Staphylococcus aureus polynucleotides and sequences

Abstract
The present invention provides polynucleotide sequences of the genome of Staphylococcus aureus, polypeptide sequences encoded by the polynucleotide sequences, corresponding polynucleotides and polypeptides, vectors and hosts comprising the polynucleotides, and assays and other uses thereof. The present invention further provides polynucleotide and polypeptide sequence information stored on computer readable media, and computer-based systems and methods which facilitate its use.
Description


REFERENCE TO A SEQUENCE LISTING PROVIDED ON COMPACT DISC

[0002] This application refers to a “Sequence Listing”, which is provided as an electronic document on two identical compact discs (CD-R), labeled “Copy 1” and “Copy 2.” These compact discs each contain the electronic document, filename “PB248P1D1 sequence listing.txt” (6,143,385 bytes in size, created on Dec. 23, 2002), which is hereby incorporated in its entirety herein.



FIELD OF THE INVENTION

[0003] The present invention relates to the field of molecular biology. In particular, it relates to, among other things, nucleotide sequences of Staphylococcus aureus, contigs, ORFs, fragments, probes, primers and related polynucleotides thereof, peptides and polypeptides encoded by the sequences, and uses of the polynucleotides and sequences thereof, such as in fermentation, polypeptide production, assays and pharmaceutical development, among others.



BACKGROUND OF THE INVENTION

[0004] The genus Staphylococcus includes at least 20 distinct species. (For a review see Novick, R. P., The Staphylococcus as a Molecular Genetic System, Chapter 1, pgs. 1-37 in MOLECULAR BIOLOGY OF THE STAPHYLOCOCCI, R. Novick, Ed., VCH Publishers, New York (1990)). Species differ from one another by 80% or more, by hybridization kinetics, whereas strains within a species are at least 90% identical by the same measure.


[0005] The species Staphylococcus aureus, a gram-positive, facultatively aerobic, clump-forming cocci, is among the most important etiological agents of bacterial infection in humans, as discussed briefly below.


[0006] Human Health and S. Aureus


[0007]

Staphylococcus aureus
is a ubiquitous pathogen. (See, for instance, Mims et al., MEDICAL MICROBIOLOGY, Mosby-Year Book Europe Limited, London, UK (1993)). It is an etiological agent of a variety of conditions, ranging in severity from mild to fatal. A few of the more common conditions caused by S. aureus infection are bums, cellulitis, eyelid infections, food poisoning, joint infections, neonatal conjunctivitis, osteomyelitis, skin infections, surgical wound infection, scalded skin syndrome and toxic shock syndrome, some of which are described further below.


[0008] Burns


[0009] Burn wounds generally are sterile initially. However, they generally compromise physical and immune barriers to infection, cause loss of fluid and electrolytes and result in local or general physiological dysfunction. After cooling, contact with viable bacteria results in mixed colonization at the injury site. Infection may be restricted to the non-viable debris on the bum surface (“eschar”), it may progress into full skin infection and invade viable tissue below the eschar and it may reach below the skin, enter the lymphatic and blood circulation and develop into septicemia. S. aureus is among the most important pathogens typically found in burn wound infections. It can destroy granulation tissue and produce severe septicemia.


[0010] Cellulitis


[0011] Cellulitis, an acute infection of the skin that expands from a typically superficial origin to spread below the cutaneous layer, most commonly is caused by S. aureus in conjunction with S. pyrogenes. Cellulitis can lead to systemic infection. In fact, cellulitis can be one aspect of synergistic bacterial gangrene. This condition typically is caused by a mixture of S. aureus and microaerophilic streptococci. It causes necrosis and treatment is limited to excision of the necrotic tissue. The condition often is fatal.


[0012] Eyelid Infections


[0013]

S. aureus
is the cause of styes and of sticky eye” in neonates, among other eye infections. Typically such infections are limited to the surface of the eye, and may occasionally penetrate the surface with more severe consequences.


