This invention relates to apparatus for forming field seams in single ply roofing membranes. When installing a roof on a flat roof building, roof membranes are applied over a base structure, which is typically a concrete substrate, covered by an insulation board. Roof membranes, which are made of polymeric materials, such as ethylene propylene diene monomer (EPDM), repel water and snow and generally protect the integrity of the underlying structure. Use of EPDM membranes is preferred because, being unsaturated, degradation due to sunlight and ozone is greatly diminished.
It is necessary to secure the membrane to the roof to prevent movement as well as actual lifting when high winds pass over the roof. In some installations roofing membranes are held down on the roof with a layer of river rock. Because this adds considerably to the weight of the roof, another method of securement is by the use of an adhesive. Mechanical fasteners are not suitable because their use would perforate the membrane, creating a breach in the integrity and seal of the roof. One method of application utilizes fasteners that pass through a narrow width of a scrim reinforced membrane, through the insulation and into the concrete or other substrate. The latter membrane is applied to the roof in strips across the roof at periodic intervals, on the order of eight feet (2.4 M). Then the single ply roofing membrane is applied to these strips with the use of adhesive, thereby securing the roofing membrane to the roof at eight foot (2.4 M) intervals.
The roofing membranes are typically manufactured in wide sheets, on the order of 10 to 50 feet (3 to 15 M) wide and are produced in lengths sufficient to cover the length or width dimension of a building roof without splicing. Where a dimension, such as the width, exceeds the width of the membrane, successive sheets are spliced together. Seams, when necessary, must also ensure weatherability and watertightness of the roof. In both instances, splicing and joining the overlying membrane to the strips, it is necessary to adhere overlapping sheets together, in the case of splicing, and to adhere the single ply membrane to the strip in the latter instance. This is done by the application of an adhesive, in the form of a liquid or tape containing a pressure-sensitive adhesive, to the mating surfaces, and then applying pressure to the mating surfaces to obtain adhesion, typically by rolling the surfaces.
At present, the two types of joints are made with the aid of a hand roller, operated by a worker, on his hands and knees, moving the roller in a back and forth motion over a small area and progressing forward to the edge of the roof. In addition to the labor involved, the seaming is not always uniform due to differences in application forces from worker to worker as well as the fatigue of the worker after prolonged seaming. An apparatus that minimizes fatigue and ensures a more uniform application force is desired.
Briefly, the present invention provides a stand-up roller apparatus for use in attaching single ply roofing membranes to the adhesive strips as well as for forming field seams. A method for the use of such apparatus in the installation of roofing membranes is also provided.
In general, stand-up roller apparatus for applying a uniform pressure to roofing membranes during installation on roofs according to the present invention comprises an elongated handle; a bracket carried at one end of the handle; a roller assembly, rotatably affixed to the bracket and providing a sleeve, directly engageable with a roofing membrane being applied, wherein the dead weight of the apparatus is sufficient to join the applied roofing membrane to a mating surface on the roof without the application of additional downward force by the operator.
The method for the application of roofing membranes to prepared roofs according to the present invention includes the steps of affixing membrane fastening strips to a roof at periodic intervals with respect to one dimension of the roof; applying a roofing membrane onto the roof and over a plurality of the fastening strips in successive fashion; combining at least a portion of the fastening strips and a mating portion of the membrane with an adhesive material; and, applying a uniform pressure over the membrane and successive fastening strips whereby the adhesive material adheres the mating surfaces together. The uniform pressure is applied via the stand-up roller apparatus of the present invention, which by virtue of its design and weight, ensures the same application of force over each fastening strip.
The method for seaming adjacent sheets of roofing membranes on roofs according to the present invention includes the steps of applying a sheet of roofing membrane onto the roof, allowing a seam portion thereof to overlap with a mating seam portion of a previously laid sheet of roofing membrane; combining the mating seam portions of the membrane with an adhesive material; and, applying a uniform pressure over the mating seam portions of roofing membrane, whereby the adhesive material adheres the mating surfaces together. The uniform pressure is applied via the stand-up roller apparatus of the present invention, which by virtue of its design and weight, ensures the same application of force over each seam.
At least one or more of the foregoing aspects, together with the advantages thereof over the known art relating to seaming apparatus and methods for the installation of roofing membranes, which shall become apparent from the specification which follows, are accomplished by the invention as hereinafter described and claimed.
With reference to
The roller 24 is essentially in the form of a cylinder having a central aperture 26 passing therethrough concentric with its axis. The outboard end of cylindrical roller 24 is provided with a larger aperture 28, which is also concentric with the longitudinal axis. The diameter of the roller is about 3.75 inches (9.5 cm), but is not limited thereto.
The bracket 22 is an L-shaped member, the shorter, horizontal arm 29 of which is affixed to the base of the handle 21 as by welding or other suitable means. The vertical arm 30 of bracket 22 is provided with an aperture 31, into which a threaded stud 32 is either permanently affixed as by a press fit or welding or, in the alternative, a bolt (not shown) may be employed. The assembly of the roller 24 onto the stud 32 is best depicted in FIG. 3 and includes the use of inboard and outboard washers 33, 34 respectively, inboard and outboard bushings 35, 36 respectively, an internal sleeve 38 which fits within aperture 26 and a nut 39, engagable with the threaded end of stud 32 and housed within the outboard aperture 28 of the roller 24.
