The present application contains subject matter related to Japanese Patent Application No. 2020-044575 filed in the Japan Patent Office on Mar. 13, 2020, Japanese Patent Application No. 2020-046804 filed in the Japan Patent Office on Mar. 17, 2020, and Japanese Patent Application No. 2020-077608 filed in the Japan Patent Office on Apr. 24, 2020, the entire contents of which are incorporated herein by reference.
Embodiments of the present disclosure relate to an evaluation method for a vapor deposition chamber of a manufacturing apparatus for an organic device, a standard mask apparatus and a standard substrate for use in the evaluation method, a method of manufacturing the standard mask apparatus, a manufacturing apparatus for an organic device, including the vapor deposition chamber evaluated in the evaluation method, an organic device including a vapor deposition layer formed in the vapor deposition chamber evaluated in the evaluation method, and a maintenance method for the vapor deposition chamber of the manufacturing apparatus for an organic device.
Organic EL display devices have become a focus of attention in the field of display device for use in portable devices, such as smartphones and tablet PCs. As a manufacturing method and a manufacturing apparatus for organic devices, such as organic EL display devices, a method and an apparatus that form pixels in the desired pattern by using a mask including through-holes arranged in a desired pattern are known. For example, initially, an electrode substrate on which first electrodes are formed in a pattern corresponding to pixels is prepared. Subsequently, the electrode substrate is carried into a manufacturing apparatus, and organic material is deposited on the first electrodes via the through-holes of the mask in a vapor deposition chamber to form organic layers, such as light-emitting layers, on the first electrodes. Subsequently, a second electrode is formed on the organic layers. Subsequently, component elements, that is, the organic layers and the like, on the electrode substrate are sealed by a sealing substrate, and then the electrode substrate is carried out from the manufacturing apparatus. In this way, organic devices, such as organic EL display devices, are manufactured. Japanese Unexamined Patent Application Publication No. 2019-065393 is an example of related art.
When manufactured organic devices do not meet the specifications, an investigation of the cause is needed.
A standard mask apparatus according to an embodiment of the present disclosure includes at least one standard mask including at least one through-hole. The standard mask apparatus may include standard regions each including the at least one through-hole. The standard regions may be arranged in a first direction and in a second direction that intersects with the first direction. A ratio of a dimension of each standard region in the first direction to a dimension of an interval between two of the standard regions in the first direction may be higher than or equal to 0.1. A ratio of a dimension of each standard region in the second direction to a dimension of an interval between two of the standard regions in the second direction may be higher than or equal to 0.1.
According to the present disclosure, a vapor deposition chamber of a manufacturing apparatus for an organic device can be evaluated.
In the specification and drawings, terms that mean substances as bases for components such as “substrate”, “base material”, “plate”, “sheet”, and “film” are not distinguished from one another based on only differences in name unless otherwise explained.
In the specification and drawings, for example, terms such as “parallel” and “perpendicular”, values of length and angle, and the like that specify shape and geometrical conditions and their extents are not limited to strict meanings and are interpreted including a range to such an extent that similar functions can be expected unless otherwise explained.
In the specification and drawings, when a component of a member, a region, or the like is placed “on” or “under”, “on the upper side of” or “on the lower side of”, or “above” or “below” another component of another member or another region, a case where the component is directly in contact with the another component is included unless otherwise explained. In addition, a case where a third component is included between a component and another component, that is, a case where a component is indirectly in contact with another component, is also included. An up and down direction may be inverted for words “on”, “on the upper side of”, and “above”, or “under”, “on the lower side of”, and “below” unless otherwise explained.
In the specification and drawings, unless otherwise explained, like reference signs or similar reference signs denote the same portions or portions having similar functions, and the description thereof may not be repeated. The dimensional ratios in the drawings may be different from actual ratios for the sake of convenience of description or part of components may be omitted from the drawings.
In the specification and drawings, unless otherwise explained, one embodiment of the specification may be combined with another embodiment without any contradiction. Other embodiments may also be combined without any contradiction.
In the specification and drawings, unless otherwise explained, when a plurality of steps is disclosed in relation to a method, such as a manufacturing method, another undisclosed step may be performed between disclosed steps. The order of disclosed steps may be selected without any contradiction.
In the specification and drawings, unless otherwise explained, a numeric range expressed by using “to” includes numeric values placed before and behind “to”. For example, a numeric range defined by the expression “34 percent by mass to 38 percent by mass” is the same as a numeric range defined by the expression “higher than or equal to 34 percent by mass and lower than or equal to 38 percent by mass”.
Hereinafter, one embodiment of the present disclosure will be described in detail with reference to the accompanying drawings. The embodiments described below are examples of the embodiment of the present disclosure, and the present disclosure is not interpreted limitedly to only these embodiments.
A first aspect of the present disclosure is an evaluation method for a vapor deposition chamber of a manufacturing apparatus for an organic device. The evaluation method includes a vapor deposition step of, in the vapor deposition chamber, forming a vapor deposition layer on a standard substrate including a standard mark by depositing a material onto the standard substrate through at least one through-hole of at least one standard mask of a standard mask apparatus, a carry-out step of carrying out the standard substrate including the vapor deposition layer from the manufacturing apparatus, and an observation step of observing a positional relation between the standard mark and the vapor deposition layer on the standard substrate carried out from the manufacturing apparatus.
In a second aspect of the present disclosure, the evaluation method according to the first aspect may further include a determination step of determining whether the positional relation between the standard mark and the vapor deposition layer satisfies a condition.
In a third aspect of the present disclosure, in the evaluation method according to the second aspect, the standard substrate may have divided regions obtained by dividing a region of the standard substrate including the vapor deposition layer into m in a first direction and dividing the region of the standard substrate into n in a second direction that intersects with the first direction. The variables m and n are integers greater than or equal to two. The determination step may determine for each divided region whether a positional relation between the standard mark and the vapor deposition layer satisfies the condition.
In a fourth aspect of the present disclosure, in the evaluation method according to the second or third aspect, the determination step may include a step of determining whether an outer edge of the vapor deposition layer is located inside an outer edge of a first mark of the standard mark.
In a fifth aspect of the present disclosure, in the evaluation method according to the fourth aspect, the determination step may include a step of determining whether the outer edge of the vapor deposition layer is located outside an outer edge of a second mark located inside the first mark.
In a sixth aspect of the present disclosure, in the evaluation method according to the second or third aspect, in the vapor deposition step, the vapor deposition layer may be formed on a light blocking layer that is a component of the standard mark. The observation step may include a step of applying light from, of surfaces of the standard substrate, the surface across from the light blocking layer and the vapor deposition layer toward the standard mark and observing whether excitation light is generated from the vapor deposition layer.
In a seventh aspect of the present disclosure, in the evaluation method according to any one of the first to sixth aspects, the at least one standard mask of the standard mask apparatus may include at least one standard region including the at least one through-hole and a non-penetrated region located around the at least one through-hole and having a dimension greater in plan view than an arrangement period of the at least one through-hole.
In an eighth aspect of the present disclosure, in the evaluation method according to the seventh aspect, the at least one standard mask of the standard mask apparatus may include the two or more standard regions located in a middle region in a width direction of the at least one standard mask and arranged in a longitudinal direction of the at least one standard mask.
In a ninth aspect of the present disclosure, in the evaluation method according to the eighth aspect, the at least one standard mask of the standard mask apparatus may include the two or more through-holes located in an end region adjacent to the middle region in the width direction of the at least one standard mask and arranged in the longitudinal direction and in the width direction of the at least one standard mask.
In a tenth aspect of the present disclosure, in the evaluation method according to the eighth aspect, the at least one standard mask of the standard mask apparatus may include the non-penetrated region located in an end region adjacent to the middle region in the width direction of the at least one standard mask.
In an eleventh aspect of the present disclosure, in the evaluation method according to any one of the first to tenth aspects, the standard mask apparatus may include standard regions each including the at least one through-hole and arranged in a first direction and in a second direction that intersects with the first direction. Each standard region may be located in a device space. The device space is a space that overlaps the organic device to be manufactured in the vapor deposition chamber.
In a twelfth aspect of the present disclosure, in the evaluation method according to any one of the first to eleventh aspects, the standard mask apparatus may include standard regions each including the at least one through-hole and arranged in a first direction and in a second direction that intersects with the first direction. A ratio of a dimension of each standard region in the first direction to a dimension of an interval between two of the standard regions in the first direction may be higher than or equal to 0.1. A ratio of a dimension of each standard region in the second direction to a dimension of an interval between two of the standard regions in the second direction may be higher than or equal to 0.1.
In a thirteenth aspect of the present disclosure, in the evaluation method according to any one of the first to twelfth aspects, the standard mask apparatus may include a frame including a pair of first sides extending in a first direction and a pair of second sides extending in a second direction that intersects with the first direction, and the two or more standard masks fixed to the pair of second sides and arranged in the second direction.
In a fourteenth aspect of the present disclosure, in the evaluation method according to any one of the first to thirteenth aspects, in the carry-out step, the standard substrate may be carried out from the manufacturing apparatus in a state where elements on the standard substrate, including the vapor deposition layer, is not sealed.
A fifteenth aspect of the present disclosure is a standard mask apparatus to be used in the evaluation method according to the first aspect.
In a sixteenth aspect of the present disclosure, the standard mask apparatus according to the fifteenth aspect may include a standard mask including a standard region, the standard region including at least one through-hole and a non-penetrated region located around the at least one through-hole and having a dimension greater in plan view than an arrangement period of the at least one through-hole.
A seventeenth aspect of the present disclosure is a standard mask apparatus for evaluating a vapor deposition chamber of a manufacturing apparatus for an organic device. The standard mask apparatus includes at least one standard mask including at least one through-hole. The standard mask apparatus includes standard regions each including the at least one through-hole and arranged in a first direction and in a second direction that intersects with the first direction. A ratio of a dimension of each standard region in the first direction to a dimension of an interval between two of the standard regions in the first direction is higher than or equal to 0.1. A ratio of a dimension of each standard region in the second direction to a dimension of an interval between two of the standard regions in the second direction is higher than or equal to 0.1.
In an eighteenth aspect of the present disclosure, in the standard mask apparatus according to the seventeenth aspect, each standard region may be located in a device space. The device space is a space that overlaps the organic device to be manufactured in the vapor deposition chamber.
In a nineteenth aspect of the present disclosure, in the standard mask apparatus according to the seventeenth or eighteenth aspect, the standard mask apparatus may include a frame including a pair of first sides extending in the first direction, a pair of second sides extending in the second direction, and an opening, and the two or more standard masks fixed to the pair of second sides and arranged in the second direction.
In a twentieth aspect of the present disclosure, in the standard mask apparatus according to the nineteenth aspect, each standard region may be located in a middle region. The middle region may be a region in a middle when the at least one standard mask is trisected in the second direction.
In a twenty-first aspect of the present disclosure, in the standard mask apparatus according to the twentieth aspect, each standard region may include a non-penetrated region located around the at least one through-hole in the middle region and having a dimension greater in plan view than an arrangement period of the at least one through-hole.
In a twenty-second aspect of the present disclosure, in the standard mask apparatus according to any one of the nineteenth to twenty-first aspects, the standard mask apparatus may include at least one bar located in the opening and connected to the frame. The frame may include a frame first surface to which the at least one standard mask is fixed, a frame second surface located across from the frame first surface, an inner surface located between the frame first surface and the frame second surface and to which the at least one bar is connected, and an outer surface located across from the inner surface. The at least one bar may include a bar first surface located on the frame first surface side, a bar second surface located across from the bar first surface, and bar side surfaces located between the bar first surface and the bar second surface. The frame first surface and the bar first surface may be continuous.
In a twenty-third aspect of the present disclosure, in the standard mask apparatus according to the twenty-second aspect, the frame first surface and the bar first surface may be located in a same plane.
In a twenty-fourth aspect of the present disclosure, in the standard mask apparatus according to the twenty-second or twenty-third aspect, in plan view, the inner surface and each of the bar side surfaces may be connected via a first connection portion having a first radius of curvature.
In a twenty-fifth aspect of the present disclosure, in the standard mask apparatus according to any one of the twenty-second to twenty-fourth aspects, the inner surface and the bar second surface may be connected via a second connection portion having a second radius of curvature.
In a twenty-sixth aspect of the present disclosure, in the standard mask apparatus according to any one of the twenty-second to twenty-fifth aspects, the at least one bar may include a first bar connected to the first sides.
In a twenty-seventh aspect of the present disclosure, in the standard mask apparatus according to any one of the twenty-second to twenty-fifth aspects, the at least one bar may include a second bar connected to the second sides.
In a twenty-eighth aspect of the present disclosure, in the standard mask apparatus according to any one of the twenty-second to twenty-fifth aspects, the at least one bar may include a first bar connected to the first sides and a second bar connected to the second sides. In plan view, each of the bar side surfaces of the first bar and an associated one of the bar side surfaces of the second bar may be connected via a third connection portion having a third radius of curvature.
In a twenty-ninth aspect of the present disclosure, in the standard mask apparatus according to any one of the twenty-second to twenty-eighth aspects, a thickness of the at least one bar may be less than a thickness of the frame.
In a thirtieth aspect of the present disclosure, in the standard mask apparatus according to the twenty-ninth aspect, a ratio of the thickness of the at least one bar to the thickness of the frame may be lower than or equal to 0.85.
A thirty-first aspect of the present disclosure is a method of manufacturing a standard mask apparatus for evaluating a vapor deposition chamber of a manufacturing apparatus for an organic device. The method includes a fixing step of fixing at least one standard mask to a frame. The frame includes a pair of first sides extending in a first direction, a pair of second sides extending in a second direction that intersects with the first direction, and an opening. The at least one standard mask includes a pair of end portions in the first direction and at least one through-hole located between the pair of end portions. The fixing step includes a placement step of placing the at least one standard mask such that the pair of end portions overlaps the pair of second sides, a mask alignment step of, after the placement step, while a joint tension is being applied to the at least one standard mask in the first direction and the at least one standard mask is being pressed against the frame, adjusting a position of the at least one standard mask with respect to the frame, and a joining step of, after the mask alignment step, while a joint tension is being applied to the at least one standard mask in the first direction and the at least one standard mask is being pressed against the frame, joining the at least one standard mask with the frame.
In a thirty-second aspect of the present disclosure, in the method according to the thirty-first aspect, the mask alignment step may include a first checking step of, while a joint tension is being applied to the at least one standard mask in the first direction and the at least one standard mask is being pressed against the frame, checking a position of the at least one through-hole with respect to the frame.
In a thirty-third aspect of the present disclosure, in the method according to the thirty-first or thirty-second aspect, the mask alignment step may include a moving step of, while a joint tension is being applied to the at least one standard mask in the first direction and the at least one standard mask is being pressed against the frame, moving the at least one standard mask in any one of directions in a two-dimensional plane defined by the first direction and the second direction.
In a thirty-fourth aspect of the present disclosure, in the method according to any one of the thirty-first to thirty-third aspects, the frame may include a frame first surface to which the at least one standard mask is fixed, a frame second surface located across from the frame first surface, an inner surface located between the frame first surface and the frame second surface and facing the opening, and a frame wall surface located outside the inner surface in plan view and connected to the frame first surface. The frame wall surface may include a first wall surface edge where the frame wall surface and the frame first surface intersect with each other. In the mask alignment step, the pair of end portions may overlap the first wall surface edge. Part of the first wall surface edge that overlaps the pair of end portions may extend in a straight line in the second direction.
In a thirty-fifth aspect of the present disclosure, in the method according to any one of the thirty-first to thirty-fourth aspects, the standard mask apparatus may include at least one bar located in the opening and connected to the frame. The frame may include a frame first surface to which the at least one standard mask is fixed, a frame second surface located across from the frame first surface, an inner surface located between the frame first surface and the frame second surface and to which the at least one bar is connected, and an outer surface located across from the inner surface. The at least one bar may include a bar first surface located on the frame first surface side, a bar second surface located across from the bar first surface, and bar side surfaces located between the bar first surface and the bar second surface. The frame first surface and the bar first surface may be continuous.
In a thirty-sixth aspect of the present disclosure, in the method according to any one of the thirty-first to thirty-fifth aspects, the standard mask apparatus may include the two or more standard masks fixed to the pair of second sides and arranged in the second direction.
In a thirty-seventh aspect of the present disclosure, in the method according to the thirty-sixth aspect, the standard mask apparatus may include standard regions each including the at least one through-hole, and the standard regions may be arranged in a first direction and in a second direction that intersects with the first direction. Each standard region may include a non-penetrated region located around the at least one through-hole in the middle region, and the non-penetrated region may have a dimension greater in plan view than an arrangement period of the at least one through-hole. The middle region may be a region in a middle when the at least one standard mask is trisected in the second direction.
In a thirty-eighth aspect of the present disclosure, in the method according to the thirty-seventh aspect, each standard region may include a non-penetrated region located around the at least one through-hole in the middle region, and the non-penetrated region may have a dimension greater in plan view than an arrangement period of the at least one through-hole.
A thirty-ninth aspect of the present disclosure is a standard substrate to be used in the evaluation method according to the first aspect.
In a fortieth aspect of the present disclosure is a manufacturing apparatus for an organic device. The manufacturing apparatus includes a vapor deposition chamber evaluated in the evaluation method according to the fourth aspect. In the determination step, it is determined that an outer edge of the vapor deposition layer is located inside an outer edge of a first mark of the standard mark.
A forty-first aspect of the present disclosure is an organic device including a vapor deposition layer formed in the vapor deposition chamber of the manufacturing apparatus according to the fortieth aspect.
A forty-second aspect of the present disclosure is a maintenance method for a vapor deposition chamber of a manufacturing apparatus for an organic device. The maintenance method includes an assembling step of, in the vapor deposition chamber, assembling a standard substrate including a standard mark with a standard mask apparatus in accordance with an assembling condition, a vapor deposition step of, in the vapor deposition chamber, forming a vapor deposition layer on the standard substrate including the standard mark by depositing a material onto the standard substrate through at least one through-hole of at least one standard mask of the standard mask apparatus, a carry-out step of carrying out the standard substrate including the vapor deposition layer from the manufacturing apparatus, an observation step of observing a positional relation between the standard mark and the vapor deposition layer on the standard substrate carried out from the manufacturing apparatus, and an adjustment step of adjusting the assembling condition in accordance with the positional relation between the standard mark and the vapor deposition layer.
In a forty-third aspect of the present disclosure, in the maintenance method according to the forty-second aspect, the adjustment step may include a magnet adjustment step of adjusting a magnetic force distribution of a magnet located on, of surfaces of the standard substrate, the surface side across from the standard mask apparatus or a distribution of electrostatic force of an electrostatic chuck.
In the forty-fourth aspect of the present disclosure, in the maintenance method according to the forty-second or forty-third aspect, the adjustment step may include a cooling plate step of adjusting placement of a cooling plate located on, of surfaces of the standard substrate, the surface side across from the standard mask apparatus.
Hereinafter, one embodiment of the present disclosure will be described in detail with reference to the accompanying drawings. The embodiments described below are examples of the embodiment of the present disclosure, and the present disclosure is not interpreted limitedly to only these embodiments.
As shown in
As shown in
The substrate 110 may be an electrically insulative plate-shaped member. The substrate 110 preferably has transparency for transmitting light. The substrate 110 contains, for example, glass.
The first electrode layers 120 contain an electrically conductive material. For example, the first electrode layers 120 contain a metal, an electrically conductive metal oxide, another inorganic material, or the like. The first electrode layers 120 may contain a transparent and electrically conductive metal oxide, such as indium tin oxide.
The first organic layers 131, the second organic layers 132, and the third organic layers 133 are layers containing an organic semiconductor material. When the organic device 100 is an organic EL display device, the first organic layers 131, the second organic layers 132, and the third organic layers 133 each may be a light-emitting layer. For example, the first organic layers 131, the second organic layers 132, and the third organic layers 133 may be respectively red light-emitting layers, green light-emitting layers, and blue light-emitting layers. As shown in
Each of a set of the first organic layers 131, a set of the second organic layers 132, and a set of the third organic layers 133 may be formed by depositing a vapor deposition material onto the electrode substrate 105 through the through-holes of an associated mask in a vapor deposition chamber in which the mask is set. In the following description, layers formed on the electrode substrate 105 through the through-holes of the masks, that is, the first organic layers 131, the second organic layers 132, the third organic layers 133, and the like are also referred to as first vapor deposition layers and indicated by the reference sign 130. One first vapor deposition layer 130 may make up the unit structure of one pixel or the like of an organic EL display device.
The second electrode layer 141 may contain an electrically conductive material, such as a metal. Examples of the material of the second electrode layer 141 may include platinum, gold, silver, copper, iron, tin, chromium, aluminum, indium, lithium, sodium, potassium, calcium, magnesium, carbon, and alloys of these metals.
As shown in
Although not shown in the drawing, the second electrode layer 141 may be formed such that there is a gap between the second electrode layers 141 located on adjacent two of the organic layers 131, 132, 133. The thus configured second electrode layers 141, as well as the first organic layers 131, the second organic layer 132, and the third organic layers 133, can be formed by depositing a vapor deposition material onto the electrode substrate 105 through the through-holes of a mask. In this case, the second electrode layers 141 may be regarded as a type of first vapor deposition layer 130.
As shown in
Although not shown in the drawing, the organic device 100 may include a hole injection layer or a hole transport layer located between each first electrode layer 120 and an associated one of the organic layers 131, 132, 133. The organic device 100 may include an electron transport layer or an electron injection layer located between each of the organic layers 131, 132, 133 and the second electrode layer 141. The hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer each may be the second vapor deposition layer 140 formed by a vapor deposition method so as to lie astride a plurality of unit structures of the organic device 100. Alternatively, the hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer, as well as the organic layers 131, 132, 133, may be the first vapor deposition layer 130.
In a method of manufacturing the organic device 100, an organic device group 102 as shown in
The first direction D1 may be a direction in which masks 50, 50A extend as will be described later. The second direction D2 may be a direction in which two or more masks 50, 50A are arranged as will be described later.