[0014] Food Poisoning


[0015] Some strains of S. aureus produce one or more of five serologically distinct, heat and acid stable enterotoxins that are not destroyed by digestive process of the stomach and small intestine (enterotoxins A-E). Ingestion of the toxin, in sufficient quantities, typically results in severe vomiting, but not diarrhea. The effect does not require viable bacteria. Although the toxins are known, their mechanism of action is not understood.


[0016] Joint Infections


[0017]

S. aureus
infects bone joints causing diseases such osteomyelitis.


[0018] Osteomyelitis


[0019]

S. aureus
is the most common causative agent of haematogenous osteomyelitis. The disease tends to occur in children and adolescents more than adults and it is associated with non-penetrating injuries to bones. Infection typically occurs in the long end of growing bone, hence its occurrence in physically immature populations. Most often, infection is localized in the vicinity of sprouting capillary loops adjacent to epiphysial growth plates in the end of long, growing bones.


[0020] Skin Infections


[0021]

S. aureus
is the most common pathogen of such minor skin infections as abscesses and boils. Such infections often are resolved by normal host response mechanisms, but they also can develop into severe internal infections. Recurrent infections of the nasal passages plague nasal carriers of S. aureus.


[0022] Surgical Wound Infections


[0023] Surgical wounds often penetrate far into the body. Infection of such wound thus poses a grave risk to the patient. S. aureus is the most important causative agent of infections in surgical wounds. S. aureus is unusually adept at invading surgical wounds; sutured wounds can be infected by far fewer S. aureus cells then are necessary to cause infection in normal skin. Invasion of surgical wound can lead to severe S. aureus septicemia. Invasion of the blood stream by S. aureus can lead to seeding and infection of internal organs, particularly heart valves and bone, causing systemic diseases, such as endocarditis and osteomyelitis.


[0024] Scalded Skin Syndrome


[0025]

S. aureus
is responsible for “scalded skin syndrome” (also called toxic epidermal necrosis, Ritter's disease and Lyell's disease). This diseases occurs in older children, typically in outbreaks caused by flowering of S. aureus strains produce exfoliation (also called scalded skin syndrome toxin). Although the bacteria initially may infect only a minor lesion, the toxin destroys intercellular connections, spreads epidermal layers and allows the infection to penetrate the outer layer of the skin, producing the desquamiation that typifies the diseases. Shedding of the outer layer of skin generally reveals normal skin below, but fluid lost in the process can produce severe injury in young children if it is not treated properly.


[0026] Toxic Shock Syndrome


[0027] Toxic shock syndrome is caused by strains of S. aureus that produce the so-called toxic shock syndrome toxin. The disease can be caused by S. aureus infection at any site, but it is too often erroneously viewed exclusively as a disease solely of women who use tampons. The disease involves toxaemia and septicemia, and can be fatal.


[0028] Nocosomial Infections


[0029] In the 1984 National Nocosomial Infection Surveillance Study (“NNIS”) S. aureus was the most prevalent agent of surgical wound infections in many hospital services, including medicine, surgery, obstetrics, pediatrics and newborns.


[0030] Resistance to Drugs of S. aureus Strains


[0031] Prior to the introduction of penicillin the prognosis for patients seriously infected with S. aureus was unfavorable. Following the introduction of penicillin in the early 1940s even the worst S. aureus infections generally could be treated successfully. The emergence of penicillin-resistant strains of S. aureus did not take long, however. Most strains of S. aureus encountered in hospital infections today do not respond to penicillin; although, fortunately, this is not the case for S. aureus encountered in community infections.


[0032] It is well known now that penicillin-resistant strains of S. aureus produce a lactamase which converts penicillin to pencillinoic acid, and thereby destroys antibiotic activity. Furthermore, the lactamase gene often is propagated episomally, typically on a plasmid, and often is only one of several genes on an episomal element that, together, confer multidrug resistance.