The handle 21 is preferably, but not necessarily, of solid metal construction and can provide a rubber sleeve 40 to provide a better, more comfortable grip. The overall length of the handle 21 is such that the worker may apply the roller 24 to the surface of the membrane from an upright position and therefore includes both straight and bent configurations. The length of the handle allows the worker to use the roller apparatus in a standing, upright position, which eliminates fatigue encountered by the use of shorter handled roller apparatus. The weight of the roller apparatus 20 can be from about 20 to 30 pounds (9.1 to 13.6 Kg) and is preferably approximately 22 pounds (9.9 Kg). The diameter of the roller apparatus 20 is preferably 3.75 inches (9.5 cm). This weight, along with the length of the handle, ensures the application of a uniform force or pressure along the roofing membrane during the installation thereof. Moving the roller 24 along 2 to 3 feet (0.6 to 0.9M sections of the area being joined, will permit the application of a generally uniform amount of pressure. The application of approximately 15 to 16 pounds (6.8 to 7.3 Kg) of pressure is adequate to provide good sheer and peel adhesion.
The cylindrical sleeve 25 provides a soft interface between the body of the steel roller 24 and the roofing membrane. The sleeve is preferably manufactured from rubber or other elastomeric material and is intended to have a durometer that is less than that of the membrane. Typically roofing membranes have a Shore A durometer of about 60 to 65. The sleeve is generally cylindrical and frictionally engages the roller 24 or may be adhered to it.
With reference next to
To the extent possible, the reinforced membrane 53 is applied perpendicularly to the length of the roll of single ply membrane 52. The reinforced membrane 53 is approximately 10 inches (25.4 cm) wide and is provided along its opposed edges 59 and 60 with pressure sensitive adhesive strips 61, 62 respectively which are approximately 3 inches (7.6 cm) wide and are covered with a release paper 63. The construction and use of the reinforced strips 53 is well known in the industry and does not constitute a limitation on the practice of the present invention. Accordingly, it is to be appreciated that other forms of fastening strips may be employed with the present invention.
Returning to
The method for the application of roofing membranes to prepared roofs according to the present invention includes the steps of affixing membrane fastening strips to roof at periodic intervals with respect to one dimension of the roof; applying a roofing membrane onto the roof and over a plurality of the fastening strips in successive fashion; combining at least a portion of the fastening strips and a mating portion of the membrane with an adhesive material; and, applying a uniform pressure over the membrane and successive fastening strips whereby the adhesive material adheres the mating surfaces together. The uniform pressure is applied via the stand-up roller apparatus of the present invention, which by virtue of its design and weight, ensures the same application of force over each fastening strip.
With reference to
The method for seaming adjacent sheets of roofing membranes on roofs according to the present invention includes the steps of applying a sheet of roofing membrane onto the roof, allowing a seam portion thereof to overlap with a mating seam portion of a previously laid sheet of roofing membrane; combining the mating seam portions of the membrane with an adhesive material; and, applying a uniform pressure over the mating seam portions of roofing membrane, whereby the adhesive material adheres the mating surfaces together. The uniform pressure is applied via the stand-up roller apparatus of the present invention, which by virtue of its design and weight, ensures the same application of force over each seam.
Thus, it should be evident that the stand-up roller apparatus and method of the present invention are highly effective in the application of roofing membranes to roofs and the seaming of adjacent, overlapping membranes. The apparatus is fitted with a soft sleeve of a certain Shore A durometer hardness to follow the seam areas, thus assuring intimate contact between mating surfaces. The stand-up roller apparatus does not require the operator to apply additional force to the handle, i.e., bearing down, as is the case with existing, handle-held rollers. The force applied by the dead weight of the roller is sufficient for uniform mating and seaming. The invention is particularly suited for application of single ply EPDM membranes, but is necessarily limited thereto.
Based upon the foregoing disclosure, it should now be apparent that the use of the apparatus described herein will carry out the advantages over existing apparatus. It is, therefore, to be understood that any variations evident fall within the scope of the claimed invention and thus, the selection of specific component elements can be determined without departing from the spirit of the invention herein disclosed and described. In particular, application of roofing membranes according to the present invention is not necessarily limited to the use of single ply roofing membranes or to the use of reinforced fastening strips, carrying one or more strips of adhesive material. Thus, the scope of the invention shall include all modifications and variations that may fall within the scope of the attached claims.
Number | Name | Date | Kind |
---|---|---|---|
508157 | Wilson | Nov 1893 | A |
606687 | Seymour | Jul 1898 | A |
1302275 | Ashmore et al. | Apr 1919 | A |
1924644 | Himmelberger | Aug 1933 | A |
3082459 | Johnson | Mar 1963 | A |
3910738 | Chandler et al. | Oct 1975 | A |
4128909 | Kawabe et al. | Dec 1978 | A |
4548016 | Dubich et al. | Oct 1985 | A |
4958400 | Sugita | Sep 1990 | A |
5242362 | Talamantez | Sep 1993 | A |
5393289 | Green | Feb 1995 | A |
5846176 | Zieger et al. | Dec 1998 | A |
6135934 | Couch | Oct 2000 | A |
Number | Date | Country | |
---|---|---|---|
20040002414 A1 | Jan 2004 | US |