The present invention is directed to a standoff for use in an open coil electric resistance heater, and in particular to a standoff that engages uncoiled portions of the electrical resistance wire of the heater to minimize shorting or grounding conditions.
The use of a single resistance wire formed into a helical coil for use in electric resistance heating either for heating moving air, for radiant heating or for convection heating is well known in the prior art. In one type of heater, the resistance coils are energized to heat air passing over the coils, the heated air then being directed in a particular manner for heating purposes. One application using such a heater is an electric clothes dryer.
Examples of open coil heaters are found in U.S. Pat. Nos. 5,329,098, 5,895,597, and 5,925,273, all owned by Tutco, Inc. of Cookeville, Tenn. Each of these patents is incorporated by reference in its entirety herein. One type of an open coil electric resistance heater is a two stage heater described in U.S. Pat. No. 5,925,273. A side view of this type of heater is shown in
The heater 10 includes opposing sidewalls (one shown as 6 in
Each of the electric heater elements, 10a and 10b, is arranged in series of electrically continuous coils which are mounted on the plate 14 in a spaced-apart substantially parallel arrangement. Each heater assembly 10a and 10b is arranged substantially equally and oppositely on both sides of the plate. Crossover portions 22a and 22b of each heater element 10a and 10b are provided wherein each crossover links one coil of each of the elements mounted on one side of the plate 14 with another coil of the same element found on the other side of the plate. The plate 14 has several cutout portions (not shown) to provide adequate clearance for the crossover portions, 22a and 22b, and the anticipated drooping or sagging movement of such portions.
Electricity is supplied to the heater assembly through the terminal block 28. The heater elements, 10a and 10b, are arranged so that the terminal connector portions or wire leads 32 and 34 which extend from an end 38 of each of the mounted coil sections to the terminal block are as short as possible. This aids in eliminating or reducing the need for supporting the connector portions. For the longer runs, the wire leads, 32 and 34, are partially enclosed with an insulating member 36. The insulating member 36 may be formed from any type of insulating material suitable for this purpose, e.g., a ceramic type. The insulating member is generally tubular in shape and rigid.
One of the most significant aspects of the open coil heater design is that of routing the uncoiled connector portions extending from the ends of heater coils (resistance wire leads) so they are protected from contact with either adjacent live heater wire sections or from contact with bare metal, either of which creates a potential failure. The resistance wire leads for connecting to the termination point(s) for ultimate connection to a source of electrical power must therefore be routed and protected from dead metal and from electrically live parts of a different polarity than the resistance wire leads. When physical separation cannot be achieved using design techniques available to the technology, the prior art, as noted above, has used insulating tubes made of appropriate materials for the application, e.g., ceramic tubes are used for routing and isolating the resistance wires lead, see items 36 in
However, the mere use of ceramic tubes alone to protect the resistance wire leads does not always solve all of the problems in these types of heaters. The manufacturing of open coil heaters that use insulating tubes to protect a length of bare resistance wire lead section often requires more than one tube section for each wire lead. That is, to span longer sections it is necessary to use multiple tube pieces. At the point where two tubes meet there is, of course, a narrow opening and when electrical spacing requirements per safety standards are considered, the opening can be or is significant. The same condition may exist at the free end of a ceramic tube, i.e. where there is no adjacent tube. Even under the best of conditions there are over-the-surface and through-the-air distance conditions occurring where an electric potential exists. This electrical potential could result in either a ground out or an electrical short should movement occur, both of which are dangerous conditions to be avoided.
There are practical reasons why multiple tubes may be required to span one section of bare resistance wire. The first is that longer sections of insulating tubes are more expensive to manufacture than shorter sections, so that using a number of shorter sections may be more economical.
Another reason that longer tubes are shunned is that shipping and handling relatively long tubes during heater assembly result in damage or breakage. Further it is often more economical to have available multiple short pieces that are of a lower cost per unit length in order to accommodate various length requirements than to have exact lengths made for every requirement. A given length requirement can be fulfilled by using two or more short pieces of insulating tubes to span the longer required distance.
Even when a single insulating tube is of sufficient length to span the distance from the end of the heating coil to the termination point, there may be lack of clearance at a tube end between the wire exiting the tube and adjacent dead metal. A further problem results should a tube break and the result is another potential electrical short or ground out condition being created.
It is also impractical to use an insulating tube with a wall thickness great enough to overcome the dangerous electrical conditions noted above. Thick walled tubes are costly to produce and handle during the manufacture of open coil heaters.