[0033] Methicillins, introduced in the 1960s, largely overcame the problem of penicillin resistance in S. aureus. These compounds conserve the portions of penicillin responsible for antibiotic activity and modify or alter other portions that make penicillin a good substrate for inactivating lactamases. However, methicillin resistance has emerged in S. aureus, along with resistance to many other antibiotics effective against this organism, including aminoglycosides, tetracycline, chloramphenicol, macrolides and lincosamides. In fact, methicillin-resistant strains of S. aureus generally are multiply drug resistant.


[0034] The molecular genetics of most types of drug resistance in S. aureus has been elucidated (See Lyon et al., Microbiology Reviews 51: 88-134 (1987)). Generally, resistance is mediated by plasmids, as noted above regarding penicillin resistance; however, several stable forms of drug resistance have been observed that apparently involve integration of a resistance element into the S. aureus genome itself.


[0035] Thus far each new antibiotic gives rise to resistance strains, stains emerge that are resistance to multiple drugs and increasingly persistent forms of resistance begin to emerge. Drug resistance of S. aureus infections already poses significant treatment difficulties, which are likely to get much worse unless new therapeutic agents are developed.


[0036] Molecular Genetics of Staphylococcus Aureus


[0037] Despite its importance in, among other things, human disease, relatively little is known about the genome of this organism.


[0038] Most genetic studies of S. aureus have been carried out using the strain NCTC8325, which contains prophages psi11, psi12 and psi13, and the UV-cured derivative of this strain, 8325-4 (also referred to as RN450), which is free of the prophages.


[0039] These studies revealed that the S. aureus genome, like that of other staphylococci, consists of one circular, covalently closed, double-stranded DNA and a collection of so-called variable accessory genetic elements, such as prophages, plasmids, transposons and the like.


[0040] Physical characterization of the genome has not been carried out in any detail. Pattee et al. published a low resolution and incomplete genetic and physical map of the chromosome of S. aureus strain NCTC 8325. (Pattee et al. Genetic and Physical Mapping of Chromosome of Staphylococcus aureus NCTC 8325, Chapter 11, pgs. 163-169 in MOLECULAR BIOLOGY OF THE STAPHYLOCOCCI, R. P. Novick, Ed., VCH Publishers, New York, (1990) The genetic map largely was produced by mapping insertions of Tn551 and Tn4001, which, respectively, confer erythromycin and gentamicin resistance, and by analysis of SmaI-digested DNA by Pulsed Field Gel Electrophoresis (“PFGE”).


[0041] The map was of low resolution; even estimating the physical size of the genome was difficult, according to the investigators. The size of the largest SmaI chromosome fragment, for instance, was too large for accurate sizing by PFGE. To estimate its size, additional restriction sites had to be introduced into the chromosome using a transposon containing a SmaI recognition sequence.


[0042] In sum, most physical characteristics and almost all of the genes of Staphylococcus aureus are unknown. Among the few genes that have been identified, most have not been physically mapped or characterized in detail. Only a very few genes of this organism have been sequenced. (See, for instance Thomsberry, J., Antimicrobial Chemotherapy 21 Suppl C: 9-16 (1988), current versions of GENBANK and other nucleic acid databases, and references that relate to the genome of S. aureus such as those set out elsewhere herein.)


[0043] It is clear that the etiology of diseases mediated or exacerbated by S. aureus infection involves the programmed expression of S. aureus genes, and that characterizing the genes and their patterns of expression would add dramatically to our understanding of the organism and its host interactions. Knowledge of S. aureus genes and genomic organization would dramatically improve understanding of disease etiology and lead to improved and new ways of-preventing, ameliorating, arresting and reversing diseases. Moreover, characterized genes and genomic fragments of S. aureus would provide reagents for, among other things, detecting, characterizing and controlling S. aureus infections. There is a need therefore to characterize the genome of S. aureus and for polynucleotides and sequences of this organism.



SUMMARY OF THE INVENTION

[0044] The present invention is based on the sequencing of fragments of the Staphylococcus aureus genome. The primary nucleotide sequences which were generated are provided in SEQ ID NOS: 1-5,191.


