1. Field of the Invention
The invention relates to a seat assembly for an automotive vehicle. More particularly, the invention relates to a seat assembly that is movable between a seating position, a stand-up position, and a kneeling position.
2. Description of Related Art
It is common in certain mini-van and sport utility vehicles to provide third row seating. Typically, the vehicle includes a pair of front doors adjacent front row seating and a pair of rear doors located adjacent second row seating. The third row seating is located at the generally furthermost rear portion of the vehicle and is not located adjacent a door opening. Thus, passengers do not have direct access to the third row seating.
To provide access to the third row seating or a rear storage area, it is well known that the second row seating may have a releasable seat back locking mechanism which is capable of being manually actuated in order to pivot the seat back forwardly to an access position. Optionally, the second row seating may be movable to a tumbled position adjacent the front row seating, such as disclosed in U.S. Pat. No. 6,135,555 to Liu et al. In Liu, the seat back is first folded forward flat against the seat cushion and then both are pivoted about a pivot point at a lower front edge of the seat cushion approximately 90 degrees until the seat back and seat cushion are substantially upright. In this position, the seat back of the second row seating is disposed between the seat cushion of the second row seating and the front row seating. A passenger can then enter the vehicle through one of the rear doors, moving past the tumbled second row seating, to gain access to the third row seating or the rear storage area. However, movement of the second row seating in this manner can be difficult for some passengers, and the passageway for ingress and egress is often uncomfortably small for other passengers.
In order to provide better access to the third row seating it has been proposed to move the second row seating to a stand-up position, such as disclosed in U.S. Pat. No. 6,676,216 to Freijy et al. In Freijy, the seat cushion pivots forward about a pivot point at a lower front edge from a generally horizontal position for supporting a seat occupant to a generally vertical position. At the same time the seat back moves from a first vertical position for supporting the seat occupant to a second vertical position forward and upward of the first vertical position. The seat back and seat cushion move dependently due to a linkage therebetween. However, this embodiment of the second row seating disclosed in Freijy is not movable to a kneeling position lying against the floor for increasing the available cargo space in the rear storage area of the vehicle.
In seat assemblies that are stowable, the seat back is pivotally coupled to the seat cushion at a seat back pivot located between a lower end of the seat back and a rearward end of the seat cushion. The seat back pivot allows the seat back to pivot between a generally upright position and a forwardly folded position overlying the seat cushion. The seat cushion often includes a four-bar-linkage or front and rear legs extending between the seat cushion and the floor of the vehicle for moving the seat cushion between a raised position spaced above the floor and a lowered position resting along the floor. In the stowed position the seat cushion is in the lowered position and the seat back is in the forwardly folded position. Thus, a back side of the seat back is generally horizontal and parallel to the floor and defines a load floor when the seat assembly is in the stowed position.
It is therefore desirable to provide a seat assembly that is movable between a seating position and a stand-up position to improve access to an area behind the seat assembly. It is also desirable that the seat assembly be movable between the seating position and a kneeling position to increase the cargo space in the vehicle.
According to one aspect of the invention, a seat assembly is provided for supporting an occupant above a floor in an automotive vehicle. The seat assembly includes a seat back and seat cushion. A base is configured to be mounted to the floor of the vehicle. A forward link pivotally extends between the seat cushion and the base. A control bracket has a pair of pivotal links forming a four bar connection with the base. A control link pivotally extends between the seat cushion and the control bracket. The seat back is operatively coupled to the control bracket. The seat back has a recliner mechanism for selectively pivoting the seat back between a forwardly folded position and a plurality of reclined seating positions. A guide link pivotally extends between the seat back and the control link. Forward rotational movement of the seat cushion urges the seat back to rotate relative to the seat cushion and enables the seat assembly to move to a stand-up position. Pivoting the seat back to the forwardly folded position urges the seat cushion to move forwardly and lower relative to the base and enables the seat assembly to move to a kneeling position.
Other advantages of the present invention will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
Referring to
While only one side of the seat assembly 10 is shown and will be described in detail, it is appreciated that both an inboard side and an outboard side are substantially the same. Referring to
A seat back bracket 32 extends between an upper end 34 and a lower end 36. The upper end 34 of the seat back bracket 32 is fixedly secured to the lower end 22 of the seat back 20 by any known means. The lower end 36 of the seat back bracket 32 is pivotally coupled to the second end 30 of the control bracket 26 at pivot axis A. A disc recliner mechanism 37, as is well known in the art, an example of which is disclosed in U.S. Provisional Patent Application 60/669,146, operatively mounts the lower end 36 of the seat back bracket 32 to the second end 30 of the control bracket 26. The recliner mechanism 37 is operable between a locked state and an unlocked state to allow selective pivotal adjustment of the seat back 20 between a plurality of reclined seating positions. Additionally, the recliner mechanism 37 enables the seat back 20 to be pivoted to a forwardly folded position overlying the seat cushion 12, as shown in
The seat assembly 10 also includes a linkage system, generally shown at 38, for moving the seat assembly 10 between the seating position, shown in
The linkage system 38 also moves the seat assembly 10 between the seating position, shown in
The linkage system 38 includes a forward link 40, a guide link 42, a lower drive link 44, a control link 46, an upper drive link 48, and a base bracket 54. The base bracket 54 is configured to be mounted to the floor 14 or a seat track assembly (not shown). The forward link 40 extends between an upper end 50 and an opposite lower end 52. The upper end 50 of the forward link 40 is pivotally coupled to the front end 16 of the seat cushion 12 at pivot axis B. The lower end 52 is pivotally coupled to the base bracket 54 at pivot axis C.
