Field of the Invention
Our invention relates to a storage bag. More specifically, our invention relates to a plastic storage bag that can be shifted between a flat configuration and a stand-up configuration wherein the bag can be easily filled.
Related Art
Storage bags made from flexible plastic materials are well known. Such plastic storage bags are offered in a variety of sizes and can be used to contain a variety of items, including food, utensils, clothing, tools, etc. These storage bags often include a zipper-like closure mechanism to releasably seal the interior of the bag. Different types of plastic storage bags with closure mechanisms are sold by the assignee of the present application under the ZIPLOC® trademark.
It is desirable to configure a plastic storage bag such that a user can set the bag in an opened position with the bag standing upright and without the user having to hold onto the bag. That is, it is desirable for a plastic storage bag to stand upright, with its closure mechanism unsealed, without the user grasping the bag. In such an upright and opened position, the user's hands are free to fill the bag with items. At other times, however, it is desirable for the plastic storage bag to lie as flat as possible. For example, when the bag is not being used, a flat bag may be more compactly stored.
In order to provide a plastic storage bag that can stand upright without the user holding onto the bag, a pleat or gusset is sometimes added to the bottom of the bag. By “pleat” or “gusset” we mean additional material provided between other portions of the bag, for example, a fold formed by doubling back the material forming the bag on itself. An example of such a pleat/gusset arrangement in a bag can be seen in U.S. Pat. No. 3,738,565. In addition to a pleat, a storage bag may be made thicker throughout its sides and bottom to more firmly support itself in an upright position. Both a pleat and a thicker bag, however, require the use of additional material to form the bag, thereby increasing the costs associated with manufacturing the bag. Moreover, a pleat and additional material reduce the ability of the bag to be made flat, for example, when not being used and being stored.
In one aspect, our invention is directed to a storage bag that includes a first sidewall with at least one shift region provided in a bottom portion of the first sidewall and a cuff line. A second sidewall is directly connected to the first sidewall along three sides of the bag to form an interior of the bag with an opening thereto, with the second sidewall including at least one shift region provided in a bottom portion of the second sidewall and a cuff line. A cuff region is disposed below a top edge of the first sidewall and a top edge of the second sidewall, with the cuff region extending from a point below each of the top edges of the first and second sidewalls to the cuff line of each of the first and second sidewalls. The bag is shiftable about the at least one shift region of the first sidewall and the at least one shift region of the second sidewall such that the bag can be shifted between (i) a flat configuration with the first and second sidewalls positioned adjacent to each other, and (ii) a stand-up configuration with the first and second sidewalls separated from each other. In the stand-up configuration, a substantially flat base is formed for the bag. The bag is further shiftable about the cuff line such that the bag can be shifted to a cuffed position with the bag being folded over the cuff line and the cuff region forming the opening to the bag.
In another aspect, our invention is directed to a storage bag that includes a first sidewall with at least one shift region provided in a bottom portion of the first sidewall. A second sidewall is directly connected to the first sidewall along three sides of the bag to form an interior of the bag with an opening thereto, with the second sidewall including at least one shift region provided in a bottom portion of the second sidewall. A cuff region is disposed below a top edge of the first sidewall and a top edge of the second sidewall, with the cuff region including at least one shift region. The bag is shiftable about the at least one shift region of the first sidewall and the at least one shift region of the second sidewall such that the bag can be shifted between (i) a flat configuration with the first and second sidewalls positioned adjacent to each other, and (ii) a stand-up configuration with the first and second sidewalls separated from each other. In the stand-up configuration, a substantially flat base is formed for the bag. The bag is further shiftable about the at least one shift region of the cuff region such that the bag can be shifted to a cuffed position with the bag being folded over the at least one shift region and the cuff region forming the opening to the bag.
These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.
Our invention relates to a plastic storage bag that includes features for shifting the bag between a flat configuration and a stand-up configuration. In the stand-up configuration, the bag stands on a substantially flat base without being grasped by a user such that the bag can easily be filled.
As will be apparent from the description herein, the terms “bag” and “storage bag” encompass a broad range of structures designed to contain items. Such bag structures might also be termed pouches, envelopes, packets, and the like. In general, the terms “bag” and “storage bag,” as used herein, simply mean a somewhat flexible container with an opening, such that the bag is capable of carrying any number of items. The storage bags may be tailored for particular uses, for example, the bags may be used to store food in a refrigerator in some embodiments, or the bags may be used to store food in a freezer in other embodiments.