For example, the dimension A1 of each organic device 100 in the first direction D1 may be greater than or equal to 20 mm, may be greater than or equal to 30 mm, or may be greater than or equal to 50 mm. For example, the dimension A1 may be less than or equal to 100 mm, may be less than or equal to 200 mm, or may be less than or equal to 300 mm. The range of the dimension A1 may be determined from a first group consisting of 20 mm, 30 mm, and 50 mm and/or a second group consisting of 100 mm, 200 mm, and 300 mm. The range of the dimension A1 may be determined by a combination of any one of the values included in the first group and any one of the values included in the second group. The range of the dimension A1 may be determined by a combination of any two of the values included in the first group. The range of the dimension A1 may be determined by a combination of any two of the values included in the second group. For example, the range of the dimension A1 may be greater than or equal to 20 mm and less than or equal to 300 mm, may be greater than or equal to 20 mm and less than or equal to 200 mm, may be greater than or equal to 20 mm and less than or equal to 100 mm, may be greater than or equal to 20 mm and less than or equal to 50 mm, may be greater than or equal to 20 mm and less than or equal to 30 mm, may be greater than or equal to 30 mm and less than or equal to 300 mm, may be greater than or equal to 30 mm and less than or equal to 200 mm, may be greater than or equal to 30 mm and less than or equal to 100 mm, may be greater than or equal to 30 mm and less than or equal to 50 mm, may be greater than or equal to 50 mm and less than or equal to 300 mm, may be greater than or equal to 50 mm and less than or equal to 200 mm, may be greater than or equal to 50 mm and less than or equal to 100 mm, may be greater than or equal to 100 mm and less than or equal to 300 mm, may be greater than or equal to 100 mm and less than or equal to 200 mm, or may be greater than or equal to 200 mm and less than or equal to 300 mm.
For example, the dimension A2 of each organic device 100 in the second direction D2 may be greater than or equal to 20 mm, may be greater than or equal to 30 mm, or may be greater than or equal to 50 mm. For example, the dimension A2 may be less than or equal to 100 mm, may be less than or equal to 200 mm, or may be less than or equal to 300 mm. The range of the dimension A2 may be determined from a first group consisting of 20 mm, 30 mm, and 50 mm and/or a second group consisting of 100 mm, 200 mm, and 300 mm. The range of the dimension A2 may be determined by a combination of any one of the values included in the first group and any one of the values included in the second group. The range of the dimension A2 may be determined by a combination of any two of the values included in the first group. The range of the dimension A2 may be determined by a combination of any two of the values included in the second group. For example, the range of the dimension A2 may be greater than or equal to 20 mm and less than or equal to 300 mm, may be greater than or equal to 20 mm and less than or equal to 200 mm, may be greater than or equal to 20 mm and less than or equal to 100 mm, may be greater than or equal to 20 mm and less than or equal to 50 mm, may be greater than or equal to 20 mm and less than or equal to 30 mm, may be greater than or equal to 30 mm and less than or equal to 300 mm, may be greater than or equal to 30 mm and less than or equal to 200 mm, may be greater than or equal to 30 mm and less than or equal to 100 mm, may be greater than or equal to 30 mm and less than or equal to 50 mm, may be greater than or equal to 50 mm and less than or equal to 300 mm, may be greater than or equal to 50 mm and less than or equal to 200 mm, may be greater than or equal to 50 mm and less than or equal to 100 mm, may be greater than or equal to 100 mm and less than or equal to 300 mm, may be greater than or equal to 100 mm and less than or equal to 200 mm, or may be greater than or equal to 200 mm and less than or equal to 300 mm.
Next, a manufacturing apparatus 1 for manufacturing the organic device 100 will be described.
The manufacturing apparatus 1 may include vapor deposition chambers each used to form the first vapor deposition layers 130 by depositing a material onto the electrode substrate 105 through the through-holes of a mask in a vacuum atmosphere. For example, as shown in
The manufacturing apparatus 1 may include vapor deposition chambers each used to form the second vapor deposition layers 140 by depositing a material onto the electrode substrate 105 in a vacuum atmosphere. For example, as shown in
As shown in
Inside the manufacturing apparatus 1, the substrate 110 may be moved between chambers, that is, vapor deposition chambers and other chambers, by a substrate transport apparatus, such as a robot arm.
Next, the first vapor deposition chamber 10 will be described.
As shown in
As shown in
As shown in
As shown in
As shown in
By moving at least any one of the substrate holder 2 and the mask holder 3, the position of the mask 50 of the mask apparatus 15 with respect to the substrate 110 can be adjusted.
As shown in
As shown in
The frame 41 may have a rectangular outline including a pair of first regions 411 extending in the first direction D1 and a pair of second regions 412 extending in the second direction D2. The first regions 411 are also referred to as first sides, and the second regions 412 are also referred to as second sides. As shown in Hg. 5, the second sides 412 to which tabs 51 of each mask 50 are fixed may be longer than the first sides 411.
The mask apparatus 15 may include a member fixed to the frame 41 and partially overlapping each mask 50 in the thickness direction of the mask 50. For example, as shown in
As shown in
As shown in
When a display device, such as an organic EL display device, is manufactured by using the masks 50, one effective region 53 corresponds to the display region of one organic EL display device. For this reason, with the mask apparatus 15 shown in
The effective region 53 may have a rectangular outline in plan view. The effective region 53 may have an outline of various shapes according to the shape of the display region of an organic EL display device. For example, the effective region 53 may have a circular outline.
The first recess 561 and the second recess 562 are connected via a circumferential connection portion 563. The connection portion 563 may define such a pass-through portion 564 in which the opening area of the through-hole 56 is minimum in plan view of the mask 50.
For example, the dimension r of the pass-through portion 564 may be greater than or equal to 10 μm, may be greater than or equal to 15 μm, may be greater than or equal to 20 μm, or may be greater than or equal to 25 μm. For example, the dimension r of the pass-through portion 564 may be less than or equal to 40 μm, may be less than or equal to 45 μm, may be less than or equal to 50 μm, or may be less than or equal to 55 μm. The range of the dimension r of the pass-through portion 564 may be determined from a first group consisting of 10 μm, 15 μm, 20 μm, and 25 μm and/or a second group consisting of 40 μm, 45 μm, 50 μm, and 55 μm. The range of the dimension r of the pass-through portion 564 may be determined by a combination of any one of the values included in the first group and any one of the values included in the second group. The range of the dimension r of the pass-through portion 564 may be determined by a combination of any two of the values included in the first group. The range of the dimension r of the pass-through portion 564 may be determined by a combination of any two of the values included in the second group. For example, the range of the dimension r may be greater than or equal to 10 μm and less than or equal to 55 μm, may be greater than or equal to 10 μm and less than or equal to 50 μm, may be greater than or equal to 10 μm and less than or equal to 45 μm, may be greater than or equal to 10 μm and less than or equal to 40 μm, may be greater than or equal to 10 μm and less than or equal to 25 μm, may be greater than or equal to 10 μm and less than or equal to 20 μm, may be greater than or equal to 10 μm and less than or equal to 15 μm, may be greater than or equal to 15 μm and less than or equal to 55 μm, may be greater than or equal to 15 μm and less than or equal to 50 μm, may be greater than or equal to 15 μm and less than or equal to 45 μm, may be greater than or equal to 15 μm and less than or equal to 40 μm, may be greater than or equal to 15 μm and less than or equal to 25 μm, may be greater than or equal to 15 μm and less than or equal to 20 μm, may be greater than or equal to 20 μm and less than or equal to 55 μm, may be greater than or equal to 20 μm and less than or equal to 50 μm, may be greater than or equal to 20 μm and less than or equal to 45 μm, may be greater than or equal to 20 μm and less than or equal to 40 μm, may be greater than or equal to 20 μm and less than or equal to 25 μm, may be greater than or equal to 25 μm and less than or equal to 55 μm, may be greater than or equal to 25 μm and less than or equal to 50 μm, may be greater than or equal to 25 μm and less than or equal to 45 μm, may be greater than or equal to 25 μm and less than or equal to 40 μm, may be greater than or equal to 40 μm and less than or equal to 55 μm, may be greater than or equal to 40 μm and less than or equal to 50 μm, may be greater than or equal to 40 μm and less than or equal to 45 μm, may be greater than or equal to 45 μm and less than or equal to 55 μm, may be greater than or equal to 45 μm and less than or equal to 50 μm, or may be greater than or equal to 50 μm and less than or equal to 55 μm.
The dimension r of the pass-through portion 564 can be defined by light that transmits through the through-hole 56. For example, parallel rays of light are caused to enter one of the first surface 551 and second surface 552 of the mask 50 along the direction normal to the mask 50, transmit through the through-hole 56, and exit from the other one of the first surface 551 and the second surface 552. The dimension of a region occupied by the exited light in the surface direction of the mask 50 is adopted as the dimension r of the pass-through portion 564.
Next, the material of the mask 50 and frame 41 of the mask apparatus 15 will be described. An iron alloy containing nickel may be used as the major material of the mask 50 and frame 41. An iron alloy may further contain cobalt in addition to nickel. For example, an iron alloy having a total content of nickel and cobalt of higher than or equal to 28 percent by mass and lower than or equal to 54 percent by mass and having a cobalt content of higher than or equal to zero percent by mass and lower than or equal to six percent by mass can be used as the material of the metal plate 55 of the mask 50. Thus, a difference between the coefficient of thermal expansion of the mask 50 and frame 41 and the coefficient of thermal expansion of the substrate 110 containing glass is reduced. Therefore, a decrease in the dimensional accuracy and positional accuracy of the first vapor deposition layers 130, to be formed on the substrate 110, due to thermal expansion of the mask 50, frame 41, substrate 110, and the like is suppressed.
The total content of nickel and cobalt in the metal plate 55 may be higher than or equal to 28 percent by mass and lower than or equal to 38 percent by mass. In this case, specific examples of the iron alloy containing nickel or both nickel and cobalt may include an invar material, a super invar material, and an ultra invar material. The invar material is an iron alloy containing nickel of higher than or equal to 34 percent by mass and lower than or equal to 38 percent by mass, iron of the remaining part, and inevitable impurities. The super invar material is an iron alloy containing nickel of higher than or equal to 30 percent by mass and lower than or equal to 34 percent by mass, cobalt, iron of the remaining part, and inevitable impurities. The ultra invar material is an iron alloy containing nickel of higher than or equal to 28 percent by mass and lower than or equal to 34 percent by mass, cobalt of higher than or equal to two percent by mass and lower than or equal to seven percent by mass, manganese of higher than or equal to 0.1 percent by mass and lower than or equal to 1.0 percent by mass, silicon of lower than or equal to 0.10 percent by mass, carbon of lower than or equal to 0.01 percent by mass, iron of the remaining part, and inevitable impurities.
The total content of nickel and cobalt in the metal plate 55 may be higher than or equal to 38 percent by mass and lower than or equal to 54 percent by mass. In this case, specific examples of the iron alloy containing nickel or both nickel and cobalt may include a low-thermal expansion Fe—Ni plating alloy. The low-thermal expansion Fe—Ni plating alloy is an iron alloy containing nickel of higher than or equal to 38 percent by mass and lower than or equal to 54 percent by mass, iron of the remaining part, and inevitable impurities.
In vapor deposition process, when the temperatures of the mask 50, frame 41, and substrate 110 do not reach high temperatures, the coefficient of thermal expansion of the mask 50 and frame 41 does not need to be set to a value equivalent to the coefficient of thermal expansion of the substrate 110. In this case, a material other than the above-described iron alloys may be used as the material of the mask 50. For example, iron alloys other than the above-described iron alloys containing nickel, such as an iron alloy containing chromium, may be used. For example, an iron alloy referred to as a so-called stainless steel may be used as the iron alloy containing chromium. An alloy other than an iron alloy, such as a nickel alloy and a nickel-cobalt alloy, may be used.
For example, the thickness T of the metal plate 55 of the mask 50 may be greater than or equal to 8 μm, may be greater than or equal to 10 μm, may be greater than or equal to 13 μm, or may be greater than or equal to 15 μm. For example, the thickness T of the metal plate 55 may be less than or equal to 20 μm, may be less than or equal to 30 μm, may be less than or equal to 40 μm, or may be less than or equal to 50 μm. The range of the thickness T of the metal plate 55 may be determined from a first group consisting of 8 μm, 10 μm, 13 μm, and 15 μm and/or a second group consisting of 20 μm, 30 μm, 40 μm, and 50 μm. The range of the thickness T of the metal plate 55 may be determined by a combination of any one of the values included in the first group and any one of the values included in the second group. The range of the thickness T of the metal plate 55 may be determined by a combination of any two of the values included in the first group. The range of the thickness T of the metal plate 55 may be determined by a combination of any two of the values included in the second group. For example, the range of the thickness T may be greater than or equal to 8 μm and less than or equal to 50 μm, may be greater than or equal to 8 μm and less than or equal to 40 μm, may be greater than or equal to 8 μm and less than or equal to 30 μm, may be greater than or equal to 8 μm and less than or equal to 20 μm, may be greater than or equal to 8 μm and less than or equal to 15 μm, may be greater than or equal to 8 μm and less than or equal to 13 μm, may be greater than or equal to 8 μm and less than or equal to 10 μm, may be greater than or equal to 10 μm and less than or equal to 50 μm, may be greater than or equal to 10 μm and less than or equal to 40 μm, may be greater than or equal to 10 μm and less than or equal to 30 μm, may be greater than or equal to 10 μm and less than or equal to 20 μm, may be greater than or equal to 10 μm and less than or equal to 15 μm, may be greater than or equal to 10 μm and less than or equal to 13 μm, may be greater than or equal to 13 μm and less than or equal to 50 μm, may be greater than or equal to 13 μm and less than or equal to 40 μm, may be greater than or equal to 13 μm and less than or equal to 30 μm, may be greater than or equal to 13 μm and less than or equal to 20 μm, may be greater than or equal to 13 μm and less than or equal to 15 μm, may be greater than or equal to 15 μm and less than or equal to 50 μm, may be greater than or equal to 15 μm and less than or equal to 40 μm, may be greater than or equal to 15 μm and less than or equal to 30 μm, may be greater than or equal to 15 μm and less than or equal to 20 μm, may be greater than or equal to 20 μm and less than or equal to 50 μm, may be greater than or equal to 20 μm and less than or equal to 40 μm, may be greater than or equal to 20 μm and less than or equal to 30 μm, may be greater than or equal to 30 μm and less than or equal to 50 μm, may be greater than or equal to 30 μm and less than or equal to 40 μm, or may be greater than or equal to 40 μm and less than or equal to 50 μm.
When the thickness T of the metal plate 55 is less than or equal to 50 μm, the ratio of the vapor deposition material 7 to be caught by the wall surfaces of the through-holes 56 before passing through the through-holes 56 in the vapor deposition material 7 is reduced. Thus, the efficiency of use of the vapor deposition material 7 is increased. When the thickness T of the metal plate 55 is greater than or equal to 8 μm, the strength of the mask 50 is ensured, so occurrence of damage or deformation of the mask 50 is suppressed.
A contact-type measuring method is adopted as a method of measuring the thickness of the metal plate 55. A length gauge HEIDENHAIN-METRO “MT1271” made by HEIDENHAIN, including a ball-push guide-type plunger, is used as the contact-type measuring method.
Next, an example of a method of manufacturing the organic device 100 using the manufacturing apparatus 1 will be described.
Initially, the substrate 110 on which the first electrode layers 120 and the electrically insulating layer 160 are formed is carried into the manufacturing apparatus 1 via the substrate carrying-in chamber 31. Subsequently, the substrate 110 may be subjected to pretreatment, such as dry washing, in the substrate pretreatment chamber 32. Dry washing is, for example, ultraviolet irradiation treatment, plasma treatment, or the like. Hole injection layers may be respectively formed on the first electrode layers 120 in the twenty-first vapor deposition chamber 21. Hole transport layers may be respectively formed on the hole injection layers in the twenty-second vapor deposition chamber 22.
Subsequently, a vapor deposition step of forming the first organic layers 131 is performed in the eleventh vapor deposition chamber 11. Initially, the mask apparatus 15 including the mask 50 associated with the first organic layers 131 is prepared. Subsequently, the mask apparatus 15 is set above the vapor deposition source 6 by using the mask holder 3.
The substrate 110 is faced to the mask 50 of the mask apparatus 15 by using the substrate holder 2. The substrate holder 2 is moved in the surface direction of the substrate 110 to adjust the position of the substrate 110 with respect to the mask 50. For example, the substrate 110 is moved in the surface direction such that alignment marks of the mask 50 or the frame 41 and alignment marks of the substrate 110 overlap each other. In adjusting the position of the substrate 110 in the surface direction, the first surface 111 of the substrate 110 does not need to be in contact with the first surface 551 of the mask 50. In this case, after adjusting the position of the substrate 110 in the surface direction, the substrate holder 2 is moved in the thickness direction of the substrate 110 to bring the first surface 111 of the substrate 110 into contact with the first surface 551 of the mask 50.
Subsequently, a step of placing the cooling plate 4 on the second surface 112 side of the substrate 110 by moving the cooling plate 4 toward the substrate 110 may be performed. A step of placing the magnet 5 on the second surface 112 side of the substrate 110 may be performed. Thus, the mask 50 is attracted toward the substrate 110 by magnetic force.
Subsequently, the vapor deposition material 7 is vaporized to fly toward the substrate 110. Part of the vapor deposition material 7, passing through the through-holes 56 of the mask 50, is deposited on the substrate 110 in a pattern in association with the through-holes 56. Thus, the first organic layers 131 are formed on the substrate 110.
Subsequently, a vapor deposition step of forming the second organic layers 132 may be performed in the twelfth vapor deposition chamber 12. In addition, a vapor deposition step of forming the third organic layers 133 may be performed in the thirteenth vapor deposition chamber 13. The vapor deposition step for the second organic layers 132 and the vapor deposition step for the third organic layers 133 are similar to the vapor deposition step for the first organic layers 131, so the description is omitted.
Subsequently, electron transport layers may be respectively formed on the organic layers 131, 132, 133 in the twenty-third vapor deposition chamber 23. Electron injection layers may be respectively formed on the electron transport layers in the twenty-fourth vapor deposition chamber 24.
Subsequently, the second electrode layer 141 is formed in the twenty-fifth vapor deposition chamber 25. Then, a sealing step of assembling the sealing substrate 150 with the substrate 110 in the sealing chamber 34 is performed. After that, the substrate 110 is carried out from the manufacturing apparatus 1 to the outside via the substrate carrying-out chamber 35. In this way, the organic device 100 is manufactured.
After that, an inspection step for the organic device 100 may be performed. For example, whether layers, that is, the organic layers 131, 132, 133 and the like, are appropriately formed is inspected by applying a voltage between each first electrode layer 120 and the second electrode layer 141 of the organic device 100. When, for example, the organic layers 131, 132, 133 are light-emitting layers, it is determined whether the organic device 100 is a conforming product in accordance with whether each of the pixels including the organic layers 131, 132, 133 appropriately emits light.
When the organic device 100 does not meet the desired specifications, an investigation of the cause is needed. Factors that can influence whether the organic device 100 is good in the manufacturing step for the organic device 100 are, for example, conceivably as follows.
(1) The accuracy of the positions of the first electrode layers 120 on the substrate 110
(2) The accuracy of the positions of the through-holes 56 of the mask 50 of the mask apparatus 15
(3) The accuracy of the relative position between the mask apparatus 15 and the electrode substrate 105
(4) The thermal expansion of the substrate 110 in the vapor deposition steps
(5) The thermal expansion of the mask apparatus 15 in the vapor deposition step
(6) A deformation, such as warpage, occurring in the substrate 110
(7) A deformation, such as warpage, occurring in the mask apparatus 15
(1), (4), and (6) are factors based on the characteristics of the electrode substrate 105 including the substrate 110 and the first electrode layers 120. (2), (5), and (7) are factors based on the characteristics of the mask apparatus 15. The relative position between the mask apparatus 15 and the electrode substrate 105 in (3) is adjusted by, for example, moving the substrate holder 2 in the first vapor deposition chamber 10 of the manufacturing apparatus 1. Therefore, (3) is regarded as a factor based on the characteristics of the first vapor deposition chamber 10.
In the present embodiment, it is proposed to perform the vapor deposition step in the first vapor deposition chamber 10 of the manufacturing apparatus 1 by using a standard substrate 60 and a standard mask apparatus 15A and to inspect whether the first vapor deposition layers 130 are appropriately formed. Specifically, as shown in
The standard substrate 60 includes the substrate 110 and a pattern for checking the position and dimension of each first vapor deposition layer 130. The standard mask apparatus 15A includes the frame 41 and the standard mask 50A held by the frame 41. The standard substrate 60 and the standard mask apparatus 15A that are guaranteed to appropriately function in the vapor deposition step are used. For example, the standard substrate 60 and the standard mask apparatus 15A having a track record of forming appropriate first vapor deposition layers 130 in another first vapor deposition chamber 10 different from the first vapor deposition chamber 10 to be checked are used. Thus, the possibility of occurrence of a failed position or dimension of each first vapor deposition layer 130 due to the standard substrate 60 and the standard mask apparatus 15A is reduced. For example, a situation in which (1), (4), and (6), and (2), (5), and (7) in the above-described factors (1) to (7) are ignored is provided. Therefore, by performing the vapor deposition step using the standard substrate 60 and the standard mask apparatus 15A, the characteristics of each first vapor deposition chamber 10 included in the manufacturing apparatus 1 can be individually evaluated.
Next, the standard substrate 60 will be specifically described.
The standard substrate 60 may include the substrate 110 and standard mark regions 62 located on the first surface 111 of the substrate 110. In
As shown in
The ratio of the area of the presence range R1 of the standard mark regions 62 to the area of the substrate 110 may be, for example, higher than or equal to 0.50, may be higher than or equal to 0.70, may be higher than or equal to 0.75, or may be higher than or equal to 0.80. In addition, the ratio of the area of the presence range R1 of the standard mark regions 62 to the area of the substrate 110 may be, for example, lower than or equal to 0.85, may be lower than or equal to 0.90, may be lower than or equal to 0.95, or may be lower than or equal to 0.98. The ratio of the area of the range R1 in which the standard mark regions 62 are present to the area of the substrate 110 may be determined from a first group consisting of 0.50, 0.70, 0.75, and 0.80 and/or a second group consisting of 0.85, 0.90, 0.95, and 0.98. The ratio of the area of the presence range R1 of the standard mark regions 62 to the area of the substrate 110 may be determined by a combination of any one of the values included in the first group and any one of the values included in the second group. The ratio of the area of the presence range R1 of the standard mark regions 62 to the area of the substrate 110 may be determined by a combination of any two of the values included in the first group. The ratio of the area of the presence range R1 of the standard mark regions 62 to the area of the substrate 110 may be determined by a combination of any two of the values included in the second group. For example, the range of the ratio may be higher than or equal to 0.50 and lower than or equal to 0.98, may be higher than or equal to 0.50 and lower than or equal to 0.95, may be higher than or equal to 0.50 and lower than or equal to 0.90, may be higher than or equal to 0.50 and lower than or equal to 0.85, may be higher than or equal to 0.50 and lower than or equal to 0.80, may be higher than or equal to 0.50 and lower than or equal to 0.75, may be higher than or equal to 0.50 and lower than or equal to 0.70, may be higher than or equal to 0.70 and lower than or equal to 0.98, may be higher than or equal to 0.70 and lower than or equal to 0.95, may be higher than or equal to 0.70 and lower than or equal to 0.90, may be higher than or equal to 0.70 and lower than or equal to 0.85, may be higher than or equal to 0.70 and lower than or equal to 0.80, may be higher than or equal to 0.70 and lower than or equal to 0.75, may be higher than or equal to 0.75 and lower than or equal to 0.98, may be higher than or equal to 0.75 and lower than or equal to 0.95, may be higher than or equal to 0.75 and lower than or equal to 0.90, may be higher than or equal to 0.75 and lower than or equal to 0.85, may be higher than or equal to 0.75 and lower than or equal to 0.80, may be higher than or equal to 0.80 and lower than or equal to 0.98, may be higher than or equal to 0.80 and lower than or equal to 0.95, may be higher than or equal to 0.80 and lower than or equal to 0.90, may be higher than or equal to 0.80 and lower than or equal to 0.85, may be higher than or equal to 0.85 and lower than or equal to 0.98, may be higher than or equal to 0.85 and lower than or equal to 0.95, may be higher than or equal to 0.85 and lower than or equal to 0.90, may be higher than or equal to 0.90 and lower than or equal to 0.98, may be higher than or equal to 0.90 and lower than or equal to 0.95, or may be higher than or equal to 0.95 and lower than or equal to 0.98.