In the art of open coil heaters, separate tabs, clips, straps or stand-offs made of metal have been used to position and permanently restrain the insulating tubes containing resistance wires as described above. However, this method of restraint often creates mechanical stress resulting in tube breakage. Though a break in the tube in itself doesn't mean the wires will move from their intended routing, a possible electrical short or a ground condition may result as an effect of the wire contacting the above described metal restraining means.
In light of the shortcomings in protecting the bare wire leads or the problems when using ceramic leads of open coil electric resistance heaters, a need has developed for improved ways to minimize the possibility of shorting or grounding conditions. The present invention responds to this need by providing a standoff for use with the resistance wire leads or other uncoiled runs to minimize these grounding/shorting conditions.
It is a first object of the invention to provide an improved open coil resistance heater.
It is another object of the invention to provide an open coil resistance heater that uses one or more standoffs that support uncoiled wire runs, particularly wire leads of the heater.
Yet another object of the invention is a standoff for use with an open coil heater or other type of heater whereby the standoff can engage wire runs, particularly wire leads, of the heater to protect them from shorting/grounding in the run.
One further object of the invention is an improvement in methods of providing heat using electric resistance heaters, wherein the heater includes one or more standoffs for the heater's uncoiled wire, particularly wire leads, to minimize shorting or grounding conditions.
Other objects and advantages will become apparent as a description of the invention proceeds.
In satisfaction of the foregoing objects and advantages of the invention, the invention is an improvement in heaters employing open coil electric resistance elements. More particularly, the invention involves heaters that contain one or more runs of uncoiled or generally straight wire runs. A given run may extend between two coiled portions of the heater element. Alternatively, the run may extend between the coiled portion of the heating element and a terminal block or the like that is adapted for connection to a source of power, this run forming a wire lead to assist connecting the resistance wire to a supply of power. The coiled portion of the resistance wire element is supported by a plurality of insulators, with the plurality of insulators being supported by a frame. The invention is the use of one or more standoffs that are made of electrically insulating material. Each standoff further comprises a standoff body including means for mounting the body to the frame. Each standoff body has at least one slot sized to engage and support a portion of the run of uncoiled wire, either in a bare state or in an insulated state. If the heater employs a pair of runs that require support, the standoff body can be configured to have a pair of slots to accommodate the pair of wire runs. The slots can be sized to support either bare wire or insulated wire. The standoff is especially adapted for two stage heaters, wherein the heating element most remote from the terminal block has long runs of wire that can use one or more standoffs for support.
In one embodiment, the standoff can be used with insulated wire leads wherein the insulation is positioned adjacent the standoff such that the standoff is supporting a bare wire run and offering an insulating effect on the bare wire run as well.
The means for mounting the standoff can involve any number of mounting configurations from fasteners, to specially configured slots in the heater frame, to adhesives or combinations thereof. In one mode, the mounting means comprises a pair of opposing slots in the standoff body, and a cutout in the frame. Each slot engages a respective portion of the frame adjacent the cutout for mounting, a portion of the frame including a tab adjacent to one of the respective portions of the frame. To secure the standoff, the tab can be bent to retain the standoff in the cutout. Depending on the length of the uncoiled wire run, more than one cutout and standoff can be utilized for wire run support. The cutout can be shaped to allow for rotation of the standoff for mounting purposes, and/or sized to allow for both standoff rotation and crossover wire passage to link coils on opposite sides of the frame.
The invention also entails an improvement in a method of heating using an open coil electric resistance heater, wherein the heater has at least one resistance wire element for heating, a coiled portion of the resistance wire element being supported by a plurality of insulators, with the plurality of insulators being supported by a frame, the wire element including one or more uncoiled wire runs that require support. The run or runs can be the uncoiled bare or insulated wire leads beginning at coiled portions of the wire element and terminating in a pair of uncoiled bare wire leads for connection to a source of power via a terminal mounted to the heater. As noted above, the uncoiled runs, bare or insulated can also extend between two coiled portions of the resistance wire element. As part of this method, at least one resistance wire element is energized to generate heat, either via radiation or convection. The improvement in the method comprises supporting the bare or insulated wire runs using at least one standoff made of the electrically insulating material that is mounted to the frame and positioned so as to support one or more uncoiled wire runs.
Reference is now made to the drawings of the invention wherein:
The invention offers advantages in the field of open coil resistance heaters in that the problems in grounding or shorting as a result of wire leads or other uncoiled wire runs coming into contact with dead metal or the like are significantly reduced. This improvement is achieved by using a standoff to support the uncoiled wire runs that extend between the coiled resistance wires and terminals for later connection to a power source.