The opening 112 may be sealed by the interlocking closure structures 114A, 114B, 116A, and 116B. Interlocking closure structures for plastic storage bags are well known in the art, and examples of different shapes and configurations of interlocking members that can be used with our storage bag 100 can be seen in U.S. Pat. Nos. 5,070,584; 7,784,160; 7,886,412; 7,946,766; and 8,061,898, and in U.S. Patent Application Publication No. 2009/0324141, the disclosures of which are incorporated by reference herein in their entirety. As an alternative to the closure structures 114A, 114B, 116A, and 116B, in other embodiments, a slider-type closure structure could be used to seal the opening 112 of the bag 100 along the top edge of the first and second sidewalls 102 and 104. Examples of slider-type closure structures can be seen in U.S. Pat. Nos. 5,664,299; 5,836,056; and 7,052,181, the disclosures of which are incorporated by reference herein in their entirety.
Illustrative plastic materials that can be used to form the bag 100 include, for example, polypropylene (PP), polyethylene (PE), metallocene-polyethylene (mPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), ultra low density polyethylene (ULDPE), biaxially-oriented polyethylene terephthalate (BPET), high density polyethylene (HDPE), polyethylene terephthalate (PET), among other polyolefin plastomers and combinations and blends thereof. Still other materials that may be used include styrenic block copolymers, polyolefin blends, elastomeric alloys, thermoplastic polyurethanes, thermoplastic copolyesters, thermoplastic polyamides, polymers and copolymers of polyvinyl chloride (PVC), polyvinylidene chloride (PVDC), saran polymers, ethylene/vinyl acetate copolymers, cellulose acetates, polyethylene terephthalate (PET), ionomer, polystyrene, polycarbonates, styrene acryloacrylonitrile, aromatic polyesters, linear polyesters, and thermoplastic polyvinyl alcohols. Those skilled in the art will recognize that a wide variety of other materials may also be used to form the storage bag 100. Those skilled in the art will also recognize that by using the plastic materials described above, the storage bag 100 can be made in a range of colors and transparencies.
A variety of manufacturing techniques may be used to form the plastic storage bag 100. As one specific example, the sidewalls 102 and 104 of the bag 100 can be extruded together as one sheet, with a portion of the first sidewall 102 and a portion of the second sidewall 104 being joined together to form the bag structure using, for example, thermoplastic welding techniques. As another example, the first and second sidewalls 102 and 104 can be formed as separate structures that are joined together along the three edges 106, 108, and 110. Along these lines, when referring herein to the sidewalls 102 and 104 as being “connected” together, the sidewalls may be integrally formed, or, alternatively, the sidewalls 102 and 104 may be separate structures that have been joined together at the connection. The formation of specific additional features of the bag 100 will be described below.
The storage bag 100 according to our invention can be shifted between a flat configuration, as shown in
As shown in
With the shift regions 122A, 122B, 123A, 123B, 124A, 124B, 124C, 124D, 125A, 125B, 125C, 126, and 128, the bag 100 is shiftable between a flat configuration, as shown in
In the embodiment shown in
Similarly, the bag 100 may only include some, but not all, of the depicted shift regions 122A, 122B, 123A, 123B, 124A, 124B, 124C, 124D, 125A, 125B, 125C, 126, and 128. For example, in one embodiment, the bag 100 might include the shift regions 122A, 122B, 124A, and 124B, but not include any of the other depicted shift regions 123A, 123B, 124C, 124D, 125A, 125B, 125C, 126, and 128. In such an embodiment, the shift regions 122A, 122B, 124A, and 124B function by themselves to shift the bag 100 from the flat configuration to the stand-up configuration. Also, in the depicted embodiments, the shift regions 122A, 122B, 123A, 123B, 124A, 124B, 124C, 124D, 125A, 125B, 125C, 126, and 128 are shown to extend in continuous lines. In other embodiments, however, the shift regions 122A, 122B, 123A, 123B, 124A, 124B, 124C, 124D, 125A, 125B, 125C, 126, and 128 can be discontinuous. For example, any one of the shift regions can be formed as a plurality of distinct line segments, dots, etc. As will be appreciated by those skilled in the art, the number and continuity of the shift regions provided to a bag according to our invention can be adjusted in order to make the shifting of the bag more or less easy, or the number and continuity of the shift regions can be adjusted based on other factors such as aesthetics and cost of manufacturing of the bag. Along these lines, in some embodiments, the bag may only be provided with one of the shift regions 122A, 122B, 123A, 123B, 124A, 124B, 124C, 124D, 125A, 125B, 125C, 126, and 128.