As shown in
As shown in
In
For example, the first interval V1 may be greater than or equal to 10 mm, may be greater than or equal to 15 mm, or may be greater than or equal to 25 mm. For example, the first interval V1 may be less than or equal to 50 mm, may be less than or equal to 100 mm, or may be less than or equal to 150 mm. The range of the first interval V1 may be determined from a first group consisting of 10 mm, 15 mm, and 25 mm and/or a second group consisting of 50 mm, 100 mm, and 150 mm. The range of the first interval V1 may be determined by a combination of any one of the values included in the first group and any one of the values included in the second group. The range of the first interval V1 may be determined by a combination of any two of the values included in the first group. The range of the first interval V1 may be determined by a combination of any two of the values included in the second group. For example, the range of the first interval V1 may be greater than or equal to 10 mm and less than or equal to 150 mm, may be greater than or equal to 10 mm and less than or equal to 100 mm, may be greater than or equal to 10 mm and less than or equal to 50 mm, may be greater than or equal to 10 mm and less than or equal to 25 mm, may be greater than or equal to 10 mm and less than or equal to 15 mm, may be greater than or equal to 15 mm and less than or equal to 150 mm, may be greater than or equal to 15 mm and less than or equal to 100 mm, may be greater than or equal to 15 mm and less than or equal to 50 mm, may be greater than or equal to 15 mm and less than or equal to 25 mm, may be greater than or equal to 25 mm and less than or equal to 150 mm, may be greater than or equal to 25 mm and less than or equal to 100 mm, may be greater than or equal to 25 mm and less than or equal to 50 mm, may be greater than or equal to 50 mm and less than or equal to 150 mm, may be greater than or equal to 50 mm and less than or equal to 100 mm, or may be greater than or equal to 100 mm and less than or equal to 150 mm.
In
For example, U1/V1 that is the ratio of the first dimension U1 to the first interval V1 may be higher than or equal to 0.005, may be higher than or equal to 0.1, may be higher than or equal to 0.2, or may be higher than or equal to 0.3. For example, U1/V1 may be lower than or equal to 0.5, may be lower than or equal to 0.6, may be lower than or equal to 0.8, or may be lower than or equal to 1.0. The range of U1/V1 may be determined from a first group consisting of 0.005, 0.1, 0.2, and 0.3 and/or a second group consisting of 0.5, 0.6, 0.8, and 1.0. The range of U1/V1 may be determined by a combination of any one of the values included in the first group and any one of the values included in the second group. The range of U1/V1 may be determined by a combination of any two of the values included in the first group. The range of U1/V1 may be determined by a combination of any two of the values included in the second group. For example, the range of U1/V1 may be higher than or equal to 0.005 and lower than or equal to 1.0, may be higher than or equal to 0.005 and lower than or equal to 0.8, may be higher than or equal to 0.005 and lower than or equal to 0.6, may be higher than or equal to 0.005 and lower than or equal to 0.5, may be higher than or equal to 0.005 and lower than or equal to 0.3, may be higher than or equal to 0.005 and lower than or equal to 0.2, may be higher than or equal to 0.005 and lower than or equal to 0.1, may be higher than or equal to 0.1 and lower than or equal to 1.0, may be higher than or equal to 0.1 and lower than or equal to 0.8, may be higher than or equal to 0.1 and lower than or equal to 0.6, may be higher than or equal to 0.1 and lower than or equal to 0.5, may be higher than or equal to 0.1 and lower than or equal to 0.3, may be higher than or equal to 0.1 and lower than or equal to 0.2, may be higher than or equal to 0.2 and lower than or equal to 1.0, may be higher than or equal to 0.2 and lower than or equal to 0.8, may be higher than or equal to 0.2 and lower than or equal to 0.6, may be higher than or equal to 0.2 and lower than or equal to 0.5, may be higher than or equal to 0.2 and lower than or equal to 0.3, may be higher than or equal to 0.3 and lower than or equal to 1.0, may be higher than or equal to 0.3 and lower than or equal to 0.8, may be higher than or equal to 0.3 and lower than or equal to 0.6, may be higher than or equal to 0.3 and lower than or equal to 0.5, may be higher than or equal to 0.5 and lower than or equal to 1.0, may be higher than or equal to 0.5 and lower than or equal to 0.8, may be higher than or equal to 0.5 and lower than or equal to 0.6, may be higher than or equal to 0.6 and lower than or equal to 1.0, may be higher than or equal to 0.6 and lower than or equal to 0.8, or may be higher than or equal to 0.8 and lower than or equal to 1.0.
In
For example, the second interval V2 may be greater than or equal to 10 mm, may be greater than or equal to 15 mm, or may be greater than or equal to 25 mm. For example, the second interval V2 may be less than or equal to 50 mm, may be less than or equal to 100 mm, or may be less than or equal to 150 mm. The range of the second interval V2 may be determined from a first group consisting of 10 mm, 15 mm, and 25 mm and/or a second group consisting of 50 mm, 100 mm, and 150 mm. The range of the second interval V2 may be determined by a combination of any one of the values included in the first group and any one of the values included in the second group. The range of the second interval V2 may be determined by a combination of any two of the values included in the first group. The range of the second interval V2 may be determined by a combination of any two of the values included in the second group. For example, the range of the second interval V2 may be greater than or equal to 10 mm and less than or equal to 150 mm, may be greater than or equal to 10 mm and less than or equal to 100 mm, may be greater than or equal to 10 mm and less than or equal to 50 mm, may be greater than or equal to 10 mm and less than or equal to 25 mm, may be greater than or equal to 10 mm and less than or equal to 15 mm, may be greater than or equal to 15 mm and less than or equal to 150 mm, may be greater than or equal to 15 mm and less than or equal to 100 mm, may be greater than or equal to 15 mm and less than or equal to 50 mm, may be greater than or equal to 15 mm and less than or equal to 25 mm, may be greater than or equal to 25 mm and less than or equal to 150 mm, may be greater than or equal to 25 mm and less than or equal to 100 mm, may be greater than or equal to 25 mm and less than or equal to 50 mm, may be greater than or equal to 50 mm and less than or equal to 150 mm, may be greater than or equal to 50 mm and less than or equal to 100 mm, or may be greater than or equal to 100 mm and less than or equal to 150 mm.
In
For example, U2/V2 that is the ratio of the second dimension U2 to the second interval V2 may be higher than or equal to 0.005, may be higher than or equal to 0.1, may be higher than or equal to 0.2, or may be higher than or equal to 0.3. For example, U2/V2 may be lower than or equal to 0.5, may be lower than or equal to 0.6, may be lower than or equal to 0.8, or may be lower than or equal to 1.0. The range of U2/V2 may be determined from a first group consisting of 0.005, 0.1, 0.2, and 0.3 and/or a second group consisting of 0.5, 0.6, 0.8, and 1.0. The range of U2/V2 may be determined by a combination of any one of the values included in the first group and any one of the values included in the second group. The range of U2/V2 may be determined by a combination of any two of the values included in the first group. The range of U2/V2 may be determined by a combination of any two of the values included in the second group. For example, the range of U2/V2 may be higher than or equal to 0.005 and lower than or equal to 1.0, may be higher than or equal to 0.005 and lower than or equal to 0.8, may be higher than or equal to 0.005 and lower than or equal to 0.6, may be higher than or equal to 0.005 and lower than or equal to 0.5, may be higher than or equal to 0.005 and lower than or equal to 0.3, may be higher than or equal to 0.005 and lower than or equal to 0.2, may be higher than or equal to 0.005 and lower than or equal to 0.1, may be higher than or equal to 0.1 and lower than or equal to 1.0, may be higher than or equal to 0.1 and lower than or equal to 0.8, may be higher than or equal to 0.1 and lower than or equal to 0.6, may be higher than or equal to 0.1 and lower than or equal to 0.5, may be higher than or equal to 0.1 and lower than or equal to 0.3, may be higher than or equal to 0.1 and lower than or equal to 0.2, may be higher than or equal to 0.2 and lower than or equal to 1.0, may be higher than or equal to 0.2 and lower than or equal to 0.8, may be higher than or equal to 0.2 and lower than or equal to 0.6, may be higher than or equal to 0.2 and lower than or equal to 0.5, may be higher than or equal to 0.2 and lower than or equal to 0.3, may be higher than or equal to 0.3 and lower than or equal to 1.0, may be higher than or equal to 0.3 and lower than or equal to 0.8, may be higher than or equal to 0.3 and lower than or equal to 0.6, may be higher than or equal to 0.3 and lower than or equal to 0.5, may be higher than or equal to 0.5 and lower than or equal to 1.0, may be higher than or equal to 0.5 and lower than or equal to 0.8, may be higher than or equal to 0.5 and lower than or equal to 0.6, may be higher than or equal to 0.6 and lower than or equal to 1.0, may be higher than or equal to 0.6 and lower than or equal to 0.8, or may be higher than or equal to 0.8 and lower than or equal to 1.0.
The substrate 110 may contain an electrical insulator, such as glass. For example, the thickness of the substrate 110 may be greater than or equal to 0.1 mm, may be greater than or equal to 0.3 mm, may be greater than or equal to 0.4 mm, or may be greater than or equal to 0.5 mm. For example, the thickness of the substrate 110 may be less than or equal to 0.6 mm, may be less than or equal to 0.8 mm, may be less than or equal to 1.0 mm, or may be less than or equal to 2.0 mm. The range of the thickness of the substrate 110 may be determined from a first group consisting of 0.1 mm, 0.3 mm, 0.4 mm, and 0.5 mm and/or a second group consisting of 0.6 mm, 0.8 mm, 1.0 mm, and 2.0 mm. The range of the thickness of the substrate 110 may be determined by a combination of any one of the values included in the first group and any one of the values included in the second group. The range of the thickness of the substrate 110 may be determined by a combination of any two of the values included in the first group. The range of the thickness of the substrate 110 may be determined by a combination of any two of the values included in the second group. For example, the range of the thickness may be greater than or equal to 0.1 mm and less than or equal to 2.0 mm, may be greater than or equal to 0.1 mm and less than or equal to 1.0 mm, may be greater than or equal to 0.1 mm and less than or equal to 0.8 mm, may be greater than or equal to 0.1 mm and less than or equal to 0.6 mm, may be greater than or equal to 0.1 mm and less than or equal to 0.5 mm, may be greater than or equal to 0.1 mm and less than or equal to 0.4 mm, may be greater than or equal to 0.1 mm and less than or equal to 0.3 mm, may be greater than or equal to 0.3 mm and less than or equal to 2.0 mm, may be greater than or equal to 0.3 mm and less than or equal to 1.0 mm, may be greater than or equal to 0.3 mm and less than or equal to 0.8 mm, may be greater than or equal to 0.3 mm and less than or equal to 0.6 mm, may be greater than or equal to 0.3 mm and less than or equal to 0.5 mm, may be greater than or equal to 0.3 mm and less than or equal to 0.4 mm, may be greater than or equal to 0.4 mm and less than or equal to 2.0 mm, may be greater than or equal to 0.4 mm and less than or equal to 1.0 mm, may be greater than or equal to 0.4 mm and less than or equal to 0.8 mm, may be greater than or equal to 0.4 mm and less than or equal to 0.6 mm, may be greater than or equal to 0.4 mm and less than or equal to 0.5 mm, may be greater than or equal to 0.5 mm and less than or equal to 2.0 mm, may be greater than or equal to 0.5 mm and less than or equal to 1.0 mm, may be greater than or equal to 0.5 mm and less than or equal to 0.8 mm, may be greater than or equal to 0.5 mm and less than or equal to 0.6 mm, may be greater than or equal to 0.6 mm and less than or equal to 2.0 mm, may be greater than or equal to 0.6 mm and less than or equal to 1.0 mm, may be greater than or equal to 0.6 mm and less than or equal to 0.8 mm, may be greater than or equal to 0.8 mm and less than or equal to 2.0 mm, may be greater than or equal to 0.8 mm and less than or equal to 1.0 mm, or may be greater than or equal to 1.0 mm and less than or equal to 2.0 mm.
The arrangement periods of the standard marks 63, that is, the arrangement periods P1, P2 and the like, may be the same as the arrangement periods of the through-holes 56 of the mask 50 to be used in manufacturing the organic device 100. For example, the arrangement period of the standard marks 63 may be greater than or equal to 30 μm, may be greater than or equal to 50 μm, may be greater than or equal to 70 μm, or may be greater than or equal to 100 μm. For example, the arrangement period of the standard marks 63 may be less than or equal to 150 μm, may be less than or equal to 200 μm, may be less than or equal to 300 μm, or may be less than or equal to 400 μm. The range of the arrangement period of the standard marks 63 may be determined from a first group consisting of 30 μm, 50 μm, 70 μm, and 100 μm and/or a second group consisting of 150 μm, 200 μm, 300 μm, and 400 μm. The range of the arrangement period of the standard marks 63 may be determined by a combination of any one of the values included in the first group and any one of the values included in the second group. The range of the arrangement period of the standard marks 63 may be determined by a combination of any two of the values included in the first group. The range of the arrangement period of the standard marks 63 may be determined by a combination of any two of the values included in the second group. For example, the range of the arrangement period may be greater than or equal to 30 μm and less than or equal to 400 μm, may be greater than or equal to 30 μm and less than or equal to 300 μm, may be greater than or equal to 30 μm and less than or equal to 200 μm, may be greater than or equal to 30 μm and less than or equal to 150 μm, may be greater than or equal to 30 μm and less than or equal to 100 μm, may be greater than or equal to 30 μm and less than or equal to 70 μm, may be greater than or equal to 30 μm and less than or equal to 50 μm, may be greater than or equal to 50 μm and less than or equal to 400 μm, may be greater than or equal to 50 μm and less than or equal to 300 μm, may be greater than or equal to 50 μm and less than or equal to 200 μm, may be greater than or equal to 50 μm and less than or equal to 150 μm, may be greater than or equal to 50 μm and less than or equal to 100 μm, may be greater than or equal to 50 μm and less than or equal to 70 μm, may be greater than or equal to 70 μm and less than or equal to 400 μm, may be greater than or equal to 70 μm and less than or equal to 300 μm, may be greater than or equal to 70 μm and less than or equal to 200 μm, may be greater than or equal to 70 μm and less than or equal to 150 μm, may be greater than or equal to 70 μm and less than or equal to 100 μm, may be greater than or equal to 100 μm and less than or equal to 400 μm, may be greater than or equal to 100 μm and less than or equal to 300 μm, may be greater than or equal to 100 μm and less than or equal to 200 μm, may be greater than or equal to 100 μm and less than or equal to 150 μm, may be greater than or equal to 150 μm and less than or equal to 400 μm, may be greater than or equal to 150 μm and less than or equal to 300 prn, may be greater than or equal to 150 μm and less than or equal to 200 μm, may be greater than or equal to 200 μm and less than or equal to 400 μm, may be greater than or equal to 200 μm and less than or equal to 300 μm, or may be greater than or equal to 300 μm and less than or equal to 400 μm.
As shown in
As shown in
As shown in
In
The dimension M2 in
The shortest distance M4 in
In
As long as the positional relation between the standard mark 63 and each first vapor deposition layer 130 can be observed, the material of the standard mark 63 is any material. For example, the standard mark 63, as well as the first electrode layer 120 or the second electrode layer 141, may contain a metal, an electrically conductive metal oxide, or an electrically conductive material, such as other inorganic materials. The standard mark 63 may contain a resin material, such as an acrylic resin. For example, the standard mark 63 may contain a resin material having a photosensitivity and used as a resist.
The standard mark 63 may have a light blocking property. The standard mark 63 may contain a resin material and a colorant. For example, carbon black, titanium black, or the like may be used as the colorant.
When the standard mark 63 has a light blocking property, the total light transmittance of a region that overlaps the standard mark 63 in plan view in the standard substrate 60 may be, for example, higher than or equal to 0%, may be higher than or equal to 1%, may be higher than or equal to 2%, or may be higher than or equal to 3%. For example, the total light transmittance may be lower than or equal to 5%, may be lower than or equal to 10%, may be lower than or equal to 20%, or may be lower than or equal to 30%. The range of the total light transmittance may be determined from a first group consisting of 0%, 1%, 2%, and 3% and/or a second group consisting of 5%, 10%, 20%, and 30%. The range of the total light transmittance may be determined by a combination of any one of the values included in the first group and any one of the values included in the second group. The range of the total light transmittance may be determined by a combination of any two of the values included in the first group. The range of the total light transmittance may be determined by a combination of any two of the values included in the second group. For example, the range of the total light transmittance may be higher than or equal to 0% and lower than or equal to 30%, may be higher than or equal to 0% and lower than or equal to 20%, may be higher than or equal to 0% and lower than or equal to 10%, may be higher than or equal to 0% and lower than or equal to 5%, may be higher than or equal to 0% and lower than or equal to 3%, may be higher than or equal to 0% and lower than or equal to 2%, may be higher than or equal to 0% and lower than or equal to 1%, may be higher than or equal to 1% and lower than or equal to 30%, may be higher than or equal to 1% and may be higher than or equal to 20%, may be higher than or equal to 1% and lower than or equal to 10%, may be higher than or equal to 1% and lower than or equal to 5%, may be higher than or equal to 1% and lower than or equal to 3%, may be higher than or equal to 1% and lower than or equal to 2%, may be higher than or equal to 2% and lower than or equal to 30%, may be higher than or equal to 2% and lower than or equal to 20%, may be higher than or equal to 2% and lower than or equal to 10%, may be higher than or equal to 2% and lower than or equal to 5%, may be higher than or equal to 2% and lower than or equal to 3%, may be higher than or equal to 3% and lower than or equal to 30%, may be higher than or equal to 3% and lower than or equal to 20%, may be higher than or equal to 3% and lower than or equal to 10%, may be higher than or equal to 3% and lower than or equal to 5%, may be higher than or equal to 5% and lower than or equal to 30%, may be higher than or equal to 5% and lower than or equal to 20%, may be higher than or equal to 5% and lower than or equal to 10%, may be higher than or equal to 10% and lower than or equal to 30%, may be higher than or equal to 10% and lower than or equal to 20%, or may be higher than or equal to 20% and lower than or equal to 30%. The total light transmittance is measured in conformity with JIS K7361-1:1997. A spectrometer OSP-SMU made by Olympus Corporation is used as a measuring instrument for total light transmittance.
The thickness of the standard mark 63 preferably corresponds to a distance from a surface on which the first vapor deposition layers 130 are formed to the first surface 111 of the substrate 110 in the organic device 100. The surface on which the first vapor deposition layers 130 are formed in the organic device 100 is, for example, the surface of each hole transport layer. For example, the thickness of the standard mark 63 may be greater than or equal to 0.01 μm, may be greater than or equal to 0.05 μm, may be greater than or equal to 0.08 μm, or may be greater than or equal to 0.10 μm. For example, the thickness of the standard mark 63 may be less than or equal to 0.15 μm, may be less than or equal to 0.20 μm, may be less than or equal to 0.50 μm, or may be less than or equal to 1.00 μm. The range of the thickness of the standard mark 63 may be determined from a first group consisting of 0.01 μm, 0.05 μm, 0.08 μm, and 0.10 μm and/or a second group consisting of 0.15 μm, 0.20 μm, 0.50 μm, and 1.00 μm. The range of the thickness of the standard mark 63 may be determined by a combination of any one of the values included in the first group and any one of the values included in the second group. The range of the thickness of the standard mark 63 may be determined by a combination of any two of the values included in the first group. The range of the thickness of the standard mark 63 may be determined by a combination of any two of the values included in the second group. For example, the range of the thickness may be greater than or equal to 0.01 μm and less than or equal to 1.00 μm, may be greater than or equal to 0.01 μm and less than or equal to 0.50 μm, may be greater than or equal to 0.01 μm and less than or equal to 0.20 μm, may be greater than or equal to 0.01 μm and less than or equal to 0.15 μm, may be greater than or equal to 0.01 μm and less than or equal to 0.10 μm, may be greater than or equal to 0.01 μm and less than or equal to 0.08 μm, may be greater than or equal to 0.01 μm and less than or equal to 0.05 μm, may be greater than or equal to 0.05 μm and less than or equal to 1.00 μm, may be greater than or equal to 0.05 μm and less than or equal to 0.50 μm, may be greater than or equal to 0.05 μm and less than or equal to 0.20 μm, may be greater than or equal to 0.05 μm and less than or equal to 0.15 μm, may be greater than or equal to 0.05 μm and less than or equal to 0.10 μm, may be greater than or equal to 0.05 μm and less than or equal to 0.08 μm, may be greater than or equal to 0.08 μm and less than or equal to 1.00 μm, may be greater than or equal to 0.08 μm and less than or equal to 0.50 μm, may be greater than or equal to 0.08 μm and less than or equal to 0.20 μm, may be greater than or equal to 0.08 μm and less than or equal to 0.15 μm, may be greater than or equal to 0.08 μm and less than or equal to 0.10 μm, may be greater than or equal to 0.10 μm and less than or equal to 1.00 μm, may be greater than or equal to 0.10 μm and less than or equal to 0.50 μm, may be greater than or equal to 0.10 μm and less than or equal to 0.20 μm, may be greater than or equal to 0.10 μm and less than or equal to 0.15 μm, may be greater than or equal to 0.15 μm and less than or equal to 1.00 μm, may be greater than or equal to 0.15 μm and less than or equal to 0.50 μm, may be greater than or equal to 0.15 μm and less than or equal to 0.20 μm, may be greater than or equal to 0.20 μm and less than or equal to 1.00 μm, may be greater than or equal to 0.20 μm and less than or equal to 0.50 μm, or may be greater than or equal to 0.50 μm and less than or equal to 1.00 μm.