One embodiment of the standoff aspect of the invention is illustrated in
Referring to
The straight wire lead 53 is one end of the electric resistance element used in one stage of the two stage heater, akin to element 10b of
While
The standoff is made from electrically insulating material, and can be virtually any type that would achieve this insulating purpose. Preferred materials are ceramic materials, similar to the materials used as support insulators for the coils of the heaters as described in the Tutco patents mentioned above. The standoffs can be made in any known manner.
The standoff embodiment of
In one preferred mode, the standoff 40 is configured with slots to engage a specially configured metal frame to keep it in place. Turning to
The cutout 71 serves two purposes; it allows for mounting of the standoff 40 and creates a space for the crossover portion of the heating element. Cutout 73 does not require a crossover and needs to be sized just to allow the standoff to be mounted to the frame 59. Each of the cutouts 71, 73 is configured the same for mounting of the standoff. Referring to
Referring now to
When the standoff 40 is positioned within the cutout 73 for entry through zone 75, the standoff end containing the slot 81 is guided into the recess 77 such that the slot 81 is engaged by the frame portion 83. The standoff 40 is then rotated so that the slot 85 passes over tab 87 and frame portion outlined as 89. The sidewall of the standoff eventually contacts the edge 88 of the cutout 73, causing the standoff to come to rest. The tab 87 is then bent upward or downward, see
Turning back to the slot 81, the recess 77 in the frame 59 and the slot 81 in the opposite end of the standoff 40 are sized so that the slot 81 engages sufficient frame to hold it in place The recess 77 is also sized so that its edge 79 abuts a portion of the sidewall of the standoff body 41, outlined as 91 in
To remove the standoff 40, the tab 87 would first be realigned with the plane of the frame 59. The standoff 40 can then be turned such that the slot 85 can be disengaged from frame portion 89, and the slot 81 can be disengaged from frame portion 83.
While the manner in which the standoff is mounted to the frame is only described for cutout 73, it should be understood that the same mounting arrangement and technique is employed for cutout 71. Further, while the frame 59 shows two cutouts for supporting the wire lead of a heating element, the heater could be the type wherein only one cutout and one standoff are required. Alternatively, the run or runs of the wire lead may be such that more than two cutouts and standoffs are required.
As part of the standoff mounting, the wire leads 53, see
While the standoff is shown mounted to the frame using a particular cutout configuration in the frame, and slots in the standoff body, other ways as would be within the skill of the art could be employed to mount the standoff to the frame. For example, the standoff could be mounted with fasteners, other shaped slotted arrangements, adhesives, snap fittings, or one or more combinations of these techniques. In one mode, the standoff could be formed with flanges instead of slots, wherein the flanges would extend from the standoff body. Fasteners such as screws or rivets, adhesives, or other attaching techniques could be employed to secure the flanges to the frame, with the flanges configured appropriately depending on the mounting technique, e.g., fasteners with preformed throughholes when using fasteners.
It should also be understood that the standoff 40 of
The standoff mounting arrangement described in
While the invention has been described to support the uncoiled portions of the resistance wire heating element that functioned as the wire leads, the standoff can be used to support other uncoiled wire runs of a heater. A particular heater may have a run of wire that does not terminate at a terminal block or like, but still needs support for the length of the run. In this situation, the standoff could be mounted to the frame in such a position that its slot can support the uncoiled wire run. The run may involve a lengthy crossover that may need support to prevent shorting or a run between adjacent coils.
As noted above, the method of heating using the inventive standoff in a heater can include methods wherein the wire resistance element is used in forced convection heating that employs air as the convective fluid passing over the wire. Alternatively, the resistance wire element can be used for radiant heating or free or natural convection heating.
As such, an invention has been disclosed in terms of preferred embodiments thereof which fulfills each and every one of the objects of the present invention as set forth above and provides a new and improved standoff-containing open coil resistance heater, the standoff itself, and a method of heating.
Of course, various changes, modifications and alterations from the teachings of the present invention may be contemplated by those skilled in the art without departing from the intended spirit and scope thereof. It is intended that the present invention only be limited by the terms of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4531017 | Sherrill | Jul 1985 | A |
4628189 | Danko | Dec 1986 | A |
4675511 | Sherrill | Jun 1987 | A |
5124534 | Williams et al. | Jun 1992 | A |
5329098 | Howard et al. | Jul 1994 | A |
5578232 | Engelke | Nov 1996 | A |
5895597 | Sherrill | Apr 1999 | A |
5925273 | Sherrill | Jul 1999 | A |
5959254 | Martin, Sr. | Sep 1999 | A |
6285013 | Holmes | Sep 2001 | B1 |
D495298 | Keathley | Aug 2004 | S |
Number | Date | Country | |
---|---|---|---|
20060000824 A1 | Jan 2006 | US |