As can be seen in
When angles α and β are generally defined by the relation of Equation (1), the bag 100 can be easily shifted from the flat configuration to the stand-up configuration. Note, however, that Equation (1) does not have to be exactly satisfied, but rather, both a and β can vary slightly from the relation while still allowing for the bag 100 to be easily moved from the flat configuration to the stand-up configuration. For example, given a specific angle α, then angle β may vary by less than about ±2 degrees from the value for angle β calculated from Equation (1). Given a specific angle β, then angle α may vary less than about ±4 degrees from the value for angle α calculated from Equation (1). For example, in specific embodiments, angle α is about 14 degrees to about 16 degrees and angle β is about 37 degrees to about 39 degrees. It should again be noted, however, that the bag 100 is not necessarily limited to any particular angle α and angle β.
The horizontal shift regions 126 and 128 extend a height H above the bottom edge 108 of the bag 100. This height H will, in effect, determine the width of the flat base of the bag 100 when the bag 100 is in the stand-up configuration. That is, as shown in
With the configuration of the bag 100 shown in
While the bag 100 will remain in the stand-up configuration when provided with uniformly thick sidewalls 102 and 104, in other embodiments, specific portions of the bag 100 are made thicker in order to further facilitate the stand-up configuration. In one example, regions of the bottom portions 108 of the sidewalls 102 and 104 of the bag 100 are made thicker than the rest of the bag 100. Specifically, the bottom portions 108 are about twice as thick as the other portions of the sidewalls 102 and 104. In other embodiments, regions of the bottom portions 108 are made about one mil thicker than the other portions of the sidewalls 102 and 104. When an extruding technique is used to manufacture the bag 100, the bottom portions 108 can be made thicker by adjusting the amount of material used to form the bottom portions 108 in comparison with the other portions, e.g., by adjusting the extruding process such that the bottom portions 108 are about 1 mil thicker, while the other portions of the side walls 102 and 104 are reduced by about 0.1 mil of thickness.
In some embodiments, the bottom portions 108 of the first and second sidewalls 102 and 104 can be made visually distinct from the other portions of the first and second sidewalls 102 and 104. For example, a visually distinct texture could be formed in the bottom portions 108 between the horizontal shift regions 126 and 128 of the first and second sidewalls 102 and 104. Such a texture may aid the user in identifying the bottom portions 108 that are to be shifted. Further, the texture may increase the friction of the base when the bag 100 is in the stand-up configuration, thereby further stabilizing the bag 100.
In order to further facilitate the stand-up configuration of the bag 100, other portions of the sidewalls 102 and 104 above the bottom portions 108 can be made stiffer. Examples of such stiffer portions are the areas labeled as 140, 142, 144, and 146 on the first sidewall 102 in
The stiffer areas 140, 142, 144, and 146 can be formed by extruding the sidewalls 102 and 104 of the bag in a manner such that the areas 140, 142, 144, and 146 on the first sidewall 102, and the corresponding portions on the second sidewall 104, are made thicker than the other portions of the sidewalls 102 and 104. Alternatively, the stiffer areas 140, 142, 144, and 146 can be formed by applying additional material onto the sidewalls 102 and 104.
In still other embodiments of our invention, upper portions of the bag are made stiffer in order to help maintain the opening 112 in the open position. As will be appreciated by those skilled in the art, the lips are the region of the bag above the closure structures (i.e., the area between the closure structures 116A/B and the top edge of the bag shown in
Those skilled in the art will recognize many different ways that the lips of the bag can be made stiffer. For example, additional material can be added to the lip areas in a manner analogous to the way that additional material is added to form the above-described areas 140, 142, 144, and 146. That is, the lips can be made stiffer by providing additional material in the lip areas such that the lips are thicker than other portions of the bag. In this regard, making the lips thicker has an additional benefit of making the lips easier to grasp, for example, when the bag is being opened. In a specific example, the lips are made 20% stiffer than other portions of the bag, thereby making the bag opening more readily stay in the open position and making the lips easier to grasp.