Next, the standard mask apparatus 15A will be specifically described.
The standard mask apparatus 15A includes at least one standard mask 50A. The standard mask 50A includes the metal plate 55 and the through-holes 56 extending from the first surface 551 of the metal plate 55 to the second surface 552. The standard mask apparatus 15A may include the frame 41 that supports the standard mask 50A. The frame 41 supports the standard mask 50A in a state of being pulled in the surface direction so as to suppress warpage of the standard mask 50A. The standard mask 50A, as well as the mask 50, includes a pair of end portions 51 overlapping the frame 41 and an intermediate portion 52A located between the end portions 51.
The standard mask 50A of the standard mask apparatus 15A may be placed similarly to the mask 50 of the mask apparatus 15. For example, the standard mask apparatus 15A may include a plurality of the standard masks 50A. As shown in
As shown in
As shown in
In
For example, the third interval V3 may be greater than or equal to 10 mm, may be greater than or equal to 15 mm, or may be greater than or equal to 25 mm. For example, the third interval V3 may be less than or equal to 50 mm, may be less than or equal to 100 mm, or may be less than or equal to 150 mm. The range of the third interval V3 may be determined from a first group consisting of 10 mm, 15 mm, and 25 mm and/or a second group consisting of 50 mm, 100 mm, and 150 mm. The range of the third interval V3 may be determined by a combination of any one of the values included in the first group and any one of the values included in the second group. The range of the third interval V3 may be determined by a combination of any two of the values included in the first group. The range of the third interval V3 may be determined by a combination of any two of the values included in the second group. For example, the range of the third interval V3 may be greater than or equal to 10 mm and less than or equal to 150 mm, may be greater than or equal to 10 mm and less than or equal to 100 mm, may be greater than or equal to 10 mm and less than or equal to 50 mm, may be greater than or equal to 10 mm and less than or equal to 25 mm, may be greater than or equal to 10 mm and less than or equal to 15 mm, may be greater than or equal to 15 mm and less than or equal to 150 mm, may be greater than or equal to 15 mm and less than or equal to 100 mm, may be greater than or equal to 15 mm and less than or equal to 50 mm, may be greater than or equal to 15 mm and less than or equal to 25 mm, may be greater than or equal to 25 mm and less than or equal to 150 mm, may be greater than or equal to 25 mm and less than or equal to 100 mm, may be greater than or equal to 25 mm and less than or equal to 50 mm, may be greater than or equal to 50 mm and less than or equal to 150 mm, may be greater than or equal to 50 mm and less than or equal to 100 mm, or may be greater than or equal to 100 mm and less than or equal to 150 mm.
In
For example, U3/V3 that is the ratio of the third dimension U3 to the third interval V3 may be higher than or equal to 0.005, may be higher than or equal to 0.1, may be higher than or equal to 0.2, or may be higher than or equal to 0.3. For example, U3/V3 may be lower than or equal to 0.5, may be lower than or equal to 0.6, may be lower than or equal to 0.8, or may be lower than or equal to 1.0. The range of U3/V3 may be determined from a first group consisting of 0.005, 0.1, 0.2, and 0.3 and/or a second group consisting of 0.5, 0.6, 0.8, and 1.0. The range of U3/V3 may be determined by a combination of any one of the values included in the first group and any one of the values included in the second group. The range of U3/V3 may be determined by a combination of any two of the values included in the first group. The range of U3/V3 may be determined by a combination of any two of the values included in the second group. For example, the range of U3/V3 may be higher than or equal to 0.005 and lower than or equal to 1.0, may be higher than or equal to 0.005 and lower than or equal to 0.8, may be higher than or equal to 0.005 and lower than or equal to 0.6, may be higher than or equal to 0.005 and lower than or equal to 0.5, may be higher than or equal to 0.005 and lower than or equal to 0.3, may be higher than or equal to 0.005 and lower than or equal to 0.2, may be higher than or equal to 0.005 and lower than or equal to 0.1, may be higher than or equal to 0.1 and lower than or equal to 1.0, may be higher than or equal to 0.1 and lower than or equal to 0.8, may be higher than or equal to 0.1 and lower than or equal to 0.6, may be higher than or equal to 0.1 and lower than or equal to 0.5, may be higher than or equal to 0.1 and lower than or equal to 0.3, may be higher than or equal to 0.1 and lower than or equal to 0.2, may be higher than or equal to 0.2 and lower than or equal to 1.0, may be higher than or equal to 0.2 and lower than or equal to 0.8, may be higher than or equal to 0.2 and lower than or equal to 0.6, may be higher than or equal to 0.2 and lower than or equal to 0.5, may be higher than or equal to 0.2 and lower than or equal to 0.3, may be higher than or equal to 0.3 and lower than or equal to 1.0, may be higher than or equal to 0.3 and lower than or equal to 0.8, may be higher than or equal to 0.3 and lower than or equal to 0.6, may be higher than or equal to 0.3 and lower than or equal to 0.5, may be higher than or equal to 0.5 and lower than or equal to 1.0, may be higher than or equal to 0.5 and lower than or equal to 0.8, may be higher than or equal to 0.5 and lower than or equal to 0.6, may be higher than or equal to 0.6 and lower than or equal to 1.0, may be higher than or equal to 0.6 and lower than or equal to 0.8, or may be higher than or equal to 0.8 and lower than or equal to 1.0.
In
For example, the fourth interval V4 may be greater than or equal to 10 mm, may be greater than or equal to 15 mm, or may be greater than or equal to 25 mm. For example, the fourth interval V4 may be less than or equal to 50 mm, may be less than or equal to 100 mm, or may be less than or equal to 150 mm. The range of the fourth interval V4 may be determined from a first group consisting of 10 mm, 15 mm, and 25 mm and/or a second group consisting of 50 mm, 100 mm, and 150 mm. The range of the fourth interval V4 may be determined by a combination of any one of the values included in the first group and any one of the values included in the second group. The range of the fourth interval V4 may be determined by a combination of any two of the values included in the first group. The range of the fourth interval V4 may be determined by a combination of any two of the values included in the second group. For example, the range of the fourth interval V4 may be greater than or equal to 10 mm and less than or equal to 150 mm, may be greater than or equal to 10 mm and less than or equal to 100 mm, may be greater than or equal to 10 mm and less than or equal to 50 mm, may be greater than or equal to 10 mm and less than or equal to 25 mm, may be greater than or equal to 10 mm and less than or equal to 15 mm, may be greater than or equal to 15 mm and less than or equal to 150 mm, may be greater than or equal to 15 mm and less than or equal to 100 mm, may be greater than or equal to 15 mm and less than or equal to 50 mm, may be greater than or equal to 15 mm and less than or equal to 25 mm, may be greater than or equal to 25 mm and less than or equal to 150 mm, may be greater than or equal to 25 mm and less than or equal to 100 mm, may be greater than or equal to 25 mm and less than or equal to 50 mm, may be greater than or equal to 50 mm and less than or equal to 150 mm, may be greater than or equal to 50 mm and less than or equal to 100 mm, or may be greater than or equal to 100 mm and less than or equal to 150 mm.
In
For example, U4/V4 that is the ratio of the fourth dimension U4 to the fourth interval V4 may be higher than or equal to 0.005, may be higher than or equal to 0.1, may be higher than or equal to 0.2, or may be higher than or equal to 0.3. For example, U4/V4 may be lower than or equal to 0.5, may be lower than or equal to 0.6, may be lower than or equal to 0.8, or may be lower than or equal to 1.0. The range of U4/V4 may be determined from a first group consisting of 0.005, 0.1, 0.2, and 0.3 and/or a second group consisting of 0.5, 0.6, 0.8, and 1.0. The range of U4/V4 may be determined by a combination of any one of the values included in the first group and any one of the values included in the second group. The range of U4/V4 may be determined by a combination of any two of the values included in the first group. The range of U4/V4 may be determined by a combination of any two of the values included in the second group. For example, the range of U4/V4 may be higher than or equal to 0.005 and lower than or equal to 1.0, may be higher than or equal to 0.005 and lower than or equal to 0.8, may be higher than or equal to 0.005 and lower than or equal to 0.6, may be higher than or equal to 0.005 and lower than or equal to 0.5, may be higher than or equal to 0.005 and lower than or equal to 0.3, may be higher than or equal to 0.005 and lower than or equal to 0.2, may be higher than or equal to 0.005 and lower than or equal to 0.1, may be higher than or equal to 0.1 and lower than or equal to 1.0, may be higher than or equal to 0.1 and lower than or equal to 0.8, may be higher than or equal to 0.1 and lower than or equal to 0.6, may be higher than or equal to 0.1 and lower than or equal to 0.5, may be higher than or equal to 0.1 and lower than or equal to 0.3, may be higher than or equal to 0.1 and lower than or equal to 0.2, may be higher than or equal to 0.2 and lower than or equal to 1.0, may be higher than or equal to 0.2 and lower than or equal to 0.8, may be higher than or equal to 0.2 and lower than or equal to 0.6, may be higher than or equal to 0.2 and lower than or equal to 0.5, may be higher than or equal to 0.2 and lower than or equal to 0.3, may be higher than or equal to 0.3 and lower than or equal to 1.0, may be higher than or equal to 0.3 and lower than or equal to 0.8, may be higher than or equal to 0.3 and lower than or equal to 0.6, may be higher than or equal to 0.3 and lower than or equal to 0.5, may be higher than or equal to 0.5 and lower than or equal to 1.0, may be higher than or equal to 0.5 and lower than or equal to 0.8, may be higher than or equal to 0.5 and lower than or equal to 0.6, may be higher than or equal to 0.6 and lower than or equal to 1.0, may be higher than or equal to 0.6 and lower than or equal to 0.8, or may be higher than or equal to 0.8 and lower than or equal to 1.0.
As shown in
As shown in
In a step of fixing the standard mask 50A to the frame 41, the standard mask 50A is aligned with the frame 41 in a state where the standard mask 50A is pulled in the longitudinal direction, and then the standard mask 50A is attached to the frame 41 by welding or the like. When the frame 41 includes alignment marks 48 as shown in
An example of the background to place more importance on the middle region 501 than on the end regions 502 will be described. The thickness of the metal plate 55 forming each standard mask 50A is small. In this case, when the standard mask 50A is pulled in the longitudinal direction, a deformation of a wrinkle or the like extending in the longitudinal direction may occur in the standard mask 50A. Such a deformation is more likely to occur in the end regions 502 than in the middle region 501. In a case where there is a deformation, such as a wrinkle, in the end regions 502, when any of the middle region 501 and the end regions 502 is equally considered in the step of aligning the standard mask 50A with the frame 41, the accuracy of the position of the middle region 501 can decrease due to a deformation of the end regions 502. In such a case, it is useful to align the standard mask 50A with the frame 41 by placing more importance on the middle region 501 than on the end regions 502 as described above. Thus, the influence of a deformation, such as a wrinkle, occurring in the end regions 502 on the accuracy of alignment of the middle region 501 with the frame 41 is suppressed. Therefore, further ideal arrangement of the standard regions 58 is possible.
As shown in
As shown in
When the standard region 58 includes the non-penetrated region 57 having a greater dimension than the arrangement period of the through-holes 56, the through-holes 56 of the standard region 58 are more easily distinguished from the other through-holes 56 that do not face the standard mark 63 of the standard substrate 60 in the vapor deposition step (described later), that is, the through-holes 56 of the end regions 502. In the observation step of observing the standard substrate 60 after the vapor deposition step, the first vapor deposition layers 130 made up of the vapor deposition material deposited onto the standard substrate 60 through the through-holes 56 of the standard region 58 are more easily distinguished from the first vapor deposition layers 130 made up of the vapor deposition material deposited onto the standard substrate 60 through the other through-holes 56. Therefore, the first vapor deposition layers 130 to be observed are more easily found.
Next, a method of evaluating the first vapor deposition chamber 10 of the manufacturing apparatus 1 using the standard substrate 60 and the standard mask apparatus 15A will be described.
Initially, the standard mask apparatus 15A is prepared and is carried into the manufacturing apparatus 1. In addition, the standard substrate 60 is prepared, and the standard substrate 60 is carried into the manufacturing apparatus 1 via the substrate carrying-in chamber 31. Subsequently, the standard substrate 60 may be subjected to pretreatment, such as dry washing, in the substrate pretreatment chamber 32.
Subsequently, the vapor deposition step of forming the first vapor deposition layers 130 on the standard substrate 60 is performed in the first vapor deposition chamber 10. For example, the vapor deposition step of forming the first organic layers 131 on the standard substrate 60 is performed in the eleventh vapor deposition chamber 11. The vapor deposition step is similar to the case where the electrode substrate 105 and the mask apparatus 15 are used, as follows.
Initially, an assembling step of, in the first vapor deposition chamber 10, assembling the standard substrate 60 and the standard mask apparatus 15A is performed. For example, in the eleventh vapor deposition chamber 11, the standard mask apparatus 15A is set above the vapor deposition source 6 by using the mask holder 3. The substrate 110 of the standard substrate 60 is faced to the standard mask 50A of the standard mask apparatus 15A by using the substrate holder 2. The substrate holder 2 is moved in the surface direction of the substrate 110 to adjust the position of the substrate 110 with respect to the standard mask 50A. For example, the substrate 110 is moved in the surface direction such that alignment marks of the standard mask 50A or the frame 41 and alignment marks 68 of the substrate 110 overlap each other.
Subsequently, a step of placing the cooling plate 4 on the second surface 112 side of the substrate 110 by moving the cooling plate 4 toward the substrate 110 may be performed. A step of placing the magnet 5 on the second surface 112 side of the substrate 110 may be performed. Thus, the standard mask 50A is attracted toward the substrate 110 by magnetic force. A step of attracting the standard mask 50A toward the substrate 110 by using an electrostatic chuck may be performed.
The assembling step of assembling the standard substrate 60 and the standard mask apparatus 15A may be performed in accordance with predetermined settings. Examples of the conditions may include the following conditions. In the assembling step, any one of the settings may be considered or some of the settings may be considered.
The placement of the substrate 110 is, for example, the orientation of the substrate 110, such as the surface direction of the substrate 110. When the substrate holder 2 include a plurality of chucks attached to the outer edge of the substrate 110, the orientation of the substrate 110 can be set by independently moving the chucks.
When a plurality of the magnets 5 is placed on the second surface 112 side of the substrate 110, the distribution of magnetic force can be set by changing the type or layout of the magnets 5.
The placement of the cooling plate 4 is, for example, the orientation of the cooling plate 4, such as the surface direction of the cooling plate 4.
Subsequently, the vapor deposition step of vaporizing the vapor deposition material 7 to fly toward the substrate 110 is performed. Part of the vapor deposition material 7, passing through the through-holes 56 of the standard mask 50A, is deposited on the standard marks 63 of the substrate 110 in a pattern in association with the through-holes 56. Thus, the first organic layers 131 are formed on the standard mark regions 62 of the substrate 110.
Subsequently, the carry-out step of carrying out the substrate 110 including the first vapor deposition layers 130 from the manufacturing apparatus 1 to the outside via the substrate carrying-out chamber 35 may be performed. The substrate 110 may be carried out to the outside of the manufacturing apparatus 1 in a state where the elements on the substrate 110, that is, the first vapor deposition layers 130 or the like, are not sealed. A mechanism for carrying out the substrate 110 from the manufacturing apparatus 1 to the outside may be an arm, or the like, that is movable while supporting the substrate 110.
Subsequently, the observation step of observing a positional relation between the standard marks 63 and the first vapor deposition layers 130 on the substrate 110 carried out from the manufacturing apparatus 1 is performed. In the observation step of the present embodiment, the substrate 110 including the standard marks 63 and the first vapor deposition layers 130 is observed from the first surface 111 side with an optical microscope. The large automatic two-dimensional coordinate measuring system AMIC-1710 made by Sinto S-Precision, Ltd. may be used as the optical microscope. The conditions for observation using the optical microscope are as follows.
Another step may be performed between the carry-out step and the observation step. For example, a step of moving the substrate 110 to an observation location, a step of subjecting the substrate 110 to a treatment for increasing the efficiency of observation, or another step, may be performed.
In the example shown in
In the example shown in
In the example shown in
In the example shown in
Subsequently, a determination step of determining whether the positional relation between the standard marks 63 and the first vapor deposition layers 130 satisfies a condition may be performed. For example, the determination step may include a first determination step of determining whether the following condition (1) is satisfied.
(1) The outer edge of each first vapor deposition layer 130 is located inside the outer edge of the first mark 64 of the standard mark 63.
Of the examples shown in
The determination step may include a second determination step of determining whether the following condition (2) is satisfied.
(2) The outer edge of the first vapor deposition layer 130 is located outside the outer edge of the second mark 65.
Of the examples shown in
In the determination step, when the above-described condition (1) is satisfied, the first vapor deposition chamber 10 used to form the first vapor deposition layers 130 may be determined as a conforming product. Alternatively, in the determination step, when the above-described conditions (1) and (2) are satisfied, the first vapor deposition chamber 10 used to form the first vapor deposition layers 130 may be determined as a conforming product. Alternatively, in the determination step, when the above-described condition (2) is satisfied, the first vapor deposition chamber 10 used to form the first vapor deposition layers 130 may be determined as a conforming product.
The positional relation between the standard marks 63 and the first vapor deposition layers 130 may be evaluated in more details in accordance with the observation results as shown in
In the determination step, a determination based on the above-described conditions (1), (2), or the like may be performed on each region of the substrate 110, in which the first vapor deposition layer 130 is deposited. For example, a region in which the first vapor deposition layers 130 are deposited on the substrate 110 may be divided into m in the first direction D1 and divided into n in the second direction D2, and then the determination step may be performed on each of m×n regions.
In the example shown in
According to the example shown in
Subsequently, an adjustment step of adjusting settings of the assembling step of assembling the standard substrate 60 with the standard mask apparatus 15A may be performed in accordance with information about the positional relation between the standard marks 63 and the first vapor deposition layers 130, obtained in the observation step. For example, the placement of the substrate 110, the distribution of magnetic force of the magnets 5, the distribution of electrostatic force of the electrostatic chucks, the placement of the cooling plate 4, and the like may be adjusted in accordance with information about the positional relation. After that, the above-described vapor deposition step, observation step, and determination step may be performed in the adjusted first vapor deposition chamber 10, and whether the adjusted first vapor deposition chamber 10 satisfies the above-described conditions (1) and (2) may be checked. Settings adjusted in the adjustment step can also be adopted in the method of manufacturing the organic device 100 using the electrode substrate 105 and the mask apparatus 15.
The above-described vapor deposition step, observation step, determination step, adjustment step, and the like using the standard substrate 60 and the standard mask apparatus 15A may be performed in an evaluation method at the time of delivery of a newly manufactured manufacturing apparatus 1 to a customer. Alternatively, the above-described vapor deposition step, observation step, determination step, adjustment step, and the like may be performed in a maintenance method for a manufacturing apparatus 1 that has been delivered to a customer.
According to the present embodiment, by performing the vapor deposition step using the standard substrate 60 and the standard mask apparatus 15A, the characteristics of each of the first vapor deposition chambers 10 included in the manufacturing apparatus 1 can be individually evaluated. For this reason, when the organic device 100 manufactured by the manufacturing apparatus 1 does not meet the desired specifications, the cause is more easily identified. Each of the first vapor deposition chambers 10 included in the manufacturing apparatus 1 can be individually guaranteed in accordance with an evaluation result.
By performing the above-described evaluation method or maintenance method, the manufacturing apparatus 1 including the first vapor deposition chambers 10 that satisfy the conditions of the determination step is obtained. For example, the manufacturing apparatus 1 including the first vapor deposition chambers 10 for which it has been proven that the above-described condition (1) is satisfied, that is, the outer edge of each first vapor deposition layer 130 is located inside the outer edge of the first mark 64 of the standard mark 63, is obtained. By forming the first vapor deposition layers 130 on the electrode substrate 105 with the mask apparatus 15 in the first vapor deposition chamber 10 that satisfies the conditions of the determination step, the accuracy of the position and dimension of each of the first vapor deposition layers 130 in the organic device 100 is increased. Thus, the fraction defective of the organic device 100 is reduced, and the characteristics of the organic device 100 are enhanced.
Various changes may be added to the above-described embodiment. Hereinafter, other embodiments will be described with reference to the drawings as needed. In the following description and the drawings to be used in the following description, like reference signs used for corresponding portions in the above-described embodiment denote portions that can be configured similarly to those of the above-described embodiment, and the description will not be repeated. When it is apparent that the operation and advantageous effects obtained in the above-described embodiment are also obtained in other embodiments, the description may be omitted.
As shown in
In the observation step of observing the first vapor deposition layer 130, the absolute position of the first vapor deposition layer 130 in the coordinate system on the substrate 110 of the standard substrate 60 may be calculated. In this case, information to be obtained through the evaluation method for the first vapor deposition chamber 10 may include both or any one of information about the absolute position of the first vapor deposition layer 130 in the coordinate system on the substrate 110 of the standard substrate 60 and information about the relative position of the first vapor deposition layer 130 with respect to the standard mark 63 of the standard substrate 60.
An example of a method of calculating the absolute position of the first vapor deposition layer 130 in the coordinate system on the substrate 110 of the standard substrate 60 will be described. When, for example, the standard substrate 60 includes the alignment marks 68 as described above, the coordinates of each standard mark 63, that is, the first mark 64, the second mark 65, and the like, in the coordinate system on the substrate 110 of the standard substrate 60 may be calculated with reference to the alignment marks 68. In this case, information about the absolute position of the first vapor deposition layer 130 in the coordinate system on the substrate 110 of the standard substrate 60 is obtained in accordance with information about the coordinates of the standard mark 63 and information about a relative position deviation of the first vapor deposition layer 130 with respect to the standard mark 63. As in the case of the above-described observation step, the large automatic two-dimensional coordinate measuring system AMIC-1710 made by Sinto S-Precision, Ltd. may be used as a system of measuring the coordinates of the standard mark 63.