[0045] The present invention provides the nucleotide sequence of several thousand contigs of the Staphylococcus aureus genome, which are listed in tables below and set out in the Sequence Listing submitted herewith, and representative fragments thereof, in a form which can be readily used, analyzed, and interpreted by a skilled artisan. In one embodiment, the present invention is provided as contiguous strings of primary sequence information corresponding to the nucleotide sequences depicted in SEQ ID NOS: 1-5,191.


[0046] The present invention further provides nucleotide sequences which are at least 95% identical to the nucleotide sequences of SEQ ID NOS: 1-5,191.


[0047] The nucleotide sequence of SEQ ID NOS: 1-5,191, a representative fragment thereof, or a nucleotide sequence which is at least 95% identical to the nucleotide sequence of SEQ ID NOS: 1-5,191 may be provided in a variety of mediums to facilitate its use. In one application of this embodiment, the sequences of the present invention are recorded on computer readable media. Such media includes, but is not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media.


[0048] The present invention further provides systems, particularly computer-based systems which contain the sequence information herein described stored in a data storage means. Such systems are designed to identify commercially important fragments of the Staphylococcus aureus genome.


[0049] Another embodiment of the present invention is directed to fragments of the Staphylococcus aureus genome having particular structural or functional attributes. Such fragments of the Staphylococcus aureus genome of the present invention include, but are not limited to, fragments which encode peptides, hereinafter referred to as open reading frames or ORFs,” fragments which modulate the expression of an operably linked ORF, hereinafter referred to as expression modulating fragments or EMFs,” and fragments which can be used to diagnose the presence of Staphylococcus aureus in a sample, hereinafter referred to as diagnostic fragments or “DFs.”


[0050] Each of the ORFs in fragments of the Staphylococcus aureus genome disclosed in Tables 1-3, and the EMFs found 5′ to the ORFs, can be used in numerous ways as polynucleotide reagents. For instance, the sequences can be used as diagnostic probes or amplification primers for detecting or determining the presence of a specific microbe in a sample, to selectively control gene expression in a host and in the production of polypeptides, such as polypeptides encoded by ORFs of the present invention, particular those polypeptides that have a pharmacological activity.


[0051] The present invention further includes recombinant constructs comprising one or more fragments of the Staphylococcus aureus genome of the present invention. The recombinant constructs of the present invention comprise vectors, such as a plasmid or viral vector, into which a fragment of the Staphylococcus aureus has been inserted.


[0052] The present invention further provides host cells containing any of the isolated fragments of the Staphylococcus aureus genome of the present invention. The host cells can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic cell, such as a yeast cell, or a procaryotic cell such as a bacterial cell.


[0053] The present invention is further directed to isolated polypeptides and proteins encoded by ORFs of the present invention. A variety of methods, well known to those of skill in the art, routinely may be utilized to obtain any of the polypeptides and proteins of the present invention. For instance, polypeptides and proteins of the present invention having relatively short, simple amino acid sequences readily can be synthesized using commercially available automated peptide synthesizers. Polypeptides and proteins of the present invention also may be purified from bacterial cells which naturally produce the protein. Yet another alternative is to purify polypeptide and proteins of the present invention from cells which have been altered to express them.


[0054] The invention further provides polypeptides comprising Staphylococcus aureus epitopes and vaccine compositions comprising such polypeptides. Also provided are methods for vaccinating an individual against Staphylococcus aureus infection.


[0055] The invention further provides methods of obtaining homologs of the fragments of the Staphylococcus aureus genome of the present invention and homologs of the proteins encoded by the ORFs of the present invention. Specifically, by using the nucleotide and amino acid sequences disclosed herein as a probe or as primers, and techniques such as PCR cloning and colony/plaque hybridization, one skilled in the art can obtain homologs.


[0056] The invention further provides antibodies which selectively bind polypeptides and proteins of the present invention. Such antibodies include both monoclonal and polyclonal antibodies.