Additional material provided to make the lips stiffer can be the same material as the material that is used to form the rest of the bag. Alternatively, a different material can be used to stiffen the lips. For example, the bag can be made from PE, and HDPE can be added to the lip areas in order to make the lips stiffer. In other embodiments, the lips themselves can be at least partially formed from a different, stiffer material than other portions of the bag. For example, when the bag is primarily formed from PE, the lips can be separately formed from HDPE, with the higher density HDPE making the lips stiffer than the rest of the bag. Of course, the material used to form the lips added to the lip areas, or the additional material added to the lips, can be any material that is compatible with the other materials used to form the bag.
As indicated above, the closure structure or closure structures of a bag are positioned near the opening. Thus, in addition to, or as an alterative to, making the lips stiffer, the closure structure or structures of the bag can be formed from a material that is stiffer than other portions of the bag, thereby making the bag more readily stay in the open position (when the closure structures are not functioning to close the opening). In an embodiment that includes stiffer closure structures, the closure structures are made from HDPE, whereas the rest of the bag is made from PE.
The shift regions 222A, 222B, 224A, and 224B of bag 500 are not straight, but instead, have a curved shape. The bag 200 is shiftable between a flat configuration and a stand-up configuration by being shifted about the curved shift regions 222A, 222B, 224A, 224B, and 226 in a manner similar to the way that the bag 100 shifts between configurations, as described above. With the curved shift regions 222B and 224B, the angle α is measured between the side 210 and a line T1 that is tangent to a point in the middle portion of the shift region 222B, and the angle β is measured between the bottom 208 and a line T2 that is tangent to a point in the middle portion of the shift region 224B. Although not shown, similar angles α and β can be measured between lines tangent to the shift regions 222A, 224A, the side edge 206, and the bottom edge 208. The angles α and β may be in the relation of Equation (1), as described above.
In the embodiments described above, a bag according to our invention is described as being provided with shift regions that are formed as indentations in the bags. In other embodiments, however, the locations about which the bag is shifted between the flat and stand-up configurations could be formed in a different manner, such as by providing additional polymeric material to the sides of the bag. For example, polyethylene may be provided on the sides of the bag at the same positions as the above-described shift regions on the bag. Those skilled in the art will appreciate the variety of techniques that could be used to apply such additional material, for example, nozzles that turn on and off to rapidly deposit the material in the pattern of the shift regions. In other embodiments, the locations about which the bag can be shifted are provided as regions of varying thickness, elevation, etc., in the sides of the bag. In this regard,
The beaded shaped shift regions 726 and 728 can be formed from the same material as that of the bag, for example, by specifically extruding the material that forms the sidewalls 702 and 704 such that the shift regions 726 and 728 are formed with the beaded shape. Alternatively, the beaded shift regions 726 and 728 can be formed by using a different material to form the sidewalls of the bag, with the different material being used to form the shift regions 726 and 728 at the same time as the sidewalls 702 and 704 are formed, or by adding the different material to form the shift regions 726 and 728 after the sidewalls 702 and 704 are formed. In this regard, the shift regions 726 and 728 can be formed from any of the plastic materials we discussed above. As other examples, the material used to form the beaded shift regions 726 and 728 could be an adhesive, an ink, or a wax material. In some cases, the additional material used to form the beaded shift regions 726 and 728 is not directly attached to the sidewalls 702 and 704 of the bag, but rather one or more intermediate layers are formed between the beaded shift regions 726 and 728 and the sidewalls 702 and 704. In still other embodiments, the beaded regions 726 and 728 themselves are formed from multiple layers of one or more materials.
The beaded shift regions 726 and 728 can be formed to any thickness such that the regions facilitate shifting of the bag, as described above. In some embodiments, however, the beaded shift regions 726 and 728 are about two to about twenty times thicker than the sidewalls 702 and 704 of the bag. In still more specific embodiments, the beaded shift regions 726 and 728 are about 2 to about ten times thicker than the sidewalls 702 and 704 of the bag. And, in a specific embodiment, the beaded shift regions 726 and 728 extend about 15 mils from the surface of the sidewalls 702 and 704.