When the standard substrate 60 includes the alignment marks 68, the above-described determination step may be performed in accordance with information about the absolute position of the first vapor deposition layer 130 in the coordinate system on the substrate 110 of the standard substrate 60. For example, the determination step may be performed in accordance with whether the coordinates of the center of the first vapor deposition layer 130 falls within a prescribed range. The determination step may be performed in accordance with whether the coordinates of the outer edge of the first vapor deposition layer 130 falls within a prescribed range. In these cases, the determination step may be performed in accordance with the relation between the first vapor deposition layer 130 and the coordinate system on the substrate 110 of the standard substrate 60, determined by using the alignment marks 68. The observation step presumably observes the positional relation between the alignment marks 68 and the first vapor deposition layer 130. Therefore, the alignment marks 68 presumably function as a standard mark of the standard substrate 60. In this case, the number of the alignment marks 68 that function as a standard mark may be less than the number of the first vapor deposition layers 130 to be formed on the substrate 110.
In the above-described embodiment, the example in which the arrangement direction of the through-holes 56 of the standard mask 50A is parallel to the first direction D1 that is the longitudinal direction of the standard mask 50A or the second direction D2 that is the width direction of the standard mask 50A is described. For example, the example in which the through-holes 56 of the standard mask 50A are arranged in the first direction D1 and the second direction D2 is described. However, the configuration is not limited thereto. The arrangement direction of the through-holes 56 of the standard region 58 of the standard mask 50A may be different from the first direction D1 or the second direction D2. For example, as shown in
The arrangement direction of the through-holes 56 located in each end region 502 may be different from the first direction D1 or the second direction D2. For example, as shown in
As shown in
Next, a second embodiment will be described. The second embodiment has a feature related to the mask support 40.
When a deformation occurs in a mask support, such as a frame, that supports a mask, the position of the mask fixed to the mask support changes. Therefore, it is desired to suppress a deformation of the mask support.
A mask support that supports a mask in a state where a tension is applied to the mask according to the second embodiment may include a frame including an opening and at least one bar located in the opening and connected to the frame. The frame may include a frame first surface to which the mask is fixed, a frame second surface located across from the frame first surface, an inner surface located between the frame first surface and the frame second surface and to which the at least one bar is connected, and an outer surface located across from the inner surface. The at least one bar may include a bar first surface located on the frame first surface side, a bar second surface located across from the bar first surface, and bar side surfaces located between the bar first surface and the bar second surface. The frame first surface and the bar first surface may be continuous.
According to the second embodiment, a deformation of the mask support is suppressed.
A first aspect of the second embodiment is a mask support that supports a mask in a state where a tension is applied to the mask. The mask support includes a frame including an opening, and at least one bar located in the opening and connected to the frame. The frame includes a frame first surface to which the mask is fixed, a frame second surface located across from the frame first surface, an inner surface located between the frame first surface and the frame second surface and to which the at least one bar is connected, and an outer surface located across from the inner surface. The at least one bar includes a bar first surface located on the frame first surface side, a bar second surface located across from the bar first surface, and bar side surfaces located between the bar first surface and the bar second surface. The frame first surface and the bar first surface are continuous.
In a second aspect of the second embodiment, in the mask support according to the first aspect, the frame first surface and the bar first surface may be located in a same plane.
In a third aspect of the second embodiment, in the mask support according to the first or second aspect, when the mask support is viewed along a direction normal to the frame first surface, the inner surface and each of the bar side surfaces may be connected via a first connection portion having a first radius of curvature.
In a fourth aspect of the second embodiment, in the mask support according to any one of the first to third aspects, the inner surface and the bar second surface may be connected via a second connection portion having a second radius of curvature.
In a fifth aspect of the second embodiment, in the mask support according to any one of the first to fourth aspects, the frame may include a pair of first sides extending in a first direction and a pair of second sides extending in a second direction that intersects with the first direction. The mask may be fixed to the second sides. The at least one bar may include a first bar connected to the first sides.
In a sixth aspect of the second embodiment, in the mask support according to any one of the first to fourth aspects, the frame may include a pair of first sides extending in a first direction and a pair of second sides extending in a second direction that intersects with the first direction. The mask may be fixed to the second sides. The at least one bar may include a second bar connected to the second sides.
In a seventh aspect of the second embodiment, in the mask support according to any one of the first to fourth aspects, the frame may include a pair of first sides extending in a first direction and a pair of second sides extending in a second direction that intersects with the first direction. The mask may be fixed to the second sides. The at least one bar may include a first bar connected to the first sides and a second bar connected to the second sides. When the mask support is viewed along a direction normal to the frame first surface, each of the bar side surfaces of the first bar and an associated one of the bar side surfaces of the second bar may be connected via a third connection portion having a third radius of curvature.
In an eighth aspect of the second embodiment, in the mask support according to any one of the first to seventh aspects, a width of the at least one bar on the bar first surface may be greater than a width of the at least one bar on the bar second surface.
In a ninth aspect of the second embodiment, in the mask support according to any one of the first to eighth aspects, the at least one bar may include a portion in which a width of the at least one bar reduces as a point approaches the bar second surface in a thickness direction of the at least one bar.
In a tenth aspect of the second embodiment, in the mask support according to any one of the first to ninth aspects, the inner surface includes a portion in which a distance from a center of the opening in plan view increases as a point approaches the frame second surface in a thickness direction of the frame.
In an eleventh aspect of the second embodiment, in the mask support according to any one of the first to tenth aspects, a thickness of the frame may be greater than or equal to 5 mm and less than or equal to 40 mm.
In a twelfth aspect of the second embodiment, in the mask support according to any one of the first to eleventh aspects, a thickness of the at least one bar may be greater than or equal to 50 μm and less than or equal to 1000 μm.
In a thirteenth aspect of the second embodiment, in the mask support according to any one of the first to twelfth aspects, a thickness of the at least one bar may be less than a thickness of the frame.
In a fourteenth aspect of the second embodiment, in the mask support according to any one of the first to thirteenth aspects, a ratio of a thickness of the at least one bar to a thickness of the frame may be lower than or equal to 0.85.
In a fifteenth aspect of the second embodiment, in the mask support according to any one of the first to fourteenth aspects, a width of the at least one bar may be greater than or equal to 1 mm and less than or equal to 100 mm.
A sixteenth aspect of the second embodiment is a method of manufacturing the mask support according to any one of the first to fifteenth aspects. The method includes a preparation step of preparing a plate including a first surface and a second surface located across from the first surface, and a machining step of forming the at least one bar by machining a middle region of the plate from the second surface side when the plate is viewed along a direction normal to the second surface.
A seventeenth aspect of the second embodiment is a mask apparatus. The mask apparatus includes the mask support according to any one of the first to fifteenth aspects and a mask including at least one through-hole and fixed to the frame first surface of the mask support.
An eighteenth aspect of the second embodiment is the mask apparatus according to the seventeenth aspect, and the mask support may include two or more openings partitioned by the at least one bar. The mask may include two or more effective regions. Each effective region may include a group of the regularly arranged through-holes. In plan view, the two or more effective regions may overlap the one opening.
A nineteenth aspect of the second embodiment is a method of manufacturing an organic device. The method includes a vapor deposition step of forming a vapor deposition layer on a substrate by depositing an organic material onto the substrate through the at least one through-hole of the mask of the mask apparatus according to the seventeenth aspect or the eighteenth aspect.
A twentieth aspect of the second embodiment is an organic device. The organic device includes the vapor deposition layer formed on the substrate through the vapor deposition step of the method according to the nineteenth aspect.
Hereinafter, the second embodiment will be described in detail with reference to the accompanying drawings. The embodiments described below are examples of the second embodiment, and the second embodiment is not interpreted limitedly to only these embodiments. In the following description and the drawings to be used in the following description, like reference signs used for corresponding portions in the above-described embodiment denote portions that can be configured similarly to those of the above-described embodiment. The description will not be repeated. When it is apparent that the operation and advantageous effects obtained in the above-described embodiment are also obtained in the following embodiment, the description may be omitted.
In
The mask support 40 will be described.
The frame 41, the bars 42, and the opening 43 will be described. Initially, the frame 41 will be described.
As shown in
In
For example, the dimension L21 of the opening 43 in the first direction D1 may be greater than or equal to 150 mm, may be greater than or equal to 300 mm, may be greater than or equal to 450 mm, or may be greater than or equal to 600 mm. For example, the dimension L21 may be less than or equal to 750 mm, may be less than or equal to 1000 mm, may be less than or equal to 1500 mm, or may be less than or equal to 2000 mm. The range of the dimension L21 may be determined from a first group consisting of 150 mm, 300 mm, 450 mm, and 600 mm and/or a second group consisting of 750 mm, 1000 mm, 1500 mm, and 2000 mm. The range of the dimension L21 may be determined by a combination of any one of the values included in the first group and any one of the values included in the second group. The range of the dimension L21 may be determined by a combination of any two of the values included in the first group. The range of the dimension L21 may be determined by a combination of any two of the values included in the second group. For example, the range of the dimension L21 may be greater than or equal to 150 mm and less than or equal to 2000 mm, may be greater than or equal to 150 mm and less than or equal to 1500 mm, may be greater than or equal to 150 mm and less than or equal to 1000 mm, may be greater than or equal to 150 mm and less than or equal to 750 mm, may be greater than or equal to 150 mm and less than or equal to 600 mm, may be greater than or equal to 150 mm and less than or equal to 450 mm, may be greater than or equal to 150 mm and less than or equal to 300 mm, may be greater than or equal to 300 mm and less than or equal to 2000 mm, may be greater than or equal to 300 mm and less than or equal to 1500 mm, may be greater than or equal to 300 mm and less than or equal to 1000 mm, may be greater than or equal to 300 mm and less than or equal to 750 mm, may be greater than or equal to 300 mm and less than or equal to 600 mm, may be greater than or equal to 300 mm and less than or equal to 450 mm, may be greater than or equal to 450 mm and less than or equal to 2000 mm, may be greater than or equal to 450 mm and less than or equal to 1500 mm, may be greater than or equal to 450 mm and less than or equal to 1000 mm, may be greater than or equal to 450 mm and less than or equal to 750 mm, may be greater than or equal to 450 mm and less than or equal to 600 mm, may be greater than or equal to 600 mm and less than or equal to 2000 mm, may be greater than or equal to 600 mm and less than or equal to 1500 mm, may be greater than or equal to 600 mm and less than or equal to 1000 mm, may be greater than or equal to 600 mm and less than or equal to 750 mm, may be greater than or equal to 750 mm and less than or equal to 2000 mm, may be greater than or equal to 750 mm and less than or equal to 1500 mm, may be greater than or equal to 750 mm and less than or equal to 1000 mm, may be greater than or equal to 1000 mm and less than or equal to 2000 mm, may be greater than or equal to 1000 mm and less than or equal to 1500 mm, or may be greater than or equal to 1500 mm and less than or equal to 2000 mm.
For example, the dimension L22 of the opening 43 in the second direction D2 may be greater than or equal to 600 mm, may be greater than or equal to 800 mm, may be greater than or equal to 1000 mm, or may be greater than or equal to 1200 mm. For example, the dimension L22 may be less than or equal to 1400 mm, may be less than or equal to 1600 mm, may be less than or equal to 1800 mm, or may be less than or equal to 2000 mm. The range of the dimension L22 may be determined from a first group consisting of 600 mm, 800 mm, 1000 mm, and 1200 mm and/or a second group consisting of 1400 mm, 1600 mm, 1800 mm, and 2000 mm. The range of the dimension L22 may be determined by a combination of any one of the values included in the first group and any one of the values included in the second group. The range of the dimension L22 may be determined by a combination of any two of the values included in the first group. The range of the dimension L22 may be determined by a combination of any two of the values included in the second group. For example, the range of the dimension L22 may be greater than or equal to 600 mm and less than or equal to 2000 mm, may be greater than or equal to 600 mm and less than or equal to 1800 mm, may be greater than or equal to 600 mm and less than or equal to 1600 mm, may be greater than or equal to 600 mm and less than or equal to 1400 mm, may be greater than or equal to 600 mm and less than or equal to 1200 mm, may be greater than or equal to 600 mm and less than or equal to 1000 mm, may be greater than or equal to 600 mm and less than or equal to 800 mm, may be greater than or equal to 800 mm and less than or equal to 2000 mm, may be greater than or equal to 800 mm and less than or equal to 1800 mm, may be greater than or equal to 800 mm and less than or equal to 1600 mm, may be greater than or equal to 800 mm and less than or equal to 1400 mm, may be greater than or equal to 800 mm and less than or equal to 1200 mm, may be greater than or equal to 800 mm and less than or equal to 1000 mm, may be greater than or equal to 1000 mm and less than or equal to 2000 mm, may be greater than or equal to 1000 mm and less than or equal to 1800 mm, may be greater than or equal to 1000 mm and less than or equal to 1600 mm, may be greater than or equal to 1000 mm and less than or equal to 1400 mm, may be greater than or equal to 1000 mm and less than or equal to 1200 mm, may be greater than or equal to 1200 mm and less than or equal to 2000 mm, may be greater than or equal to 1200 mm and less than or equal to 1800 mm, may be greater than or equal to 1200 mm and less than or equal to 1600 mm, may be greater than or equal to 1200 mm and less than or equal to 1400 mm, may be greater than or equal to 1400 mm and less than or equal to 2000 mm, may be greater than or equal to 1400 mm and less than or equal to 1800 mm, may be greater than or equal to 1400 mm and less than or equal to 1600 mm, may be greater than or equal to 1600 mm and less than or equal to 2000 mm, may be greater than or equal to 1600 mm and less than or equal to 1800 mm, or may be greater than or equal to 1800 mm and less than or equal to 2000 mm.
The bars 42 will be described. The bars 42 are regions connected to the inner surface 41e of the frame 41 and crossing the opening 43 in plan view. As shown in
As shown in
The structure of the boundary between the frame 41 and each bar 42 will be described with reference to
As shown in
Whether the frame first surface 41a of the frame 41 and the bar first surface 42a of each bar 42 are continuous may be determined in accordance with whether the frame first surface 41a and the bar first surface 42a are located in the same plane around the boundary between the frame 41 and each bar 42. Specifically, the positions of the frame first surface 41a and frame second surface 41b in the direction normal to the frame first surface 41a are measured in a region around the boundary between the frame 41 and each bar 42. The region around the boundary is a region within the range of a radius S1 around a connection point 42e shown in
The above-described connection point 42e is the center point of an end 42d of each bar 42. The end 42d is defined as a portion at which an extended line in plan view of the inner surface 41e of the frame 41, to which the bar 42 is connected, intersects with the bar 42. In the example shown in
A laser displacement meter LK-G85 made by Keyence Corporation can be used as a measuring instrument for measuring the positions of the frame first surface 41a and frame second surface 41b in the direction normal to the frame first surface 41a. The measurement condition of LK-G85 is as follows.
When the frame 41 and the bars 42 are manufactured by mechanically machining one plate, a shape due to machining may occur at connection portions where the frame 41 and the bars 42 are connected. As shown in
The transition portion 42fa may include a curved portion having a first radius of curvature S2. For example, the first radius of curvature S2 may be greater than or equal to 1.0 mm, may be greater than or equal to 1.5 mm, or may be greater than or equal to 2.0 mm. For example, the first radius of curvature S2 may be less than or equal to 3.0 mm, may be less than or equal to 4.0 mm, or may be less than or equal to 5.0 mm. The range of the first radius of curvature S2 may be determined from a first group consisting of 1.0 mm, 1.5 mm, and 2.0 mm and/or a second group consisting of 3.0 mm, 4.0 mm, and 5.0 mm. The range of the first radius of curvature S2 may be determined by a combination of any one of the values included in the first group and any one of the values included in the second group. The range of the first radius of curvature S2 may be determined by a combination of any two of the values included in the first group. The range of the first radius of curvature S2 may be determined by a combination of any two of the values included in the second group. For example, the range of the first radius of curvature S2 may be greater than or equal to 1.0 mm and less than or equal to 5.0 mm, may be greater than or equal to 1.0 mm and less than or equal to 4.0 mm, may be greater than or equal to 1.0 mm and less than or equal to 3.0 mm, may be greater than or equal to 1.0 mm and less than or equal to 2.0 mm, may be greater than or equal to 1.0 mm and less than or equal to 1.5 mm, may be greater than or equal to 1.5 mm and less than or equal to 5.0 mm, may be greater than or equal to 1.5 mm and less than or equal to 4.0 mm, may be greater than or equal to 1.5 mm and less than or equal to 3.0 mm, may be greater than or equal to 1.5 mm and less than or equal to 2.0 mm, may be greater than or equal to 2.0 mm and less than or equal to 5.0 mm, 2.0 mm and less than or equal to 4.0 mm, may be greater than or equal to 2.0 mm and less than or equal to 3.0 mm, may be greater than or equal to 3.0 mm and less than or equal to 5.0 mm, may be greater than or equal to 3.0 mm and less than or equal to 4.0 mm, or may be greater than or equal to 4.0 mm and less than or equal to 5.0 mm. AMIC-1710 made by Sinto S-Precision, Ltd. may be used as a measuring instrument for measuring the first radius of curvature S2.
Although not shown in the drawing, the inner surface 41e and each bar side surface 42c may be connected without intervening a curved portion.
As shown in
The transition portion 42ga may have a second radius of curvature S3. For example, the second radius of curvature S3 may be greater than or equal to 1.0 mm, may be greater than or equal to 1.5 mm, or may be greater than or equal to 2.0 mm. For example, the second radius of curvature S3 may be less than or equal to 3.0 mm, may be less than or equal to 4.0 mm, or may be less than or equal to 5.0 mm. The range of the second radius of curvature S3 may be determined from a first group consisting of 1.0 mm, 1.5 mm, and 2.0 mm and/or a second group consisting of 3.0 mm, 4.0 mm, and 5.0 mm. The range of the second radius of curvature S3 may be determined by a combination of any one of the values included in the first group and any one of the values included in the second group. The range of the second radius of curvature S3 may be determined by a combination of any two of the values included in the first group. The range of the second radius of curvature S3 may be determined by a combination of any two of the values included in the second group. For example, the range of the second radius of curvature S3 may be greater than or equal to 1.0 mm and less than or equal to 5.0 mm, may be greater than or equal to 1.0 mm and less than or equal to 4.0 mm, may be greater than or equal to 1.0 mm and less than or equal to 3.0 mm, may be greater than or equal to 1.0 mm and less than or equal to 2.0 mm, may be greater than or equal to 1.0 mm and less than or equal to 1.5 mm, may be greater than or equal to 1.5 mm and less than or equal to 5.0 mm, may be greater than or equal to 1.5 mm and less than or equal to 4.0 mm, may be greater than or equal to 1.5 mm and less than or equal to 3.0 mm, may be greater than or equal to 1.5 mm and less than or equal to 2.0 mm, may be greater than or equal to 2.0 mm and less than or equal to 5.0 mm, 2.0 mm and less than or equal to 4.0 mm, may be greater than or equal to 2.0 mm and less than or equal to 3.0 mm, may be greater than or equal to 3.0 mm and less than or equal to 5.0 mm, may be greater than or equal to 3.0 mm and less than or equal to 4.0 mm, or may be greater than or equal to 4.0 mm and less than or equal to 5.0 mm. AMIC-1710 made by Sinto S-Precision, Ltd. may be used as a measuring instrument for measuring the second radius of curvature S3.
Although not shown in the drawing, the inner surface 41e and the bar second surface 42b may be connected without intervening a curved portion.
The opening 43 will be described. Since the bars 42 extend so as to cross the opening 43, the opening 43 is partitioned into two or more regions in plan view. For example, as shown in
As shown in
The first openings 43A may overlap the effective regions 53 of the masks 50 in plan view. For example, as shown in
For example, the thickness T2 of the frame 41 may be greater than or equal to 5 mm, may be greater than or equal to 10 mm, may be greater than or equal to 15 mm, or may be greater than or equal to 20 mm. For example, the thickness T2 of the frame 41 may be less than or equal to 25 mm, may be less than or equal to 30 mm, may be less than or equal to 35 mm, or may be less than or equal to 40 mm. The range of the thickness T2 of the frame 41 may be determined from a first group consisting of 5 mm, 10 mm, 15 mm, and 20 mm and/or a second group consisting of 25 mm, 30 mm, 35 mm, and 40 mm. The range of the thickness T2 of the frame 41 may be determined by a combination of any one of the values included in the first group and any one of the values included in the second group. The range of the thickness T2 of the frame 41 may be determined by a combination of any two of the values included in the first group. The range of the thickness T2 of the frame 41 may be determined by a combination of any two of the values included in the second group. For example, the range of the thickness T2 may be greater than or equal to 5 mm and less than or equal to 40 mm, may be greater than or equal to 5 mm and less than or equal to 35 mm, may be greater than or equal to 5 mm and less than or equal to 30 mm, may be greater than or equal to 5 mm and less than or equal to 25 mm, may be greater than or equal to 5 mm and less than or equal to 20 mm, may be greater than or equal to 5 mm and less than or equal to 15 mm, may be greater than or equal to 5 mm and less than or equal to 10 mm, may be greater than or equal to 10 mm and less than or equal to 40 mm, may be greater than or equal to 10 mm and less than or equal to 35 mm, may be greater than or equal to 10 mm and less than or equal to 30 mm, may be greater than or equal to 10 mm and less than or equal to 25 mm, may be greater than or equal to 10 mm and less than or equal to 20 mm, may be greater than or equal to 10 mm and less than or equal to 15 mm, may be greater than or equal to 15 mm and less than or equal to 40 mm, may be greater than or equal to 15 mm and less than or equal to 35 mm, may be greater than or equal to 15 mm and less than or equal to 30 mm, may be greater than or equal to 15 mm and less than or equal to 25 mm, may be greater than or equal to 15 mm and less than or equal to 20 mm, may be greater than or equal to 20 mm and less than or equal to 40 mm, may be greater than or equal to 20 mm and less than or equal to 35 mm, may be greater than or equal to 20 mm and less than or equal to 30 mm, may be greater than or equal to 20 mm and less than or equal to 25 mm, may be greater than or equal to 25 mm and less than or equal to 40 mm, may be greater than or equal to 25 mm and less than or equal to 35 mm, may be greater than or equal to 25 mm and less than or equal to 30 mm, may be greater than or equal to 30 mm and less than or equal to 40 mm, may be greater than or equal to 30 mm and less than or equal to 35 mm, or may be greater than or equal to 35 mm and less than or equal to 40 mm.
