and the stand-alone multi-band antenna can be further applied in the electronic devices using the multiple input multiple output technology. In other words, the plurality of the stand-alone multi-band antennas can be integrated or embedded in one electronic device. In short, the stand-alone multi-band antenna has more flexible and scalable applications.
The above-mentioned descriptions represent merely the exemplary embodiment of the present disclosure, without any intention to limit the scope of the present disclosure thereto. Various equivalent changes, alternations or modifications based on the claims of present disclosure are all consequently viewed as being embraced by the scope of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
2010 1 0623325 | Dec 2010 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
5767810 | Hagiwara et al. | Jun 1998 | A |
6114996 | Nghiem | Sep 2000 | A |
6856285 | Bettin et al. | Feb 2005 | B2 |
7764238 | Hotta et al. | Jul 2010 | B2 |
7782270 | Chung et al. | Aug 2010 | B2 |
7920095 | Wei | Apr 2011 | B2 |
20030234742 | Tai et al. | Dec 2003 | A1 |
20090033557 | Wei | Feb 2009 | A1 |
20100283704 | Hotta et al. | Nov 2010 | A1 |
Number | Date | Country |
---|---|---|
1650473 | Aug 2005 | CN |
101764282 | Jun 2010 | CN |
I277243 | Mar 2007 | TW |
M377714 | Apr 2010 | TW |
Number | Date | Country | |
---|---|---|---|
20120146874 A1 | Jun 2012 | US |