It should be noted that while the beaded shift regions 726 and 728 are depicted on the outside surfaces of the sidewalls 702 and 704, as is the case with all of the shift regions described herein, one or both of the beaded shift regions 726 and 728 could be provided on the inside surfaces of the sidewalls 702 and 704 (i.e., in the interior of the bag). It should also be noted that while the beaded shift regions 726 and 728 have a generally rounded shape as shown in
In the embodiment depicted in
A still further embodiment of the invention is shown in
With respect to the upper portion of bag 800, shift regions 836A and 838A are provided on sidewall 802 below the closure structures 814A/B and 816A/B, with the shift regions 836A and 836B extending from the side 806 of the bag 800. Similarly, shift regions 836B and 838B are provided extending from the side 810. The additional shift regions 836A, 836B, 838A, and 838B help to maintain the opening 812 of the bag in the open position by causing portions of the bag 800 to deflect along the shift regions 836A, 836B, 838A, and 838B when the bag 800 is opened. These shift regions 836A, 836B, 838A, and 838B can take any of the shift region forms described above, e.g., indentations, scores, beads, etc. And, the shift regions 836A, 836B, 838A, and 838B can be provided anywhere in the general area of the upper portion near sides 806 and 808. In a specific embodiment, however, the shift regions 836A and 836B are about one inch below the closure structures 814A/B, as measured along sides 806 and 810, and the shift regions 838A and 838B are about one-half inch below the shift regions 836A and 836B (about one and one-half inches below the closure structures 814A/B), as measured along sides 806 and 810. In the specific embodiment, the shift regions 836A, 836B, 838A, and 838B extend about one inch along sidewall 802, as measured in a line perpendicular from sides 806 and 810.
In some embodiments, shift regions corresponding to shift regions 836A, 836B, 838A, and 838B are provided on the second sidewall 804 of the bag 800. Those skilled in the art will recognize that more or less shift regions can be provided in a similar manner to the 836A, 836B, 838A, and 838B on either of the upper portions of the sidewalls 802 and 804.
Any of the shift regions provided on the bag 800 can be combined with any of the other embodiments of our bag as described herein. For example, the shift regions 836A, 836B, 838A, and 838B could be provided on the bags 100 and 200 described above. Further, features from the other embodiments described herein can also be provided with bag 800. For example, the visually distinct texture described above can be provided on the bottom portion of bag 800, if desired. More generally, as will be fully appreciated by those skilled in the art, any of the features described herein with respect to a specific embodiment may be combined with, or substituted for, features of another specific embodiment. For example, a bag according to our invention could be formed with the combination of (1) the stiffer portions 140, 142, 144, and 146, as described in conjunction with the bag 100, (2) the curved shift regions 222A, 222B, 224A, and 224B, as described in conjunction with the bag 200, (3) the beaded shift region, as described in conjunction with the bag 700, and (4) the shift regions 836A, 836B, 838A, and 838B, as described in conjunction with the bag 800.
The bag of the embodiment of
The cuff region 320, the cuff line 322, 322′, 322″, 322′″, and/or the shift regions 323A-323G allow for a user to easily cuff or fold the bag 300 about the cuff region 320, the cuff line 322, 322′, 322″, 322″, and/or the shift regions 323A-323G, which provides a bag with a wide open mouth that is easier to fill, particularly when the bag 300 is in a stand-up configuration (see, e.g.,
As also shown in
As discussed above, a first patterned area 360 is provided between the interlocking closure structures 314A, 314B, 316A, and 316B and the cuff line 322 to (i) disguise the cuff line 322, (ii) add some stiffness to the cuff region 320, and/or (iii) provide a visual cue to a user as to where to fold down the cuff region 320 and cuff the bag 300 along the cuff line 322. As also discussed above with respect to the embodiment of
With respect to the various patterned areas (e.g., 326, 360, 360′, 370, 380) discussed above, a variety of patterns and/or textures may be used to create these areas. In addition, the patterned areas can comprise a variety of designs and/or shapes, including, for example, parallel lines, intersecting lines, intermittent lines, cross-hatching, curved lines, diagonal lines, diamond shapes, circular shapes, triangular shapes, X-shapes, S-shapes, clouds, flowers, stars, hearts, etc., and any combinations thereof. The patterned areas (e.g., 326, 360, 360′, 370, 380) may further comprise raised portions created, for example, by way of ultrasonic embossing or embossing with a die press. Moreover, the patterned areas (e.g., 326, 360, 360′, 370, 380) may have the same or substantially the same thickness as the sidewalls 302 and 304 of the bag 300. In other embodiments, the patterned areas (e.g., 326, 360, 360′, 370, 380) of the bag 300 are made to be thicker in order to further facilitate the stand-up configuration, as well as the cuffing of the bag 300 (as shown, for example, in
A bag according to our invention is highly functional inasmuch as it can be made to stand upright without being held by a user. The bag can thereby be set on a surface, and easily filled by the user. This stand-up configuration is achieved without the use of a pleat, gusset, or other additional structure at the bottom portion of the bag. Thus, the bag can be made to lay substantially flat when not in use, and thereby be compactly stored. Further, by not including an additional structure at the bottom portion, the bag can be made from substantially less material than other stand-up bags known in the art. Those skilled in the art will recognize numerous other advantageous of our bag based on the foregoing description.