When the thickness T2 of the frame 41 is greater than or equal to 5 mm, a deformation, such as warpage, of the frame 41 is suppressed. When the thickness T2 of the frame 41 is less than or equal to 40 mm, an excessive increase in the weight of the frame 41 is suppressed. Thus, the handleability of the mask support 40 is improved. For example, the mask support 40 can be transported by using a small lifter.
For example, the thickness T3 of the bar 42 may be greater than or equal to 50 μm, may be greater than or equal to 100 μm, may be greater than or equal to 200 μm, or may be greater than or equal to 300 μm. For example, the thickness T3 of the bar 42 may be less than or equal to 500 μm, may be less than or equal to 700 μm, may be less than or equal to 1 mm, or may be less than or equal to 10 mm. The range of the thickness T3 of the bar 42 may be determined from a first group consisting of 50 μm, 100 μm, 200 μm, and 300 μm and/or a second group consisting of 500 μm, 700 μm, 1 mm, and 10 mm. The range of the thickness T3 of the bar 42 may be determined by a combination of any one of the values included in the first group and any one of the values included in the second group. The range of the thickness T3 of the bar 42 may be determined by a combination of any two of the values included in the first group. The range of the thickness T3 of the bar 42 may be determined by a combination of any two of the values included in the second group. For example, the range of the thickness T3 may be greater than or equal to 50 μm and less than or equal to 10 mm, may be greater than or equal to 50 μm and less than or equal to 1 mm, may be greater than or equal to 50 μm and less than or equal to 700 μm, may be greater than or equal to 50 μm and less than or equal to 500 μm, may be greater than or equal to 50 μm and less than or equal to 300 μm, may be greater than or equal to 50 μm and less than or equal to 200 μm, may be greater than or equal to 50 μm and less than or equal to 100 μm, may be greater than or equal to 100 μm and less than or equal to 10 mm, may be greater than or equal to 100 μm and less than or equal to 1 mm, may be greater than or equal to 100 μm and less than or equal to 700 μm, may be greater than or equal to 100 μm and less than or equal to 500 μm, may be greater than or equal to 100 μm and less than or equal to 300 μm, may be greater than or equal to 100 μm and less than or equal to 200 may be greater than or equal to 200 μm and less than or equal to 10 mm, may be greater than or equal to 200 μm and less than or equal to 1 mm, may be greater than or equal to 200 μm and less than or equal to 700 μm, may be greater than or equal to 200 μm and less than or equal to 500 μm, may be greater than or equal to 200 μm and less than or equal to 300 may be greater than or equal to 300 μm and less than or equal to 10 mm, may be greater than or equal to 300 μm and less than or equal to 1 mm, may be greater than or equal to 300 μm and less than or equal to 700 μm, may be greater than or equal to 300 μm and less than or equal to 500 μm, may be greater than or equal to 500 μm and less than or equal to 10 mm, may be greater than or equal to 500 μm and less than or equal to 1 mm, may be greater than or equal to 500 μm and less than or equal to 700 μm, may be greater than or equal to 700 μm and less than or equal to 10 mm, may be greater than or equal to 700 μm and less than or equal to 1 mm, or may be greater than or equal to 1 mm and less than or equal to 10 mm.
The thickness T3 of the bar 42 may be less than the thickness T2 of the frame 41. As the thickness of the bar 42 increases, the amount of vapor deposition material to be adhered to the bar 42 in the vapor deposition step increases. When the thickness T3 of the bar 42 is less than the thickness T2 of the frame 41, interference of the bar 42 with vapor deposition is suppressed. Therefore, from the viewpoint of the efficiency of vapor deposition, it is preferable that the thickness T3 of the bar 42 is small.
On the other hand, as the thickness T3 of the bar 42 increases, the stiffness of the bar 42 increases. In the present embodiment, the frame 41 and each bar 42 are integrated. Therefore, an increase in the stiffness of each bar 42 leads to suppressing a deformation of the frame 41. However, as the thickness T3 of the bar 42 increases, the weight of the bar 42 increases. An increase in the weight of each bar 42 leads to a deformation of the frame 41 toward the inner side. This is because the frame 41 is pulled by gravitational force that acts on each bar 42. The inner side means a direction from the frame 41 toward the center of the opening 43. When the thickness T3 of each bar 42 is increased to suppress a deformation of the frame 41, it is preferable to consider not only the stiffness of each bar 42 but also a deformation of the frame 41 due to an increase in the weight of each bar 42.
As described in an example (described later), a deformation amount of the frame 41 may have a local minimum value that is determined in accordance with the relationship with the thickness T3 of each bar 42. When the deformation amount of the frame 41 is a local minimum value, the suppressed deformation amount of the frame 41 based on the stiffness of the bar 42 balances with the deformation amount of the frame 41 based on the own weight of the bars 42. The thickness T3 at the time when the deformation amount of the frame 41 is a local minimum value is also referred to as reversal thickness. When the thickness T3 is less than or equal to the reversal thickness, the deformation amount of the frame 41 reduces as the thickness T3 of each bar 42 increases. When the thickness T3 is greater than the reversal thickness, the deformation amount of the frame 41 increases as the thickness T3 of each bar 42 increases.
The ratio of the thickness T3 to the thickness T2 at the time when the deformation amount of the frame 41 is a local minimum value is also referred to as reversal ratio. The reversal ratio may fall within the range 0<T3/T2<1.
For example, T3/T2 may be higher than or equal to 0.1, may be higher than or equal to 0.2, may be higher than or equal to 0.3, or may be higher than or equal to 0.4. For example, T3/T2 may be lower than or equal to 0.5, may be lower than or equal to 0.6, may be lower than or equal to 0.7, or may be lower than or equal to 0.85. The range of T3/T2 may be determined from a first group consisting of 0.1, 0.2, 0.3, and 0.4 and/or a second group consisting of 0.5, 0.6, 0.7, and 0.85. The range of T3/T2 may be determined by a combination of any one of the values included in the first group and any one of the values included in the second group. The range of T3/T2 may be determined by a combination of any two of the values included in the first group. The range of T3/T2 may be determined by a combination of any two of the values included in the second group. For example, the range of T3/T2 may be higher than or equal to 0.1 and lower than or equal to 0.85, may be higher than or equal to 0.1 and lower than or equal to 0.7, may be higher than or equal to 0.1 and lower than or equal to 0.6, may be higher than or equal to 0.1 and lower than or equal to 0.5, may be higher than or equal to 0.1 and lower than or equal to 0.4, may be higher than or equal to 0.1 and lower than or equal to 0.3, may be higher than or equal to 0.1 and lower than or equal to 0.2, may be higher than or equal to 0.2 and lower than or equal to 0.85, may be higher than or equal to 0.2 and lower than or equal to 0.7, may be higher than or equal to 0.2 and lower than or equal to 0.6, may be higher than or equal to 0.2 and lower than or equal to 0.5, may be higher than or equal to 0.2 and lower than or equal to 0.4, may be higher than or equal to 0.2 and lower than or equal to 0.3, may be higher than or equal to 0.3 and lower than or equal to 0.85, may be higher than or equal to 0.3 and lower than or equal to 0.7, may be higher than or equal to 0.3 and lower than or equal to 0.6, may be higher than or equal to 0.3 and lower than or equal to 0.5, may be higher than or equal to 0.3 and lower than or equal to 0.4, may be higher than or equal to 0.4 and lower than or equal to 0.85, may be higher than or equal to 0.4 and lower than or equal to 0.7, may be higher than or equal to 0.4 and lower than or equal to 0.6, may be higher than or equal to 0.4 and lower than or equal to 0.5, may be higher than or equal to 0.5 and lower than or equal to 0.85, may be higher than or equal to 0.5 and lower than or equal to 0.7, may be higher than or equal to 0.5 and lower than or equal to 0.6, may be higher than or equal to 0.6 and lower than or equal to 0.85, may be higher than or equal to 0.6 and lower than or equal to 0.7, or may be higher than or equal to 0.7 and lower than or equal to 0.85.
A contact-type measuring method is adopted as a method of measuring the thickness T of the metal plate 55, the thickness T2 of the frame 41, and the thickness T3 of each bar 42. A length gauge HEIDENHAIM-METRO “MT1271” made by HEIDENHAIN, including a ball-push guide-type plunger, is used as the contact-type measuring method.
A method of manufacturing the mask apparatus 15 will be described. Initially, an example of the method of manufacturing the mask support 40 will be described.
Initially, as shown in
Subsequently, a machining step of machining the middle region 47d, located inside the position of the end 42d of the plate 47, from the second surface 47b side by using a cutter or a processing machine may be performed. The machining step may include a first machining step of machining the plate 47 until the thickness T4 of the middle region 47d becomes the thickness T3 of the bar 42 as shown in
The machining step may include a second machining step of partially forming an opening from the second surface 47b to the first surface 47a in the middle region 47d by partially machining the middle region 47d from the second surface 47b side with a cutter or a processing machine. In this case, regions left in the middle region 47d without forming an opening make up the bars 42. A drill, a cutting tool, a milling cutter, an end mill, or the like may be used as a cutter for performing the second machining step. Laser beam machining, water plasma processing, wire-cut processing, or the like may be adopted as a machining method to be performed by the processing machine.
In this way, as shown in
Subsequently, a fixing step of fixing the mask 50 to the second sides 412 of the frame 41 may be performed. For example, in a state where a tension Tx is applied to the mask 50 in the first direction D1, the end portions 51 of the mask 50 may be fixed to the frame first surfaces 41a of the second sides 412. For example, a welding process may be used as a method of fixing the mask 50 to the frame 41. Laser beam may be used in the welding process. Laser beam may be applied to the end portions 51. The end portions 51 applied with laser beam may melt to weld the end portions 51 to the frame first surfaces 41a of the second sides 412. In this way, as shown in
In the embodiment of the present disclosure, as described above, the mask support 40 is created by mechanically machining one plate 47. For this reason, the frame 41 and the bars 42 of the mask support 40 are integrated. Therefore, in comparison with the case where the frame 41 and the bars 42 are different members, the stiffness of the mask support 40 in the direction in which the bars 42 extend is improved. When, for example, the bars 42 include the first bars 421 extending in the second direction D2, the stiffness of the mask support 40 in the second direction D2 is improved. Therefore, for example, a deformation of the frame 41 of the mask support 40 in the second direction D2 due to a force received by the mask support 40 from the masks 50 is suppressed. Thus, a deviation of the positions of the through-holes 56 of each mask 50 fixed to the frame 41 from designed positions is suppressed. The designed positions are ideal positions of the through-holes 56.
An example of the advantage that the accuracy of the positions of the first vapor deposition layers 130 is high will be described. When the organic device 100 includes the electrically insulating layers 160 as shown in
It is a conceivable advantage that, when the frame first surface 41a of the frame 41 and the bar first surface 42a of each bar 42 are in the same plane, the position of the surface of the mask 50 supported from the lower side by the bars 42 is easily controlled with respect to the frame first surface 41a of the frame 41. Thus, as shown in
Next, the case where the frame 41 and the first bars 421 are integrated as in the case of the present embodiment and the case where the first bars 421 and the frame 41 are different members as in the case of
Since the first bars 421 of
In contrast, since the frame 41 and the bars 42 are integrated in the mask apparatus 15 of
The second embodiment may be modified into various forms. Hereinafter, other embodiments will be described with reference to the drawings as needed. In the following description and the drawings to be used in the following description, like reference signs used for corresponding portions in the above-described embodiment denote portions that can be configured similarly to those of the above-described embodiment. The description will not be repeated. When it is apparent that the operation and advantageous effects obtained in the above-described embodiment are also obtained in the following embodiment, the description may be omitted.
The bar first surface 42a of each second bar 422 may be in contact with the second surface 552 of the mask 50. The second bars 422, as well as the first bars 421, suppress warpage of the masks 50 under their own weight.
A structure at the boundary between each second side 412 of the frame 41 and each of the second bars 422 of the bars 42 will be described with reference to
As shown in
As shown in
As shown in
The opening 43 will be described. Since the bars 42 extend so as to cross the opening 43, the opening 43 is partitioned into two or more regions in plan view. For example, as shown in
As shown in
The second openings 43B may overlap the effective regions 53 of the masks 50 in plan view. In the state of the mask apparatus 15, two or more effective regions 53 arranged in the first direction D1 may overlap one second opening 43B in plan view. The two or more effective regions 53 of one mask 50 may overlap one second opening 43B.
The mask support 40 shown in
When the frame first surface 41a of each second side 412 of the frame 41 and the bar first surface 42a of each of the second bars 422 of the bars 42 are in the same plane, the position of the surface of the mask 50 supported from the lower side by the bars 42 is easily controlled with respect to the frame first surface 41a of the frame 41. Thus, a distance Z1 between the first surface 551 of the mask 50 and the first surface 111 of the substrate 110 is easily controlled. Therefore, for example, a shadow in the vapor deposition step is easily suppressed or adjusted.
As in the case of the above-described embodiment, the thickness T3 of the bar 42 may be less than the thickness T2 of the frame 41. For example, T3/T2 may be higher than or equal to 0.1, may be higher than or equal to 0.2, may be higher than or equal to 0.3, or may be higher than or equal to 0.4. For example, T3/T2 may be lower than or equal to 0.5, may be lower than or equal to 0.6, may be lower than or equal to 0.7, or may be lower than or equal to 0.85. The range of T3/T2 may be determined from a first group consisting of 0.1, 0.2, 0.3, and 0.4 and/or a second group consisting of 0.5, 0.6, 0.7, and 0.85. The range of T3/T2 may be determined by a combination of any one of the values included in the first group and any one of the values included in the second group. The range of T3/T2 may be determined by a combination of any two of the values included in the first group. The range of T3/T2 may be determined by a combination of any two of the values included in the second group. For example, the range of T3/T2 may be higher than or equal to 0.1 and lower than or equal to 0.85, may be higher than or equal to 0.1 and lower than or equal to 0.7, may be higher than or equal to 0.1 and lower than or equal to 0.6, may be higher than or equal to 0.1 and lower than or equal to 0.5, may be higher than or equal to 0.1 and lower than or equal to 0.4, may be higher than or equal to 0.1 and lower than or equal to 0.3, may be higher than or equal to 0.1 and lower than or equal to 0.2, may be higher than or equal to 0.2 and lower than or equal to 0.85, may be higher than or equal to 0.2 and lower than or equal to 0.7, may be higher than or equal to 0.2 and lower than or equal to 0.6, may be higher than or equal to 0.2 and lower than or equal to 0.5, may be higher than or equal to 0.2 and lower than or equal to 0.4, may be higher than or equal to 0.2 and lower than or equal to 0.3, may be higher than or equal to 0.3 and lower than or equal to 0.85, may be higher than or equal to 0.3 and lower than or equal to 0.7, may be higher than or equal to 0.3 and lower than or equal to 0.6, may be higher than or equal to 0.3 and lower than or equal to 0.5, may be higher than or equal to 0.3 and lower than or equal to 0.4, may be higher than or equal to 0.4 and lower than or equal to 0.85, may be higher than or equal to 0.4 and lower than or equal to 0.7, may be higher than or equal to 0.4 and lower than or equal to 0.6, may be higher than or equal to 0.4 and lower than or equal to 0.5, may be higher than or equal to 0.5 and lower than or equal to 0.85, may be higher than or equal to 0.5 and lower than or equal to 0.7, may be higher than or equal to 0.5 and lower than or equal to 0.6, may be higher than or equal to 0.6 and lower than or equal to 0.85, may be higher than or equal to 0.6 and lower than or equal to 0.7, or may be higher than or equal to 0.7 and lower than or equal to 0.85.
Another example of the mask apparatus 15 will be described with reference to
When the second bars 422 of
In contrast, in the example shown in
An example in which the mask support 40 of the mask apparatus 15 includes both the first bars 421 and the second bars 422 will be described with reference to
The frame first surface 41a of the frame 41 and the bar first surface 42a of each bar 42 may be continuous at the boundary between the frame 41 and the bar 42. A structure at the boundary between each first side 411 of the frame 41 and each of the first bars 421 of the bars 42 is similar to the case of the embodiment shown in
The structure of a connection portion between each of the first bars 421 and each of the second bars 422 of the bars 42 will be described with reference to
The bar first surface 42a of each first bar 421 and the bar first surface 42a of each second bar 422 may be located in the same plane. For example, as shown in
As shown in
The transition portion 42ha may include a curved portion having a third radius of curvature S5. For example, the third radius of curvature S5 may be greater than or equal to 10 μm, may be greater than or equal to 100 μm, may be greater than or equal to 1 mm, or may be greater than or equal to 2 mm. For example, the third radius of curvature S5 may be less than or equal to 3 mm, may be less than or equal to 5 mm, may be less than or equal to 10 mm, or may be less than or equal to 20 mm. The range of the third radius of curvature S5 may be determined from a first group consisting of 10 μm, 100 μm, 1 mm, and 2 mm and/or a second group consisting of 3 mm, 5 mm, 10 mm, and 20 mm. The range of the third radius of curvature S5 may be determined by a combination of any one of the values included in the first group and any one of the values included in the second group. The range of the third radius of curvature S5 may be determined by a combination of any two of the values included in the first group. The range of the third radius of curvature S5 may be determined by a combination of any two of the values included in the second group. For example, the range of the third radius of curvature S5 may be greater than or equal to 10 μm and less than or equal to 20 mm, may be greater than or equal to 10 μm and less than or equal to 10 mm, may be greater than or equal to 10 μm and less than or equal to 5 mm, may be greater than or equal to 10 μm and less than or equal to 3 mm, may be greater than or equal to 10 μm and less than or equal to 2 mm, may be greater than or equal to 10 μm and less than or equal to 1 mm, may be greater than or equal to 10 μm and less than or equal to 100 μm, may be greater than or equal to 100 μm and less than or equal to 20 mm, may be greater than or equal to 100 μm and less than or equal to 10 mm, may be greater than or equal to 100 μm and less than or equal to 5 mm, may be greater than or equal to 100 μm and less than or equal to 3 mm, may be greater than or equal to 100 μm and less than or equal to 2 mm, may be greater than or equal to 100 μm and less than or equal to 1 mm, may be greater than or equal to 1 mm and less than or equal to 20 mm, may be greater than or equal to 1 mm and less than or equal to 10 mm, may be greater than or equal to 1 mm and less than or equal to 5 mm, may be greater than or equal to 1 mm and less than or equal to 3 mm, may be greater than or equal to 1 mm and less than or equal to 2 mm, may be greater than or equal to 2 mm and less than or equal to 20 mm, may be greater than or equal to 2 mm and less than or equal to 10 mm, may be greater than or equal to 2 mm and less than or equal to 5 mm, may be greater than or equal to 2 mm and less than or equal to 3 mm, may be greater than or equal to 3 mm and less than or equal to 20 mm, may be greater than or equal to 3 mm and less than or equal to 10 mm, may be greater than or equal to 3 mm and less than or equal to 5 mm, may be greater than or equal to 5 mm and less than or equal to 20 mm, may be greater than or equal to 5 mm and less than or equal to 10 mm, or may be greater than or equal to 10 mm and less than or equal to 20 mm. AMIC-1710 made by Sinto S-Precision, Ltd. may be used as a measuring instrument for measuring the third radius of curvature S5.
The opening 43 will be described. In the present embodiment as well, the opening 43 is partitioned into two or more regions by the bars 42 in plan view. For example, as shown in
As shown in
The third openings 43C may overlap the effective regions 53 of the masks 50 in plan view. In the state of the mask apparatus 15, one effective region 53 may overlap one third opening 43C in plan view. In plan view, two or more effective regions 53 may overlap one third opening 43C. For example, two or more effective regions 53 arranged in the first direction D1 may overlap one third opening 43C. For example, two or more effective regions 53 arranged in the second direction D2 may overlap one third opening 43C.
The mask support 40 shown in
Since the mask support 40 is created by mechanically machining one plate, the bar first surface 42a of each of the first bars 421 of the bars 42 and the bar first surface 42a of each of the second bars 422 of the bars 42 are continuous. For example, the bar first surface 42a of each first bar 421 and the bar first surface 42a of each second bar 422 may be located in the same plane. For this reason, the position of the surface of the mask 50 to be supported from the lower side by the bars 42 is easily controlled with respect to the frame first surface 41a of the frame 41. Thus, a distance Z1 between the first surface 551 of the mask 50 and the first surface 111 of the substrate 110 is easily controlled. Therefore, for example, a shadow in the vapor deposition step is easily suppressed or adjusted.
As in the case of the above-described embodiment, the thickness T3 of the bar 42 may be less than the thickness T2 of the frame 41. For example, T3/T2 may be higher than or equal to 0.1, may be higher than or equal to 0.2, may be higher than or equal to 0.3, or may be higher than or equal to 0.4. For example, T3/T2 may be lower than or equal to 0.5, may be lower than or equal to 0.6, may be lower than or equal to 0.7, or may be lower than or equal to 0.85. The range of T3/T2 may be determined from a first group consisting of 0.1, 0.2, 0.3, and 0.4 and/or a second group consisting of 0.5, 0.6, 0.7, and 0.85. The range of T3/T2 may be determined by a combination of any one of the values included in the first group and any one of the values included in the second group. The range of T3/T2 may be determined by a combination of any two of the values included in the first group. The range of T3/T2 may be determined by a combination of any two of the values included in the second group. For example, the range of T3/T2 may be higher than or equal to 0.1 and lower than or equal to 0.85, may be higher than or equal to 0.1 and lower than or equal to 0.7, may be higher than or equal to 0.1 and lower than or equal to 0.6, may be higher than or equal to 0.1 and lower than or equal to 0.5, may be higher than or equal to 0.1 and lower than or equal to 0.4, may be higher than or equal to 0.1 and lower than or equal to 0.3, may be higher than or equal to 0.1 and lower than or equal to 0.2, may be higher than or equal to 0.2 and lower than or equal to 0.85, may be higher than or equal to 0.2 and lower than or equal to 0.7, may be higher than or equal to 0.2 and lower than or equal to 0.6, may be higher than or equal to 0.2 and lower than or equal to 0.5, may be higher than or equal to 0.2 and lower than or equal to 0.4, may be higher than or equal to 0.2 and lower than or equal to 0.3, may be higher than or equal to 0.3 and lower than or equal to 0.85, may be higher than or equal to 0.3 and lower than or equal to 0.7, may be higher than or equal to 0.3 and lower than or equal to 0.6, may be higher than or equal to 0.3 and lower than or equal to 0.5, may be higher than or equal to 0.3 and lower than or equal to 0.4, may be higher than or equal to 0.4 and lower than or equal to 0.85, may be higher than or equal to 0.4 and lower than or equal to 0.7, may be higher than or equal to 0.4 and lower than or equal to 0.6, may be higher than or equal to 0.4 and lower than or equal to 0.5, may be higher than or equal to 0.5 and lower than or equal to 0.85, may be higher than or equal to 0.5 and lower than or equal to 0.7, may be higher than or equal to 0.5 and lower than or equal to 0.6, may be higher than or equal to 0.6 and lower than or equal to 0.85, may be higher than or equal to 0.6 and lower than or equal to 0.7, or may be higher than or equal to 0.7 and lower than or equal to 0.85.
