The embodiments herein relate to stand-up units that are designed to move a user between a sitting position and a standing position. Stand-up units can be used, for example, in stand-up wheelchairs, therapy chairs, and the like.
Certain known stand-up systems provide for the backrest to remain upright both in the sitting and standing configurations. Further, such systems provide both sitting and standing configurations and movement between those two configurations such that almost no relative movement occurs between the upper legs of the user and the seat and between the back of the user and the backrest as the user stands up and sits down, thereby reducing or eliminating shear forces from such relative movement, which reduces or eliminates decubitus in the user.
One disadvantage of such known stand-up units is that, when they move into the standing position, the seat and backrest move into a single plane of support against which the user is disposed. This single plane of support creates an unnatural standing position for the user.
There is a need in the art for improved stand-up units and related systems and methods.
Discussed herein are various stand-up units for use in any devices that provide assistance to a user in moving between a sitting position and a standing position, including stand-up units that provide for a tilt in the seat as the unit moves toward the standing position, thereby allowing for the user to be positioned in the standing position with the natural hip tilt typically exhibited when standing.
In Example 1, a stand-up unit comprises a parallelogram comprising first and second elongate levers and first and second connecting levers, a hinged lever, a seat comprising a coupling track operably coupled to the seat, and a support operably coupled to the second connecting lever, wherein the coupling structure is slidably coupled to the coupling track. The hinged lever comprises a first link, a second link rotatably coupled to the first link at a hinged lever joint, and a coupling structure attached to the second link, wherein the first link is rotatably coupled to the first connecting lever.
Example 2 relates to the stand-up unit according to Example 1, wherein the parallelogram comprises a sitting position and a standing position, wherein the parallelogram is moveable between the sitting and standing positions.
Example 3 relates to the stand-up unit according to Example 2, wherein the seat is substantially parallel with the first elongate lever in the sitting position.
Example 4 relates to the stand-up unit according to Example 3, wherein the seat is disposed at an angle in relation to the first elongate lever in the standing position, wherein the seat being disposed at the angle allows a user to stand with a natural hip tilt.
Example 5 relates to the stand-up unit according to Example 2, wherein the coupling structure is disposed at or near a proximal end of the coupling track when the parallelogram is in the sitting position.
Example 6 relates to the stand-up unit according to Example 5, wherein the seat is substantially parallel with the first elongate lever in the sitting position as a result of the coupling structure being disposed at or near the proximal end of the coupling track.
Example 7 relates to the stand-up unit according to Example 2, wherein the coupling structure is disposed at or near a distal end of the coupling track when the parallelogram is in the standing position.
Example 8 relates to the stand-up unit according to Example 7, wherein the seat is disposed at an angle in relation to the first elongate lever in the standing position as a result of the coupling structure being disposed at or near the distal end of the coupling track.
Example 9 relates to the stand-up unit according to Example 1, wherein the stand-up unit is incorporated into a wheelchair or a therapy chair.
In Example 10, a stand-up unit comprises a parallelogram comprising upper and lower elongate levers and front and rear connecting levers, wherein the parallelogram is moveable between a sitting position and a standing position, a two-piece coupling lever, a seat comprising an elongate coupling track fixedly attached at a proximal portion of the seat, wherein the coupling structure is moveably coupled to the elongate coupling track such that the coupling structure can move along a length of the elongate coupling track, and a support operably coupled to the front connecting lever. The two-piece coupling lever comprises a first link comprising a first end and a second end, wherein the first link is rotatably coupled to the rear connecting lever at the first end of the first link, a second link comprising a first end and a second end, a rotatable joint disposed at the second end of the first link and the second end of the second link, such that the first and second links are rotatably coupled via the rotatable joint, and a coupling structure attached to the first end of second link.
Example 11 relates to the stand-up unit according to Example 10, wherein the seat is substantially parallel with the upper elongate lever in the sitting position.
Example 12 relates to the stand-up unit according to Example 10, wherein the seat is disposed at an angle in relation to the upper elongate lever in the standing position, wherein the seat being disposed at the angle allows a user to stand with a natural hip tilt.
Example 13 relates to the stand-up unit according to Example 10, wherein the coupling structure is disposed at or near a proximal end of the elongate coupling track when the parallelogram is in the sitting position.
Example 14 relates to the stand-up unit according to Example 13, wherein the seat is substantially parallel with the upper elongate lever in the sitting position as a result of the coupling structure being disposed at or near the proximal end of the elongate coupling track.
Example 15 relates to the stand-up unit according to Example 10, wherein the coupling structure is disposed at or near a distal end of the elongate coupling track when the parallelogram is in the standing position.
Example 16 relates to the stand-up unit according to Example 15, wherein the seat is disposed at an angle in relation to the upper elongate lever in the standing position as a result of the coupling structure being disposed at or near the distal end of the elongate coupling track.