Although this invention has been described in certain specific exemplary embodiments, many additional modifications and variations would be apparent to those skilled in the art in light of this disclosure. It is, therefore, to be understood that this invention may be practiced otherwise than as specifically described. Thus, the exemplary embodiments of the invention should be considered in all respects to be illustrative and not restrictive, and the scope of the invention to be determined by any claims supportable by this application and the equivalents thereof, rather than by the foregoing description.
The invention described herein can be used in the commercial production of storage bags. Such storage bags have a wide variety of uses, such as being utilized to store food, chemicals, or other substances.
This application is a continuation-in-part of copending U.S. patent application Ser. No. 14/535,667, filed Nov. 7, 2014, which is a continuation-in-part of copending U.S. patent application Ser. No. 14/204,075, filed Mar. 11, 2014, which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3738565 | Ackley et al. | Jun 1973 | A |
4353497 | Bustin | Oct 1982 | A |
4837849 | Erickson et al. | Jun 1989 | A |
4993844 | Robinson et al. | Feb 1991 | A |
5070584 | Dais et al. | Dec 1991 | A |
5375930 | Tani | Dec 1994 | A |
5547284 | Imer | Aug 1996 | A |
5664299 | Porchia et al. | Sep 1997 | A |
5836056 | Porchia et al. | Nov 1998 | A |
6030652 | Hanus | Feb 2000 | A |
6334710 | Kuge et al. | Jan 2002 | B1 |
6345911 | Young et al. | Feb 2002 | B1 |
6409386 | Trani et al. | Jun 2002 | B1 |
6533456 | Buchman | Mar 2003 | B1 |
6746388 | Edwards et al. | Jun 2004 | B2 |
6874938 | Price et al. | Apr 2005 | B2 |
6957915 | Tankersley | Oct 2005 | B2 |
7052181 | Smith et al. | May 2006 | B2 |
7784160 | Dais et al. | Aug 2010 | B2 |
7886412 | Dais et al. | Feb 2011 | B2 |
7946766 | Dais et al. | May 2011 | B2 |
8061898 | Pawloski et al. | Nov 2011 | B2 |
8182152 | Plunkett et al. | May 2012 | B2 |
8251881 | Chertkow et al. | Aug 2012 | B2 |
8251971 | Graf et al. | Aug 2012 | B2 |
8267580 | Schneider | Sep 2012 | B2 |
8616768 | Inagaki et al. | Dec 2013 | B2 |
20020168120 | Wessling et al. | Nov 2002 | A1 |
20030059130 | Yoneyama | Mar 2003 | A1 |
20040161174 | Bartel et al. | Aug 2004 | A1 |
20040184682 | Lovold | Sep 2004 | A1 |
20050244084 | Tilman et al. | Nov 2005 | A1 |
20060120631 | Tang | Jun 2006 | A1 |
20060140514 | Dierl et al. | Jun 2006 | A1 |
20070127851 | Tilman et al. | Jun 2007 | A1 |
20070237433 | Plunkett et al. | Oct 2007 | A1 |
20090180718 | Walker | Jul 2009 | A1 |
20090232424 | Bierschenk et al. | Sep 2009 | A1 |
20090324141 | Dais et al. | Dec 2009 | A1 |
20100061665 | Inagaki et al. | Mar 2010 | A1 |
20100272377 | Herbig et al. | Oct 2010 | A1 |
20110019942 | Piraneo | Jan 2011 | A1 |
20130174386 | Koenigkramer | Jul 2013 | A1 |
20130177262 | Anzini et al. | Jul 2013 | A1 |
20140245698 | Steele | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
2759981 | Aug 1998 | FR |
Entry |
---|
Notification of and International Search Report and Written Opinion mailed Jun. 7, 2016, in corresponding International Patent Application No. PCT/US2015/047937. |
Number | Date | Country | |
---|---|---|---|
20150360824 A1 | Dec 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14535667 | Nov 2014 | US |
Child | 14832215 | US | |
Parent | 14204075 | Mar 2014 | US |
Child | 14535667 | US |