Another example of the mask apparatus 15 will be described with reference to
In contrast, in the example shown in
When the width WA3 of each bar 42 reduces as a point approaches the bar second surface 42b in the thickness direction of the bar 42, adhesion of a vapor deposition material to the bar 42 in the vapor deposition step is suppressed. When the width WA31 of each bar 42 on the bar first surface 42a is increased, the stiffness of the bar 42 is improved. Therefore, according to the embodiment shown in
According to the embodiment shown in
As shown in
When the inner surface 41e of each first side 411 includes the inclined surface 41g, adhesion of a vapor deposition material to the inner surface 41e of each first side 411 in the vapor deposition step is suppressed.
As shown in
When the inner surface 41e of each second side 412 includes the inclined surface 41g, adhesion of a vapor deposition material to the inner surface 41e of each second side 412 in the vapor deposition step is suppressed as in the case of each first side 411 shown in
The standard mask apparatus 15A is used to evaluate the characteristics of the first vapor deposition chamber 10. Therefore, high accuracy is desired for the component elements of the standard mask apparatus 15A. As described above, the mask support 40 including the frame 41 and the bars 42, integrated with each other, has a high stiffness in the direction in which the bars 42 extend as compared to the case where the frame 41 and the bars 42 are different members. Therefore, a deformation of the frame 41 of the mask support 40 in the second direction D2 due to a force received by the mask support 40 from the standard masks 50A is suppressed. Thus, a deviation of the positions of the through-holes 56 of the standard masks 50A fixed to the frame 41 from designed positions is suppressed. For this reason, further accurate evaluation of the characteristics of the first vapor deposition chamber 10 can be performed.
When the frame first surface 41a of the frame 41 and the bar first surface 42a of each bar 42 are in the same plane, the position of the surface of each standard mask 50A supported from the lower side by the bars 42 is easily controlled with respect to the frame first surface 41a of the frame 41. Thus, in the vapor deposition step, the distance Z1 between the first surface 551 of each mask 50 and the first surface 111 of the substrate 110 is easily controlled. Therefore, for example, a shadow in the vapor deposition step is easily suppressed or adjusted. Hence, further accurate evaluation of the characteristics of the first vapor deposition chamber 10 can be performed.
In the example shown in
Next, the second embodiment will be more specifically described by way of the example; however, the second embodiment is not limited to the following example without departing from the purport of the second embodiment.
A deformation that occurs in the frame 41 is examined by simulation.
As shown in
A deformation amount K in each second side 412 when a force Tx is applied to the second side 412 in the first direction D1 as shown in
Next, a third embodiment will be described. The third embodiment has a feature related to a method of fixing the masks 50 to the mask support 40.
The third embodiment provides a method of manufacturing a mask apparatus and a method of manufacturing an organic device, which are capable of shortening time consumed to align masks with a frame.
The method of manufacturing a mask apparatus according to the third embodiment may include a frame preparation step, a mask preparation step, a placement step, a mask alignment step, and a joining step. In the frame preparation step, a frame including a frame first surface, a frame second surface located across from the frame first surface, an opening extending through from the frame first surface to the frame second surface, a wall surface located outside the opening in plan view and extending from the frame first surface toward the frame second surface, the frame wall surface including a first wall surface edge located adjacent to the frame first surface and a second wall surface edge located adjacent to the frame second surface, and a frame third surface extending outward from the second wall surface edge along the frame second surface in plan view may be prepared. In the mask preparation step, a mask including a first mask edge located at one of side edges in a second direction, a second mask edge located at the other one of the side edges in the second direction, a pair of end portions located on both sides in a first direction perpendicular to the second direction, and a through-hole located between the pair of end portions may be prepared. In the placement step, the mask may be placed on the frame such that end portions of the mask overlap the first wall surface edge in plan view and the first wall surface edge extends in a straight line in the second direction from the first mask edge of the mask to the second mask edge. In the mask alignment step, after the placement step, the mask may be aligned with the frame while being pulled in the first direction by a joint tension and being pressed against the frame. In the joining step, after the mask alignment step, the mask may be joined with the frame while being pulled in the first direction by the joint tension and being pressed against the frame.
The method of manufacturing an organic device according to the third embodiment may include an apparatus preparation step of preparing a mask apparatus through the method of manufacturing a mask apparatus, a close contact step, and a vapor deposition step. In the close contact step, the mask of the mask apparatus may be brought into close contact with a substrate. In the vapor deposition step, a vapor deposition layer may be formed by depositing a vapor deposition material onto the substrate through the at least one through-hole of the mask.
A mask apparatus according to the third embodiment may include a frame and a mask provided on the frame. The frame may include a frame first surface, a frame second surface located across from the frame first surface, an opening extending through from the frame first surface to the frame second surface, a wall surface located outside the opening in plan view and extending from the frame first surface toward the frame second surface, the frame wall surface including a first wall surface edge located adjacent to the frame first surface and a second wall surface edge located adjacent to the frame second surface, and a frame third surface extending outward from the second wall surface edge along the frame second surface in plan view. The mask may include a first mask edge located at one of side edges in a second direction, a second mask edge located at the other one of the side edges in the second direction, a pair of end portions located on both sides in a first direction perpendicular to the second direction and overlapping the frame first surface, and a through-hole located between the pair of end portions. The mask may include a pair of mask ends located on both sides in the first direction and inside the first wall surface edge. The first wall surface edge may extend in a straight line in the first direction from an extended line of the first mask edge of the mask to an extended line of the second mask edge.
An intermediate product of a mask apparatus according to the third embodiment may include a frame and a mask provided on the frame. The frame may include a frame first surface, a frame second surface located across from the frame first surface, an opening extending through from the frame first surface to the frame second surface, a frame wall surface located outside the opening in plan view and extending from the frame first surface toward the frame second surface, the frame wall surface including a first wall surface edge located adjacent to the frame first surface and a second wall surface edge located adjacent to the frame second surface, and a frame third surface extending outward from the second wall surface edge along the frame second surface in plan view. The mask may include a first mask edge located at one of side edges in a second direction, a second mask edge located at the other one of the side edges in the second direction, a pair of end portions located on both sides in a first direction perpendicular to the second direction and overlapping the frame first surface, and a through-hole located between the pair of end portions. The first wall surface edge may overlap the end portions of the mask in plan view and extend in a straight line in the first direction from the first mask edge of the mask to the second mask edge.
According to the third embodiment, time consumed to align a mask with a frame is shortened.
A first aspect of the third embodiment is a method of manufacturing a mask apparatus. The method includes a frame preparation step of preparing a frame including a frame first surface, a frame second surface located across from the frame first surface, an opening extending through from the frame first surface to the frame second surface, a frame wall surface located outside the opening in plan view and extending from the frame first surface toward the frame second surface, the frame wall surface including a first wall surface edge located adjacent to the frame first surface and a second wall surface edge located adjacent to the frame second surface, and a frame third surface extending outward from the second wall surface edge along the frame second surface in plan view, a mask preparation step of preparing at least one mask including a first mask edge located at one of side edges in a second direction, a second mask edge located at the other one of the side edges in the second direction, a pair of end portions located on both sides in a first direction perpendicular to the second direction, and a through-hole located between the pair of end portions, a placement step of placing the at least one mask on the frame such that the end portions of the at least one mask overlap the first wall surface edge in plan view and the first wall surface edge extends in a straight line in the second direction from the first mask edge of the at least one mask to the second mask edge, a mask alignment step of, after the placement step, aligning the at least one mask with the frame while the at least one mask is being pulled in the first direction by a joint tension and being pressed against the frame, and a joining step of, after the mask alignment step, joining the at least one mask with the frame while the at least one mask is being pulled in the first direction by the joint tension and being pressed against the frame.
In a second aspect of the third embodiment, in the method of manufacturing a mask apparatus according to the first aspect, the mask alignment step may include a first checking step of checking a position of the through-hole with respect to the frame while the joint tension is being applied to the at least one mask and the at least one mask is being pressed against the frame.
In a third aspect of the third embodiment, in the method of manufacturing a mask apparatus according to the second aspect, the mask alignment step may include a moving step of moving the at least one mask in any one of directions in a two-dimensional plane defined by the second direction and the first direction in accordance with a position check result of the through-hole in the first checking step while the joint tension is being applied to the at least one mask and the at least one mask is being pressed against the frame.
In a fourth aspect of the third embodiment, in the method of manufacturing a mask apparatus according to any one of the first to third aspects, the mask alignment step may include a second checking step of, after the moving step, checking a position of the through-hole with respect to the frame while the joint tension is being applied to the at least one mask and the at least one mask is being pressed against the frame.
In a fifth aspect of the third embodiment, in the method of manufacturing a mask apparatus according to the first aspect, the mask alignment step may include a third checking step of checking a position of the through-hole with respect to the frame while the at least one mask is being pressed against the frame, a tension adjustment step of adjusting a tension to be applied to the at least one mask in accordance with a position check result of the through-hole in the third checking step, and a fourth checking step of, after the tension adjustment step, checking a position of the through-hole with respect to the frame while the joint tension is being applied to the at least one mask and the at least one mask is being pressed against the frame.
A sixth aspect of the third embodiment, in the method of manufacturing a mask apparatus according to any one of the first to fifth aspects, may further include a cutting step of, after the joining step, cutting the end portions of the at least one mask. In the joining step, a joint portion extending from each of the end portions of the at least one mask to the frame may be formed. In the cutting step, the at least one mask may be cut at a position outside the joint portion in the first direction in each of the end portions of the at least one mask, and a portion outside the cut position may be removed.
In a seventh aspect of the third embodiment, in the method of manufacturing a mask apparatus according to the sixth aspect, a frame groove extending in the second direction may be provided on the frame first surface of the frame. In the cutting step, the at least one mask may be cut along the frame groove.
In an eighth aspect of the third embodiment, in the method of manufacturing a mask apparatus according to any one of the first to seventh aspects, when the two or more masks arranged in the second direction are joined with the frame, the first wall surface edge of the frame may extend in a straight line in the second direction from one of the masks to another one of the masks.
In a ninth aspect of the third embodiment, in the method of manufacturing a mask apparatus according to the eighth aspect, the first wall surface edge of the frame may extend in a straight line in the second direction from one of the masks, located farthest to one side in the second direction, to another one of the masks, located farthest to a side opposite from the one of the masks.
Each of the first to ninth aspects may be a mask apparatus manufactured through the method of manufacturing a mask apparatus according to any one of the first to ninth aspects.
A tenth aspect of the third embodiment is a method of manufacturing an organic device. The manufacturing method includes an apparatus preparation step of preparing the mask apparatus through the method of manufacturing a mask apparatus according to any one of the first to ninth aspects, a close contact step of bringing the at least one mask of the mask apparatus into close contact with a substrate, and a vapor deposition step of forming a vapor deposition layer by depositing a vapor deposition material onto the substrate through the through-hole of the at least one mask.
In an eleventh aspect of the third embodiment, in the close contact step of the method of manufacturing an organic device according to the tenth aspect, the substrate may be held by an electrostatic chuck from the upper side.
Each of the tenth and eleventh aspects may be an organic device manufactured through the method of manufacturing an organic device according to the tenth or eleventh aspect.
A twelfth aspect of the third embodiment is a mask apparatus. The mask apparatus includes a frame including a frame first surface, a frame second surface located across from the frame first surface, an opening extending through from the frame first surface to the frame second surface, a frame wall surface located outside the opening in plan view and extending from the frame first surface toward the frame second surface, the frame wall surface including a first wall surface edge located adjacent to the frame first surface and a second wall surface edge located adjacent to the frame second surface, and a frame third surface extending outward from the second wall surface edge along the frame second surface in plan view, and at least one mask provided on the frame and including a first mask edge located at one of side edges in a second direction, a second mask edge located at the other one of the side edges in the second direction, a pair of end portions located on both sides in a first direction perpendicular to the second direction and overlapping the frame first surface, and a through-hole located between the pair of end portions. The at least one mask includes a pair of mask ends located on both sides in the first direction and inside the first wall surface edge. The first wall surface edge extends in a straight line in the first direction from an extended line of the first mask edge of the at least one mask to an extended line of the second mask edge.
In a thirteenth aspect of the third embodiment, the mask apparatus according to the twelfth aspect may include the two or more masks arranged in the second direction. The first wall surface edge may extend in a straight line in the second direction from one of the masks to another one of the masks.
In a fourteenth aspect of the third embodiment, in the mask apparatus according to the thirteenth aspect, the first wall surface edge may extend in a straight line in the second direction from one of the masks, located farthest to one side in the second direction, to another one of the masks, located farthest to a side opposite from the one of the masks.
In a fifteenth aspect of the third embodiment, in the mask apparatus according to any one of the twelfth to fourteenth aspects, a frame groove extending in the second direction may be provided on the frame first surface of the frame.
A sixteenth aspect of the third embodiment is an intermediate product of a mask apparatus. The intermediate product of the mask apparatus includes a frame including a frame first surface, a frame second surface located across from the frame first surface, an opening extending through from the frame first surface to the frame second surface, a frame wall surface located outside the opening in plan view and extending from the frame first surface toward the frame second surface, the frame wall surface including a first wall surface edge located adjacent to the frame first surface and a second wall surface edge located adjacent to the frame second surface, and a frame third surface extending outward from the second wall surface edge along the frame second surface in plan view, and at least one mask provided on the frame and including a first mask edge located at one of side edges in a second direction, a second mask edge located at the other one of the side edges in the second direction, a pair of end portions located on both sides in a first direction perpendicular to the second direction and overlapping the frame first surface, and a through-hole located between the pair of end portions. The first wall surface edge overlaps the end portions of the at least one mask in plan view and extends in a straight line in the first direction from the first mask edge of the at least one mask to the second mask edge.
Hereinafter, the third embodiment will be described in detail with reference to the accompanying drawings. The embodiments described below are examples of the third embodiment, and the third embodiment is not interpreted limitedly to only these embodiments. In the following description and the drawings to be used in the following description, like reference signs used for corresponding portions in the above-described embodiment denote portions that can be configured similarly to those of the above-described embodiment. The description will not be repeated. When it is apparent that the operation and advantageous effects obtained in the above-described embodiment are also obtained in the following embodiment, the description may be omitted.
In the following embodiment, an example in which a mask apparatus is the mask apparatus 15 including the mask support 40 and the masks 50 will be described. Although not shown in the drawing, a mask apparatus may be the standard mask apparatus 15A including the mask support 40 and the standard masks 50A. In other words, the technical idea of the present embodiment may be applied to the standard mask apparatus 15A, a method of manufacturing the standard mask apparatus 15A, and a vapor deposition method using the standard mask apparatus 15A.
The frame 41 supports the masks 50 in a state where the masks 50 are pulled in a planar direction to suppress warpage of the masks 50.
As shown in
As shown in
As shown in
The frame wall surfaces 44a to 44d are connected to the frame first surface 41a and are not connected to the frame second surface 41b. As shown in
The frame wall surfaces 44a, 44b include the first wall surface edges 44e located at edges adjacent to the frame first surface 41a. The first wall surface edges 44e overlap associated overlapping portions 51 (described later) of the masks 50 in plan view before a cutting step (described later). The overlapping portions 51 are also referred to as end portions 51. As shown in
As described above, the plurality of masks 50 is joined with the frame 41. Thus, as shown in
As shown in
The frame wall surfaces 44c, 44d, as well as the frame wall surfaces 44a, 44b, each may include a first wall surface edge 44e and a second wall surface edge 44f. The frame third surface 41c may also extend outward from the second wall surface edge 44f of each of the frame wall surfaces 44c, 44d. The frame third surface 41c may extend to the outer surface 41f (described later). In other words, as shown in
As shown in
As shown in
The cross section of the frame groove 44k may have any shape as long as the cutting blade 72 can be inserted.
As shown in
As shown in
As shown in
Next, the masks 50 according to one embodiment of the present disclosure will be described with reference to
As shown in
Each mask 50 may include the first mask end 50g and the second mask end 50h located on both sides in the first direction D1 perpendicular to the second direction D2. The first mask end 50g is located at one (upper-side in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
A display device or a projection device with a pixel density of 600 ppi may be used to display an image or a video at a distance of about 15 cm from an eyeball and may be used as, for example, an organic device for a smartphone. A display device or a projection device with a pixel density of 1200 ppi may be used to display an image or a video at a distance of about 8 cm from an eyeball and may be, for example, used to display or project an image or a video for presenting virtual reality (so-called VR). A display device or a projection device with a pixel density of 3000 ppi may be used to display an image or a video at a distance of about 3 cm from an eyeball and may be, for example, used to display or project an image or a video for presenting augmented reality (so-called AR). A display device or a projection device with a pixel density of 5000 ppi may be used to display an image or a video at a distance of about 2 cm from an eyeball and may be, for example, used to display or project an image or a video for expressing augmented reality.
Through-holes 56 in one through-hole group 56a may be arranged not in parallel arrangement but in staggered arrangement (not shown). In other words, the through-holes 56 that make up one line along the second direction D2 and the through-holes 56 that make up another line adjacent to the one line in the first direction D1 do not need to be aligned in the first direction D1. The through-holes 56 that make up one line and the through-holes 56 that make up another line adjacent to the one line may be shifted in the second direction D2. The shift amount may be half of the arrangement pitch C2 in the second direction D2, and the shift amount may be selected.
As shown in
In
The dimension Q1, the dimension Q2, and the dimension Q3 are determined like, for example, the following Table 1 according to the pixel density of a display device or a projection device.
The through-hole group 56a may be referred to as effective region 53. A region located around the effective region 53 may be referred to as peripheral region 54. In the present embodiment, the peripheral region 54 surrounds one effective region 53. The outline of the effective region 53 may be defined by a line that is externally tangent to the through-holes 56 located farthest to the outer side within the associated through-hole group 56a. More specifically, the outline of the effective region 53 may be defined by a line that is tangent to the openings of the through-holes 56. In the example shown in
As shown in
As shown in
As shown in
Each alignment mask 80 includes two mask alignment marks 81. Each mask alignment mark 81 is located at a position that overlaps the associated frame alignment mark 48 in plan view. When the mask alignment marks 81 are aligned with the frame alignment marks 48 by applying light, the mask alignment marks 81 may extend through the alignment mask 80. However, the mask alignment marks 81 do not need to extend through the alignment mask 80 as long as the mask alignment marks 81 can be aligned with the frame alignment marks 48. The planar shape of each mask alignment mark 81 is selected and is, for example, a circular shape in
Next, the method of manufacturing the thus configured mask apparatus 15 according to the present embodiment will be described with reference to
Initially, as the frame preparation step, the frame 41 is prepared. The frame 41 can be manufactured by any manufacturing method. For example, the frame 41 shown in
Initially, as the mask preparation step, the mask 50 is prepared. The mask 50 can be manufactured by any manufacturing method, such as etching or plating of a rolled material, as described above.
Subsequently, as the holding step, the mask 50 is held by the mechanical mask clamps 70. In this case, as shown in
Next, as the placement step, as shown in
Subsequently, as the mask alignment step, as shown in
The mask alignment step may include a tension increasing step, a first through-hole checking step, a moving step, a second through-hole checking step, a tension adjustment step, and a third through-hole checking step. The first through-hole checking step is an example of the first checking step. The second through-hole checking step is an example of the second checking step and is also an example of the third checking step. The third through-hole checking step is an example of the fourth checking step.
In the tension increasing step, a tension to be applied to the mask 50 is increased. More specifically, the drive unit 70D (see
In the first through-hole checking step, as shown in
As a result of position check of the through-holes 56 in the first through-hole checking step, when the through-hole 56 is positioned within the allowable range with respect to the desired position, the mask alignment step may be ended, and the process may proceed to the joining step. In this case, the moving step and the like (described later) may be unnecessary. When the through-hole 56 is positioned within the allowable range, the second tension Tb applied to the mask 50 in the first through-hole checking step is equal to a joint tension Td (described later). On the other hand, when the through-hole 56 is not positioned within the allowable range with respect to the desired position, the moving step is performed.
In the moving step, as shown in
In the second through-hole checking step, the position of the through-hole 56 with respect to the frame 41 is checked. The second through-hole checking step may be performed similarly to the first through-hole checking step.
As a result of position check of the through-hole 56 in the second through-hole checking step, when the through-hole 56 is positioned within the allowable range with respect to the desired position, the mask alignment step may be ended, and the process may proceed to the joining step. In this case, the tension adjustment step and the like (described later) may be unnecessary. When the through-hole 56 is positioned within the allowable range, the second tension Tb applied to the mask 50 in the second through-hole checking step is equal to a joint tension Td (described later). On the other hand, when the through-hole 56 is not positioned within the allowable range with respect to the desired position, the tension adjustment step is performed.
In the tension adjustment step, as shown in
After that, the third through-hole checking step is performed. In the third through-hole checking step, as well as the first through-hole checking step, the position of the through-hole 56 with respect to the frame 41 is checked. In the third through-hole checking step, the third tension Tc may be applied to the mask 50, and the mask 50 may be pressed against the frame 41.
As a result of position check of the through-hole 56 in the third through-hole checking step, when the through-hole 56 is positioned within the allowable range with respect to the desired position, the mask alignment step may be ended, and the process may proceed to the joining step. In this case, the third tension Tc applied to the mask 50 in the third through-hole checking step is equal to the joint tension Td (described later). On the other hand, when the through-hole 56 is not positioned within the allowable range with respect to the desired position, the tension adjustment step and the third through-hole checking step may be performed again. Until the through-hole 56 is positioned within the allowable range with respect to the desired position, the tension adjustment step and the third through-hole checking step may be repeatedly performed. A tension applied to the mask 50 in the last third through-hole checking step may be referred to as third tension Tc. Depending on the position check result of the second through-hole checking step, the moving step may be performed again, and the mask 50 may be moved with respect to the frame 41. Depending on the position check result of the third through-hole checking step, the moving step may be performed again, and the mask 50 may be moved with respect to the frame 41.
Depending on the position check result of the first through-hole checking step, the moving step and the second through-hole checking step may be omitted, and the tension adjustment step may be performed. In other words, as the alignment step, the first through-hole checking step and the moving step may be omitted, and the second through-hole checking step may be performed.
