The present invention pertains generally to auxiliary equipment for recreational watercraft. More particularly, the present invention pertains to a portable seat assembly that can be selectively incorporated into an on-the-water operation of a stand-up paddleboard (SUP). The present invention is particularly, but not exclusively, useful as a seat assembly that can be selectively reconfigured to provide the SUP user with a place to sit during an on-the-water operation of an SUP.
It is readily apparent that it can be tiresome for a user (paddler) to remain standing on an SUP for an extended period of time. Although SUPs were originally designed with the intention that the user will remain standing while paddling the SUP, variations from this routine may be desirable for any of several different reasons. Moreover, at times when it is desirable to have the SUP remain substantially stationary (e.g. when fishing), an ability to sit down on something (e.g. a seat assembly), other than the SUP itself, can be quite beneficial.
During an on-the-water operation of a stand-up paddleboard, the use of an on-board seat assembly raises several issues. For one, if the seat assembly is not affixed to the SUP, which is preferable, it needs to be buoyant so it will float for easy retrieval in the event the seat assembly somehow falls overboard. For another, during an on-the-water operation, the seat assembly should be capable of being stowed on the SUP in a compact configuration. The purpose here is to help prevent the seat assembly from interfering with the SUP user while he/she is standing and paddling on the SUP. It then necessarily follows that the seat assembly should be easily reconfigured from its stowed configuration, and into a sitting configuration, to provide a sit down device (i.e. the seat assembly) for use by the SUP user.
In light of the above, it is an object of the present invention to provide a floatable seat assembly that is easily reconfigured, during an on-the-water operation, from a relatively compact, stowed configuration and into a sitting configuration, and vice versa. Another object of the present invention is to provide a seat assembly for a stand-up paddleboard that gives the user the option of sitting or standing during an on-the-water operation of the stand-up paddleboard. Still another object of the present invention is to allow for core and upper body strengthening for the user, as well as cross training for various other paddle sports. Yet another object of the present invention is to provide a seat assembly for use on a stand-up paddleboard that is simple to use, is easy to manufacture and is comparatively cost effective.
In accordance with the present invention, a seat assembly is provided which gives the user of a stand-up paddleboard (SUP) the option of either standing or sitting during an on-the-water operation of the SUP. Importantly, in its operation, the seat assembly is easily reconfigured between a stowed configuration and a sitting configuration. Also, the seat assembly can be moved around on the SUP for the convenience of the user, and it floats to facilitate an easy retrieval of the seat assembly in the event it falls overboard.
Structurally, the seat assembly of the present invention includes a base member that is formed with a substantially cylindrical shaped receptacle. Further, the receptacle of the base member defines a base axis. Also included in the seat assembly is a hollow cylindrical shaped support shaft that is engaged in combination with the base member. In more detail, the cylindrical shaped support shaft has a first end and a second end, and it defines a shaft axis. The outer surface of the support shaft is formed with diametrically opposed slots which are aligned on the support shaft to extend between its first and second ends. A seat member is affixed to the first end of the support shaft.
A pair of protrusions is mounted on the base member, with the individual protrusions being diametrically opposed to each other relative to the base axis of the base member. Each protrusion on the base member is thus engaged with a respective slot on the support shaft. With the interaction of the protrusions in the slots, the support shaft can be moved on the base member. More specifically, as intended for the present invention, this movement will be between a stowed configuration and a sitting configuration. In the stowed position, the support shaft rests on the base member and the shaft axis is oriented substantially perpendicular to the base axis. On the other hand, in the sitting configuration, the shaft axis is coaxially aligned with the base axis and the second end of the support shaft is inserted into the receptacle to provide stabilization for the seat assembly on the base member.
Additional structural aspects of the seat assembly for the present invention are evidenced by the fact that the support shaft is formed with a buoyancy chamber. As an additional consideration for buoyancy, it is to be appreciated that the base member, the support shaft, and the seat member are all made of a light weight plastic material.