In Example 17, a wheelchair comprises a chassis, and a stand-up unit operably coupled to the chassis. The stand-up unit comprises a parallelogram comprising upper and lower elongate levers and front and rear connecting levers, wherein the parallelogram is moveable between a sitting position and a standing position, a two-piece coupling lever, a seat comprising an elongate coupling track fixedly attached at a proximal portion of the seat, wherein the coupling structure is moveably coupled to the elongate coupling track such that the coupling structure can move along a length of the elongate coupling track, a support operably coupled to the front connecting lever, a footrest operably coupled to the support, and a backrest operably coupled to the parallelogram. The two-piece coupling lever comprises a first link comprising a first end and a second end, wherein the first link is rotatably coupled to the rear connecting lever at the first end of the first link, a second link comprising a first end and a second end, a rotatable joint disposed at the second end of the first link and the second end of the second link, such that the first and second links are rotatably coupled via the rotatable joint, and a coupling structure attached to the first end of second link.
Example 18 relates to the wheelchair according to Example 17, wherein the seat is substantially parallel with the upper elongate lever in the sitting position, and wherein the seat is disposed at an angle in relation to the upper elongate lever in the standing position, wherein the seat being disposed at the angle allows a user to stand with a natural hip tilt.
Example 19 relates to the wheelchair according to Example 17, wherein the coupling structure is disposed at or near a proximal end of the elongate coupling track when the parallelogram is in the sitting position, such that the seat is substantially parallel with the upper elongate lever in the sitting position.
Example 20 relates to the wheelchair according to Example 17, wherein the coupling structure is disposed at or near a distal end of the elongate coupling track when the parallelogram is in the standing position, such that the seat is disposed at an angle in relation to the upper elongate lever in the standing position.
While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the invention. As will be realized, the invention is capable of modifications in various obvious aspects, all without departing from the spirit and scope of the present invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.
The various embodiments herein relate to a stand-up unit for use in various wheelchairs, therapy chairs, and any other types of chairs, furniture, or other such devices in which a user can benefit from an apparatus that can assist the user in moving between sitting and standing positions.
As mentioned above in the Background, known stand-up units create a slightly tilted, single plane of support for the user when in the standing configuration. However, as depicted in
In contrast, the various stand-up unit embodiments disclosed or contemplated herein provide a “hip flex adjustment” feature that adds a tilt capability to the seat carrier, thereby allowing the user's hips and pelvis to tilt forward slightly in the natural hip flex fashion, while allows the user to experience a physiologically correct posture that is more comfortable and beneficial while utilizing the stand-up unit implementations herein.
One such exemplary, known wheelchair 14 is depicted in
It is understood that this exemplary wheelchair 14 is only one type of device that can incorporate a stand-up unit according to the various embodiments disclosed or contemplated herein. Any other known stand-up wheelchair or apparatus of any configuration can incorporate the stand-up unit technology discussed in detail herein.
One embodiment of a stand-up system 40 is depicted in the schematic illustrations in
The stand-up system 40 according to one embodiment has a stand-up assembly 42 that is moveably coupled to a support 44. The assembly 42 has at least a first parallelogram 46, which is made up of four levers 48, 50, 52, 54, with two elongate, substantially parallel levers 48, 50 and two shorter connecting levers 52, 54 coupled at each end of the elongate levers 48, 50 as shown. The four levers 48, 50, 52, 54 are rotatably coupled to each other such that the two elongate levers 48, 50 remain substantially parallel to each other as the unit 40 moves between the sitting configuration of
In this embodiment, the seat carrier (also referred to herein as a “seat”) 56 is a separate component that is indirectly coupled to the parallelogram 46 via a hinged, two-piece lever 58 as shown in
An expanded view of the hinged lever 58 coupled to the parallelogram 46 and the seat carrier 56 is provided in
It is understood that the hinged lever according to the embodiments herein (including hinged lever 58) can be any two structures, such as rods, elongate structures, or any other such members, that can be rotatably coupled to each other while also being coupled to the stand-up unit as described herein. Further, it is also understood that the coupling structure or insert (such as structure 62) need not be a rectangular structure or slidable. Instead, the coupling structure can be any such structure, including a wheel (or two or more wheels) or any other member that can be coupled to the elongate coupling member (such as track 64) such that the coupling structure can move along the length of the elongate coupling member. In addition, it is also understood that the elongate coupling structure (such as the track 64) need not be limited to the track disclosed in further detail below. Instead, the elongate coupling structure can be any such elongate structure, including a structure that can receive or couple with any type of coupling structure (including a wheel or the like) such that the coupling structure can move along the length of the elongate coupling member.
Returning to
Further, the stand-up unit 40 has a backrest 68 extending from the parallelogram 46 as shown in
In use, the stand-up unit 40 moves between the sitting configuration (as best shown in
In an alternative embodiment as depicted in
According to a further alternative, the slide track 64 can be coupled directly to the lever 50, thereby allowing for the lever 50 to tilt in relation to the rest of the parallelogram 46 and providing the desired hip flex (rather than including a separate seat carrier).
In certain embodiments, the seat carrier 56 can be a rigid component made of metal or any other rigid material. Alternatively, the seat carrier 56 can be made of a soft, pliable, and/or flexible material such as a fabric or any other known material having soft, pliable, and/or flexible characteristics.
It is understood that this “hip flex” feature can be incorporated into most known stand-up units.
Although the present invention has been described with reference to preferred embodiments, persons skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.
This application claims the benefit under 35 U.S.C. § 119(e) to U.S. Provisional Application 62/566,990, filed Oct. 2, 2018 and entitled “Stand-Up Unit with Hip Flex for Wheelchairs and Other Devices,” which is hereby incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62566990 | Oct 2017 | US |