As described above, in the mask alignment step, the mask 50 is pressed against the frame 41. The pressing force may be a force to such an extent that lifting of the mask 50 from the frame 41 is suppressed. For example, as shown in
Here, the case where the substrate 110 that is a component of the organic device 100 is held by a mechanical substrate clamp 73 (see
When the mask 50 is pressed against the frame first surface 41a on which the thus configured frame recessed portions 45 are provided, the mask 50 receives a reaction force from each of the first wall surface edges 44e of the frame wall surfaces 44a, 44b and also receives a reaction force from each of the recess end edges 45a of the frame recessed portions 45. The position of each first wall surface edge 44e in the first direction D1 is located outside the position of the associated recess end edge 45a in the first direction D1. In other words, a position to receive a reaction force from the first wall surface edge 44e is located relatively outside (left side in
In other words, the position to receive a reaction force from each of the first wall surface edges 44e of the frame wall surfaces 44a, 44b (see
Therefore, when the mask 50 is moved to be aligned with the frame 41 as shown in
In contrast, in the present embodiment, the substrate 110 is held by the electrostatic chuck 9 as shown in
Even when the mask 50 is moved while being pressed against the frame 41 in this state, occurrence of deformation or breakage in the mask 50 is suppressed. For this reason, the mask 50 can be moved while being pressed against the frame 41, and the lifting step and the lowering step for the mask 50 as in the case of the example shown in
After the mask alignment step, as the joining step, as shown in
For example, the joint tension Td may be the second tension Tb applied to the mask 50 in the first through-hole checking step. More specifically, as a result of position check of the through-hole 56 in the first through-hole checking step, when the through-hole 56 is positioned within the allowable range with respect to the desired position, the mask alignment step ends. In this case, the state where the second tension Tb is applied to the mask 50 may be maintained in the first through-hole checking step, and the joining step may be performed. In other words, during times from the end of the first through-hole checking step to the joining step, a tension to be applied to the mask 50 is unchanged. In other words, in the first through-hole checking step, the joint tension Td is applied to the mask 50, and the position of the through-hole 56 with respect to the frame 41 is checked. During times from the end of the first through-hole checking step to the joining step, a force pressing the mask 50 against the frame 41 may be unchanged.
Alternatively, for example, the joint tension Td may be the second tension Tb applied to the mask 50 in the second through-hole checking step. More specifically, as a result of position check of the through-hole 56 in the second through-hole checking step, when the through-hole 56 is positioned within the allowable range with respect to the desired position, the mask alignment step ends. In this case, the state where the second tension Tb is applied to the mask 50 may be maintained in the second through-hole checking step, and the joining step may be performed. In other words, during times from the end of the second through-hole checking step to the joining step, a tension to be applied to the mask 50 is unchanged. In other words, in the second through-hole checking step, the joint tension Td is applied to the mask 50, and the position of the through-hole 56 with respect to the frame 41 is checked. During times from the end of the second through-hole checking step to the joining step, a force pressing the mask 50 against the frame 41 may be unchanged.
Alternatively, for example, the joint tension Td may be the third tension Tc. More specifically, when the tension adjustment step has been performed, a tension to be applied to the mask 50 is the third tension Tc adjusted from the second tension Tb. The state where the third tension Tc is applied to the mask 50 may be maintained in the third through-hole checking step, and the joining step may be performed. In other words, during times from the end of the third through-hole checking step to the joining step, a tension to be applied to the mask 50 is unchanged. In other words, in the third through-hole checking step, the joint tension Td is applied to the mask 50, and the position of the through-hole 56 with respect to the frame 41 is checked. During times from the end of the third through-hole checking step to the joining step, a force pressing the mask 50 against the frame 41 may be unchanged.
In the joining step, the welded portion 46 (an example of the joint portion) extending from each of the end portions 51 of the mask 50 to the frame 41 is formed in a state where the joint tension Td is applied. For example, the mask 50 may be joined with the frame 41 by spot welding using laser beam L. In this case, as shown in
After the joining step, as the detachment step, as shown in
The detached mask clamps 70 go to handle the mask 50 to be subsequently joined with the frame 41 and hold the mask 50. By performing the above-described steps, the mask 50 is joined with the frame 41 (see the mask 50 indicated by the alternate long and two-short dashed line in
In this way, an intermediate product 16 as shown in
After that, as the cutting step, as shown in
In this way, the mask apparatus 15 as shown in
Next, the method of manufacturing the organic device 100 using the mask apparatus 15 according to the present embodiment will be described. The manufacturing method may include a step of forming the first vapor deposition layers 130 by depositing the vapor deposition material 7 onto the substrate 110 with the mask apparatus 15. More specifically, the method of manufacturing an organic device according to the present embodiment may include a substrate preparation step, an apparatus preparation step, an apparatus alignment step, a close contact step, and a vapor deposition step.
As the substrate preparation step, the substrate 110 may be prepared. As the apparatus preparation step, the mask apparatus 15 may be prepared.
After the apparatus preparation step, as the apparatus alignment step, the mask apparatus 15 is aligned with the substrate 110. In the apparatus alignment step, the position of the mask apparatus 15 with respect to the substrate 110 is checked. For example, the position of the frame 41 with respect to the substrate 110 may be adjusted such that the mask alignment marks 81 of the alignment mask 80 are aligned with associated alignment marks (not shown) of the substrate 110. Thus, the position of each mask 50 with respect to the substrate 110 is adjusted.
After the apparatus alignment step, as the close contact step, as shown in
Subsequently, the magnet 5 is placed on the upper surface of the electrostatic chuck 9, and the masks 50 are attracted to the substrate 110 by the magnetic force of the magnet 5. Thus, the substrate 110 is brought into close contact with the first surface 551 of each mask 50 (see
Each mask 50 and the substrate 110 may be brought into close contact with each other not by the magnet 5 but by the electrostatic chuck 9. In this case, after the substrate 110 and each mask 50 are aligned with each other, each mask 50 is attracted to the substrate 110 by the electrostatic force of the electrostatic chuck 9 by increasing the electrostatic force of the electrostatic chuck 9. In this way, the substrate 110 may be brought into close contact with the first surface 551 of each mask 50.
After the close contact step, as the vapor deposition step, as shown in
After that, an electron transport layer, an electron injection layer, the second electrode layer 141, and the like may be formed on each first vapor deposition layer 130. In this way, the organic device 100 is obtained.
According to the present embodiment, in the mask alignment step of aligning the mask 50 with the frame 41, the mask 50 is pressed against the frame 41. During then, the end portions 51 of the mask 50 are placed so as to respectively overlap the first wall surface edges 44e, adjacent to the frame first surface 41a, of the frame wall surfaces 44a, 44b of the frame 41 and each first wall surface edge 44e extends in a straight line in the second direction D2 from the first mask edge 50c of the mask 50 to the second mask edge 50d in plan view. Thus, a reaction force to be received by the mask 50 from the frame 41 is applied from each first wall surface edge 44e to the mask 50, and a reaction force to be received from each first wall surface edge 44e is uniformed in the width direction of the mask 50. In this case, local concentration of a stress to be generated in the mask 50 due to a reaction force to be received from the frame 41 by the mask 50 is suppressed. For this reason, the mask 50 can be moved while being pressed against the frame 41, and time consumed in the mask alignment step for the mask 50 is shortened.
According to the present embodiment, in the joining step, the mask 50 is joined with the frame while being pulled in the first direction D1 and pressed against the frame 41. by the joint tension Td. In the mask alignment step, the joint tension Td is applied to the mask 50. Thus, alignment of the mask 50 can be performed with a tension equal to a tension to be applied to the mask 50 in the joining step. Therefore, the positional accuracy of each through-hole 56 is improved.
According to the present embodiment, the mask alignment step includes the first through-hole checking step of checking the position of the through-hole 56 with respect to the frame 41 while pressing the mask 50 against the frame 41. Thus, the position of the through-hole 56 can be checked in a state where the mask 50 is pressed against the frame 41, so alignment of the mask 50 can be efficiently performed. For this reason, time consumed in the mask alignment step for the mask 50 is further shortened. In addition, the joint tension Td is applied to the mask 50 in the first through-hole checking step. Thus, the position of the through-hole 56 can be checked with a tension equal to a tension to be applied to the mask 50 in the joining step. Therefore, the positional accuracy of each through-hole 56 is improved.
According to the present embodiment, the mask alignment step includes the moving step of moving the mask 50 in any one of directions in a two-dimensional plane defined by the second direction D2 and the first direction D1 while pressing the mask 50 against the frame 41. Thus, the mask 50 can be moved in a two-dimensional manner while being pressed against the frame 41, so alignment of the mask 50 can be efficiently performed. For this reason, time consumed in the mask alignment step for the mask 50 is further shortened. The mask 50 can be moved in accordance with a check result on the position of the through-hole 56 in the first through-hole checking step. Thus, the position deviation of each through-hole 56 is effectively corrected. In terms of this point as well, alignment of the mask 50 can be efficiently performed. In addition, the joint tension Td is applied to the mask 50 in the moving step. Thus, the mask 50 can be moved with a tension equal to a tension to be applied to the mask 50 in the joining step. Therefore, the positional accuracy of each through-hole 56 is improved.
According to the present embodiment, the mask alignment step includes the second through-hole checking step of, after the moving step, checking the position of the through-hole 56 with respect to the frame 41 while pressing the mask 50 against the frame 41. Thus, the position of the through-hole 56 can be checked in a state where the mask 50 is pressed against the frame 41, so alignment of the mask 50 can be efficiently performed. For this reason, time consumed in the mask alignment step for the mask 50 is further shortened. In addition, the joint tension Td is applied to the mask 50 in the second through-hole checking step. Thus, the position of the through-hole 56 can be checked with a tension equal to a tension to be applied to the mask 50 in the joining step. Therefore, the positional accuracy of each through-hole 56 is improved.
According to the present embodiment, after the position of the through-hole 56 is checked in the second through-hole checking step, when a tension to be applied to the mask 50 is adjusted, the position of the through-hole 56 is checked as the third through-hole checking step thereafter. The joint tension Td is applied to the mask 50 in the third through-hole checking step. Thus, when a tension to be applied to the mask 50 is adjusted, the position of the through-hole 56 is checked with a tension equal to a tension to be applied to the mask 50 in the joining step thereafter. Therefore, the positional accuracy of each through-hole 56 is improved.
According to the present embodiment, after the welded portion 46 to join the mask 50 with the frame 41 is formed, the mask 50 is cut at a position outside the welded portion 46 in the first direction D1 in each of the end portions 51 of the mask 50. Thus, the mask 50 can be joined with the frame 41 in a state where the mask 50 is aligned with the frame 41. Therefore, even after the mask 50 is cut, the aligned state is maintained. Therefore, the positional accuracy of each through-hole 56 is improved.
According to the present embodiment, the frame grooves 44k that extend in the second direction D2 are provided on the frame first surface 41a of the frame 41, and the mask 50 is cut along the frame groove 44k. Thus, even after the mask 50 is joined with the frame 41, the mask 50 can be cut with a cutting device, such as the cutting blade 72. Therefore, the mask 50 can be efficiently cut. Since each frame groove 44k is provided on the frame first surface 41a, the mask 50 can be cut inside the first wall surface edge 44e of each of the frame wall sur faces 44a, 44b in the first direction D1. Thus, the length of the mask 50 remaining outside the welded portions 46 in the first direction D1 can be shortened. Therefore, part of the mask 50 to be released from a tension after being joined with the frame 41 is shortened. In this case, remaining of a cleaning fluid at the time when the mask apparatus 15 is washed is suppressed, so inconvenience due to remaining cleaning fluid is suppressed.
According to the present embodiment, the first wall surface edges 44e of the frame wall surfaces 44a, 44b of the frame 41 extend in a straight line in the second direction D2 from one of the masks 50 to another one of the masks 50. Thus, the influence of a reaction force to be received from the first wall surface edges 44e is made uniform among the masks 50. Therefore, alignment of each mask 50 is easily performed, and the positional accuracy of the through-holes 56 of each mask 50 is improved. Among others, according to the present embodiment, the first wall surface edges 44e extend in a straight line in the second direction D2 from one of the masks 50, located farthest to one side in the second direction D2, to another one of the masks 50, located farthest to the other side opposite from the one of the masks 50. Therefore, alignment of all the masks 50 is easily performed, and the positional accuracy of the through-holes 56 of each mask 50 is further improved.
According to the present embodiment, at the time when the masks 50 of the mask apparatus 15 are brought into close contact with the substrate 110, the substrate 110 is held by the electrostatic chuck 9 from the upper side. Thus, formation of an obstacle that protrudes downward or laterally from the substrate 110 and that interferes with the frame 41 is avoided. For this reason, the first wall surface edges 44e that overlap the end portions 51 of each mask 50 can be formed so as to extend in a straight line in the second direction D2.
According to the present embodiment, the example in which the first wall surface edges 44e of the frame wall surfaces 44a, 44b extend in a straight line in the second direction D2 from one of the masks 50, located farthest to one side in the second direction D2, to another one of the masks 50, located farthest to the other side opposite from the one of the masks 50 is described. However, the configuration is not limited thereto. For at least one of the masks 50 of the plurality of masks 50 joined with the frame 41, the first wall surface edges 44e of the frame wall surfaces 44a, 44b may be extended in a straight line in the second direction D2 from the first extended line 50e of the first mask edge 50c of the mask 50 to the second extended line 50f of the second mask edge 50d after the cutting step. In addition, the first wall surface edges 44e just need to extend in a straight line in each mask 50 and do not need to extend in a straight line from one of the masks 50 to another adjacent one of the masks 50.
The standard mask apparatus 15A including the standard mask 50A and the mask support 40 may be manufactured in accordance with the method of manufacturing a mask apparatus according to the present embodiment. The standard mask apparatus 15A is used to evaluate the characteristics of the vapor deposition chamber 10. Therefore, high accuracy is desired for the component elements of the standard mask apparatus 15A. According to the present embodiment, the positional accuracy of each through-hole 56 of the standard mask 50A is improved. For this reason, further accurate evaluation of the characteristics of the vapor deposition chamber 10 can be performed.
Although not shown in the drawing, the mask support 40 of the present embodiment may include the bars 42 connected to the frame 41 as in the case of the above-described embodiments. The bars 42 may be integrated with the frame 41 as in the case of the second embodiment. As described above, the mask support 40 including the frame 41 and the bars 42, integrated with each other, has a high stiffness in the direction in which the bars 42 extend as compared to the case where the frame 41 and the bars 42 are different members. Therefore, a deformation of the frame 41 of the mask support 40 in the second direction D2 due to a force received by the mask support 40 from the mask 50 or the standard mask 50A is suppressed. Thus, a deviation of the positions of the through-holes 56 from designed positions is suppressed.
The bar first surface 42a of each bar 42 may be located in the same plane with the frame first surface 41a of the frame 41. Thus, the position of the surface of the mask 50 or standard mask 50A to be supported by the bars 42 from the lower side is easily controlled with respect to the frame first surface 41a of the frame 41. Therefore, the positional accuracy of each through-hole 56 is improved.
The plurality of component elements described in the embodiments and modifications may be combined as needed. Alternatively, some component elements may be deleted from all the component elements described in the embodiments and the modifications.
Number | Date | Country | Kind |
---|---|---|---|
2020-044575 | Mar 2020 | JP | national |
2020-046804 | Mar 2020 | JP | national |
2020-077608 | Apr 2020 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6729927 | Stagnitto | May 2004 | B2 |
6827622 | Yamada | Dec 2004 | B2 |
6875542 | Yotsuya | Apr 2005 | B2 |
6878208 | Abiko | Apr 2005 | B2 |
7074694 | Kuwahara | Jul 2006 | B2 |
7651722 | Mori | Jan 2010 | B2 |
8151729 | Ko | Apr 2012 | B2 |
8273179 | Kim | Sep 2012 | B2 |
8628620 | Kawato | Jan 2014 | B2 |
9076977 | Sonoda | Jul 2015 | B2 |
9458532 | Sonoda | Oct 2016 | B2 |
9595674 | Kang | Mar 2017 | B2 |
9622319 | Sonoda | Apr 2017 | B2 |
9673424 | Han | Jun 2017 | B2 |
9741932 | Sonoda | Aug 2017 | B2 |
9757764 | Hong | Sep 2017 | B2 |
9947904 | Sonoda | Apr 2018 | B2 |
10053766 | Kim | Aug 2018 | B2 |
10141511 | Kim | Nov 2018 | B2 |
10263185 | Matsueda | Apr 2019 | B2 |
10439170 | Lin | Oct 2019 | B2 |
10644240 | Kim | May 2020 | B2 |
10669620 | Sakio | Jun 2020 | B2 |
10787729 | Bai | Sep 2020 | B2 |
10787730 | Lin | Sep 2020 | B2 |
10808314 | Yamabuchi | Oct 2020 | B2 |
10982314 | Lin | Apr 2021 | B2 |
10982315 | Wang | Apr 2021 | B2 |
11066742 | Yamabuchi | Jul 2021 | B2 |
11136663 | Kim | Oct 2021 | B2 |
11149341 | Zhang | Oct 2021 | B2 |
11258015 | Park | Feb 2022 | B2 |
11309518 | Du | Apr 2022 | B2 |
11319625 | Luo | May 2022 | B2 |
11396693 | Bai | Jul 2022 | B2 |
20030012981 | Yamada | Jan 2003 | A1 |
20030017258 | Yamada | Jan 2003 | A1 |
20030101932 | Kang | Jun 2003 | A1 |
20030151118 | Baude | Aug 2003 | A1 |
20030221614 | Kang | Dec 2003 | A1 |
20040020435 | Tsuchiya | Feb 2004 | A1 |
20040123799 | Clark | Jul 2004 | A1 |
20040142108 | Atobe | Jul 2004 | A1 |
20040163592 | Abiko | Aug 2004 | A1 |
20050037136 | Yamamoto | Feb 2005 | A1 |
20050098110 | Abiko | May 2005 | A1 |
20060057857 | Fleming | Mar 2006 | A1 |
20060103289 | Kim | May 2006 | A1 |
20060110663 | Kim | May 2006 | A1 |
20060222965 | Tsuruko | Oct 2006 | A1 |
20060258030 | Koeda | Nov 2006 | A1 |
20070018265 | Koeda | Jan 2007 | A1 |
20100267227 | Ko | Oct 2010 | A1 |
20110067630 | Ko | Mar 2011 | A1 |
20110157575 | Lee | Jun 2011 | A1 |
20110171768 | Hong | Jul 2011 | A1 |
20120107506 | Ukigaya | May 2012 | A1 |
20120237682 | Hong | Sep 2012 | A1 |
20130199445 | Sonoda | Aug 2013 | A1 |
20140033980 | Jeong | Feb 2014 | A1 |
20140041586 | Wu | Feb 2014 | A1 |
20140158044 | Han | Jun 2014 | A1 |
20150026953 | Webb | Jan 2015 | A1 |
20150037928 | Hirobe | Feb 2015 | A1 |
20150102329 | Lee | Apr 2015 | A1 |
20150246416 | Mizumura | Sep 2015 | A1 |
20150259780 | Mizumura | Sep 2015 | A1 |
20150318316 | Xin | Nov 2015 | A1 |
20150328662 | Mizumura | Nov 2015 | A1 |
20160010201 | Kobayashi | Jan 2016 | A1 |
20160079568 | Han | Mar 2016 | A1 |
20160115580 | Mizumura | Apr 2016 | A1 |
20160237546 | Ikenaga | Aug 2016 | A1 |
20160369388 | Ma | Dec 2016 | A1 |
20170009343 | Cho | Jan 2017 | A1 |
20170104158 | Kawato | Apr 2017 | A1 |
20170106472 | Han | Apr 2017 | A1 |
20170141315 | Ikenaga | May 2017 | A1 |
20170204506 | Zhang | Jul 2017 | A1 |
20170362698 | Kobayashi | Dec 2017 | A1 |
20180015493 | Kobayashi | Jan 2018 | A1 |
20180023182 | Ikenaga | Jan 2018 | A1 |
20180026190 | Takeda | Jan 2018 | A1 |
20180040855 | Chen | Feb 2018 | A1 |
20180047904 | Kobayashi | Feb 2018 | A1 |
20180119268 | Kawato | May 2018 | A1 |
20180202034 | Lin | Jul 2018 | A1 |
20180212150 | Cho | Jul 2018 | A1 |
20180216221 | Ji | Aug 2018 | A1 |
20180230585 | Bai | Aug 2018 | A1 |
20180239241 | Lv | Aug 2018 | A1 |
20180277799 | Ikenaga | Sep 2018 | A1 |
20180334740 | Ikenaga | Nov 2018 | A1 |
20180355466 | Mu | Dec 2018 | A1 |
20180366649 | Yamabuchi | Dec 2018 | A1 |
20190003033 | Bai | Jan 2019 | A1 |
20190018314 | Pei | Jan 2019 | A1 |
20190036025 | Nishida | Jan 2019 | A1 |
20190062895 | Zhang | Feb 2019 | A1 |
20190067578 | Kishimoto | Feb 2019 | A1 |
20190067579 | Inoue | Feb 2019 | A1 |
20190071762 | Kobayashi | Mar 2019 | A1 |
20190078193 | Lin | Mar 2019 | A1 |
20190097135 | Ichihara | Mar 2019 | A1 |
20190144986 | Bai | May 2019 | A1 |
20190237349 | Ikenaga | Aug 2019 | A1 |
20190256965 | Ikenaga | Aug 2019 | A1 |
20190259951 | Seong | Aug 2019 | A1 |
20190323117 | Ikenaga | Oct 2019 | A1 |
20190345597 | Uchida | Nov 2019 | A1 |
20190345599 | Li | Nov 2019 | A1 |
20190355794 | Dai | Nov 2019 | A1 |
20190372002 | Yamabuchi | Dec 2019 | A1 |
20200019056 | Ikenaga | Jan 2020 | A1 |
20200189054 | Mimura | Jun 2020 | A1 |
20200384497 | Lv | Dec 2020 | A1 |
20210108304 | Kim | Apr 2021 | A1 |
20210343760 | Jo | Nov 2021 | A1 |
20210388479 | Kim | Dec 2021 | A1 |
20220020926 | Kim | Jan 2022 | A1 |
20220148931 | Okabe | May 2022 | A1 |
20220181595 | Kim | Jun 2022 | A1 |
Number | Date | Country |
---|---|---|
2019-065393 | Apr 2019 | JP |
Number | Date | Country | |
---|---|---|---|
20210348265 A1 | Nov 2021 | US |