Other features of the present invention include an elongated strap handle that interconnects the seat member with the support shaft. Essentially, the purpose of the strap handle is to facilitate a manipulation of the seat assembly on the SUP. Also, a plurality of pads is attached to the bottom of the base member to stabilize the interaction of the base member with the SUP.
With specific regard to the seat member, it is preferably semi-cylindrical in shape and has a convex outer surface that is opposed to a concave inner surface. The inner surface is affixed to, and is centered on, the first end of the support shaft. Further, the seat member comprises a cushion that is positioned over the convex outer surface of the seat member. Again, with overall buoyancy in mind, the cushion is made of a light weight foam material having a density that is less than the density of water.
Operationally it is envisioned that at the beginning of an on-the-water operation of the seat assembly on an SUP, the seat assembly will be positioned near the bow of the SUP in its stowed configuration, at a stow position. Then, whenever the SUP user wants to sit down on the seat assembly, either to rest or to continue paddling in a sitting position, the user goes through a simple four-step procedure to reconfigure the seat assembly.
As envisioned for the present invention, a reconfiguration of the seat assembly will be accomplished during an on-the-water operation of the SUP. First: the seat assembly is repositioned on the SUP to a location that is selected by the user (most likely this location will be near mid-board and closer to the stern of the SUP). Second: the seat assembly is manipulated into an intermediate configuration wherein the support shaft has been moved to position the protrusions on the base member in the slots of the support shaft at the second end of the support shaft. This distances the seat member from the base member. Note: in this intermediate configuration the shaft axis of the support shaft is still substantially perpendicular to the base axis of the base member. Third: the support shaft is rotated about an axis defined by the protrusions on the base member. This rotation then coaxially aligns the shaft axis of the support shaft with the base axis of the base member. Fourth: the second end of the support shaft is inserted into the receptacle of the base member to establish the sitting configuration for the seat assembly. A return of the seat assembly to its stowed configuration is then accomplished by essentially performing the four-step procedure in reverse order.
The novel features of this invention, as well as the invention itself, both as to its structure and its operation, will be best understood from the accompanying drawings, taken in conjunction with the accompanying description, in which similar reference characters refer to similar parts, and in which:
Referring initially to
Structural aspects of the seat assembly 14 will be best appreciated with reference to
Referring now to
In
With reference to
An operation to reconfigure the seat assembly 14 between its stowed and sitting configurations will be best appreciated with reference to the different axes that are shown and identified in
Keeping in mind the various axes defined above (i.e. base axis 54, shaft axis 56, and rotation axis 58), a reconfiguration on the seat assembly 14 involves a transition between three different configurations. These are: a stowed configuration (
An on-the-water reconfiguration of the seat assembly 14 will most likely be preceded by first repositioning it on the SUP 12. To do this, the seat assembly 14 will typically remain in its stowed configuration (see
While the particular Stand-up Paddleboard Stool as herein shown and disclosed in detail is fully capable of obtaining the objects and providing the advantages herein before stated, it is to be understood that it is merely illustrative of the presently preferred embodiments of the invention and that no limitations are intended to the details of construction or design herein shown other than as described in the appended claims.
This application is a Continuation-in-Part of application Ser. No. 12/928,657, filed Dec. 16, 2010, which is currently pending. The contents of application Ser. No. 12/928,657 are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4928620 | Currey | May 1990 | A |
5329871 | Gibbs | Jul 1994 | A |
5901658 | Kirkland | May 1999 | A |
6062638 | Ferguson | May 2000 | A |
7396083 | Kasner | Jul 2008 | B2 |
20110088610 | Wood | Apr 2011 | A1 |
Number | Date | Country |
---|---|---|
124675 | Nov 1984 | EP |
139957 | May 1985 | EP |
Number | Date | Country | |
---|---|---|---|
20130189885 A1 | Jul 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12928657 | Dec 2010 | US |
Child | 13792553 | US |