The upper drive link 48 extends between a first end 56 and an opposite second end 58, best seen in
The lower drive link 44 extends between a first end 66 and an opposite second end 68. The first end 66 of the lower drive link 44 is pivotally coupled to the base bracket 54 at pivot axis F, relatively rearward of pivot axis D. The second end 68 is pivotally coupled to the control bracket 26 at pivot axis G, relatively rearward of pivot axis E. In the embodiment shown, the lower drive link 44 is generally S-shaped, comprising a first portion 70 extending from the first end 66 to a second portion 72, and a third portion 74 extending from the second portion 72 to the second end 68.
The control link 46 extends linearly between a first end 76 and an opposite second end 78. The first end 76 of the control link 46 is pivotally coupled to the rear end 18 of the seat cushion 12 at pivot axis H. The second end 78 is pivotally coupled to the first end 28 of the control bracket 26 at pivot axis J.
The guide link 42 extends between a first end 80 and an opposite second end 82. The first end 80 of the guide link 42 is pivotally coupled to the control link 46 at pivot axis K, between pivot axis H and pivot axis J. The second end 82 is pivotally coupled to the seat back bracket 32 at pivot axis L, between the upper end 34 and the lower end 36. In the embodiment shown, the guide link 42 includes an arcuate portion 84 disposed between the first 80 and second 82 ends. The arcuate portion 84 of the guide link 42 provides clearance for a recliner handle (not shown) operatively coupled to the recliner mechanism 37 for actuating the recliner mechanism 37 between the locked and unlocked states. It will be appreciated that on the side of the seat assembly 10 without the recliner handle, the guide link 42 may extend linearly between the first 80 and second 82 ends without varying from the scope of the invention.
A first arc S1 defined by the guide link 42 pivoting about pivot axis K, as shown in
In the embodiment shown, a bottom side 90 of the seat cushion 12 includes a cut-out or recess 92. When the seat assembly 10 is in the stand-up position, the pivotal connection at pivot axis J is disposed in the recess 92 allowing the control bracket 26 and seat back bracket 32 to generally vertically align with the seat back 20 and seat cushion 12, as shown in
The seat assembly 10 further includes a latch mechanism 94 of any suitable type known in the art for releasably securing the seat assembly 10 to the floor 14. In
In operation, starting with the seat assembly 10 in the seating position, as shown in
To return to the seating position, the seat assembly 10 is moved rearwardly, which causes the seat cushion 12 to pivot in the clockwise direction. The clockwise movement of the seat cushion 12 causes the forward link 40 to pivot in the clockwise direction about pivot axis C. At the same time, the lower drive link 44 and the upper drive link 48 each pivot in the clockwise direction about pivot axes D and F, respectively. The second end 68 of the lower drive link 44 pushes upwardly on the control bracket 26, 26′ and urges the control bracket 26, 26′ to pivot about pivot axis A in the counterclockwise direction relative to the seat cushion 12. As the control bracket 26, 26′ pivots in the counterclockwise direction, the first end 28 of the control bracket 26, 26′ causes the control link 46 to also pivot in the counterclockwise direction about pivot axis H. The control link 46 in turn causes the guide link 42 to pivot in the counterclockwise direction about pivot axis K. Since the recliner mechanism 37 is locked, the counterclockwise movement of the control bracket 26, 26′ results in the seat back bracket 32, and thus the seat back 20, pivoting about pivot axis A in the counterclockwise direction relative to the seat cushion 12. The seat back 20 pivots in the counterclockwise direction until the seat back 20 is in the first upright position and the latch mechanism 94 engages the striker bar 96. The seat assembly 10 is now in the seating position, as shown in
Starting with the seat assembly 10 in the seating position, as shown in
The invention has been described here in an illustrative manner, and it is to be understood that the terminology used is intended to be in the nature of words of description rather than limitation. Many modifications and variations of the present invention are possible in light of the above teachings. It is, therefore, to be understood that within the scope of the appended claims, the invention may be practiced other than as specifically enumerated within the description.
This application is a national phase application and claims the benefit, under 35 U.S.C. 371, of PCT/CA2008/00063, filed on Jan. 16, 2008, which in turn claims priority to and all the benefits of U.S. Provisional Application Ser. No. 60/880,672, filed on Jan. 16, 2007 and entitled “Stand up and kneel seat.”
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CA2008/000063 | 1/16/2008 | WO | 00 | 7/14/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/086597 | 7/24/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6000742 | Schaefer et al. | Dec 1999 | A |
6578919 | Seibold et al. | Jun 2003 | B2 |
6595588 | Ellerich et al. | Jul 2003 | B2 |
6676216 | Freijy et al. | Jan 2004 | B1 |
6964452 | Kammerer | Nov 2005 | B2 |
7014263 | Mukoujima et al. | Mar 2006 | B2 |
7040684 | Tame et al. | May 2006 | B2 |
7300107 | Kammerer | Nov 2007 | B2 |
7562926 | Kojima | Jul 2009 | B2 |
20050269830 | Epaud | Dec 2005 | A1 |
Number | Date | Country |
---|---|---|
20200604326 | Jul 2006 | DE |
202006004491 | Aug 2006 | DE |
1625966 | Feb 2006 | EP |
0003892 | Jan 2000 | WO |
2005044616 | May 2005 | WO |
2006060413 | Jun 2006 | WO |
2006089191 | Aug 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20100052389 A1 | Mar 2010 | US |
Number | Date | Country | |
---|---|---|---|
60880672 | Jan 2007 | US |