[0057] The invention further provides hybridomas which produce the above-described antibodies. A hybridoma is an immortalized cell line which is capable of secreting a specific monoclonal antibody.


[0058] The present invention further provides methods of identifying test samples derived from cells which express one of the ORFs of the present invention, or a homolog thereof. Such methods comprise incubating a test sample with one or more of the antibodies of the present invention, or one or more of the Dfs or antigens of the present invention, under conditions which allow a skilled artisan to determine if the sample contains the ORF or product produced therefrom.


[0059] In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the above-described assays.


[0060] Specifically, the invention provides a compartmentalized kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the antibodies, antigens, or one of the DFs of the present invention; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of bound antibodies, antigens or hybridized DFs.


[0061] Using the isolated proteins of the present invention, the present invention further provides methods of obtaining and identifying agents capable of binding to a polypeptide or protein encoded by one of the ORFs of the present invention. Specifically, such agents include, as further described below, antibodies, peptides, carbohydrates, pharmaceutical agents and the like. Such methods comprise steps of: (a)contacting an agent with an isolated protein encoded by one of the ORFs of the present invention; and (b)determining whether the agent binds to said protein.


[0062] The present genomic sequences of Staphylococcus aureus will be of great value to all laboratories working with this organism and for a variety of commercial purposes. Many fragments of the Staphylococcus aureus genome will be immediately identified by similarity searches against GenBank or protein databases and will be of immediate value to Staphylococcus aureus researchers and for immediate commercial value for the production of proteins or to control gene expression.


[0063] The methodology and technology for elucidating extensive genomic sequences of bacterial and other genomes has and will greatly enhance the ability to analyze and understand chromosomal organization. In particular, sequenced contigs and genomes will provide the models for developing tools for the analysis of chromosome structure and function, including the ability to identify genes within large segments of genomic DNA, the structure, position, and spacing of regulatory elements, the identification of genes with potential industrial applications, and the ability to do comparative genomic and molecular phylogeny.







BRIEF DESCRIPTION OF THE DRAWINGS

[0064]
FIG. 1 is a block diagram of a computer system (102) that can be used to implement computer-based systems of present invention.


[0065]
FIG. 2 is a schematic diagram depicting the data flow and computer programs used to collect, assemble, edit and annotate the contigs of the Staphylococcus aureus genome of the present invention. Both Macintosh and Unix platforms are used to handle the AB 373 and 377 sequence data files, largely as described in Kerlavage et al., Proceedings of the Twenty-Sixth Annual Hawaii International Conference on System Sciences, 585, IEEE Computer Society Press, Wash. D.C. (1993). Factura (AB) is a Macintosh program designed for automatic vector sequence removal and end-trimming of sequence files. The program Loadis runs on a Macintosh platform and parses the feature data extracted from the sequence files by Factura to the Unix based Staphylococcus aureus relational database. Assembly of contigs (and whole genome sequences) is accomplished by retrieving a specific set of sequence files and their associated features using extrseq, a Unix utility for retrieving sequences from an SQL database. The resulting sequence file is processed by seq_filter to trim portions of the sequences with more than 2% ambiguous nucleotides. The sequence files were assembled using TIGR Assembler, an assembly engine designed at The Institute for Genomic Research (TIGR”) for rapid and accurate assembly of thousands of sequence fragments. The collection of contigs generated by the assembly step is loaded into the database with the lassie program. Identification of open reading frames (ORFs) is accomplished by processing contigs with zorf. The ORFs are searched against S. aureus sequences from Genbank and against all protein sequences using the BLASTN and BLASTP programs, described in Altschul et al., J. Mol. Biol. 215: 403-410 (1990)). Results of the ORF determination and similarity searching steps were loaded into the database. As described below, some results of the determination and the searches are set out in Tables 1-3.







DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

[0066] The present invention is based on the sequencing of fragments of the Staphylococcus aureus genome and analysis of the sequences. The primary nucleotide sequences generated by sequencing the fragments are provided in SEQ ID NOS: 1-5,191. (As used herein, the “primary sequence” refers to the nucleotide sequence represented by the IUPAC nomenclature system.)


[0067] In addition to the aforementioned Staphylococcus aureus polynucleotide and polynucleotide sequences, the present invention provides the nucleotide sequences of SEQ ID NOS: 1-5,191, or representative fragments thereof, in a form which can be readily used, analyzed, and interpreted by a skilled artisan.


[0068] As used herein, a “representative fragment of the nucleotide sequence depicted in SEQ ID NOS: 1-5,191” refers to any portion of the SEQ ID NOS: 1-5,191 which is not presently represented within a publicly available database. Preferred representative fragments of the present invention are Staphylococcus aureus open reading frames (ORFS”), expression modulating fragment (EMFs”) and fragments which can be used to diagnose the presence of Staphylococcus aureus in sample (“DFs”). A non-limiting identification of preferred representative fragments is provided in Tables 1-3.


[0069] As discussed in detail below, the information provided in SEQ ID NOS: 1-5,191 and in Tables 1-3 together with routine cloning, synthesis, sequencing and assay methods will enable those skilled in the art to clone and sequence all “representative fragments” of interest, including open reading frames encoding a large variety of Staphylococcus aureus proteins.


[0070] While the presently disclosed sequences of SEQ ID NOS: 1-5,191 are highly accurate, sequencing techniques are not perfect and, in relatively rare instances, further investigation of a fragment or sequence of the invention may reveal a nucleotide sequence error present in a nucleotide sequence disclosed in SEQ ID NOS: 1-5,191. However, once the present invention is made available (i.e., once the information in SEQ ID NOS: 1-5,191 and Tables 1-3 has been made available), resolving a rare sequencing error in SEQ ID NOS: 1-5,191 will be well within the skill of the art. The present disclosure makes available sufficient sequence information to allow any of the described contigs or portions thereof to be obtained readily by straightforward application of routine techniques. Further sequencing of such polynucleotide may proceed in like manner using manual and automated sequencing methods which are employed ubiquitous in the art. Nucleotide sequence editing software is publicly available. For example, Applied Biosystem's (AB) AutoAssembler can be used as an aid during visual inspection of nucleotide sequences. By employing such routine techniques potential errors readily may be identified and the correct sequence then may be ascertained by targeting further sequencing effort, also of a routine nature, to the region containing the potential error.


[0071] Even if all of the very rare sequencing errors in SEQ ID NOS: 1-5,191 were corrected, the resulting nucleotide sequences would still be at least 95% identical, nearly all would be at least 99% identical, and the great majority would be at least 99.9% identical to the nucleotide sequences of SEQ ID NOS: 1-5,191.


[0072] As discussed elsewhere herein, polynucleotides of the present invention readily may be obtained by routine application of well known and standard procedures for cloning and sequencing DNA. Detailed methods for obtaining libraries and for sequencing are provided below, for instance. A wide variety of Staphylococcus aureus strains that can be used to prepare S aureus genomic DNA for cloning and for obtaining polynucleotides of the present invention are available to the public from recognized depository institutions, such as the American Type Culture Collection (ATCC”).


[0073] The nucleotide sequences of the genomes from different strains of Staphylococcus aureus differ somewhat. However, the nucleotide sequences of the genomes of all Staphylococcus aureus strains will be at least 95% identical, in corresponding part, to the nucleotide sequences provided in SEQ ID NOS: 1-5,191. Nearly all will be at least 99% identical and the great majority will be 99.9% identical.


[0074] Thus, the present invention further provides nucleotide sequences which are at least 95%, preferably 99% and most preferably 99.9% identical to the nucleotide sequences of SEQ ID NOS: 1-5,191, in a form which can be readily used, analyzed and interpreted by the skilled artisan.


[0075] Methods for determining whether a nucleotide sequence is at least 95%, at least 99% or at least 99.9% identical to the nucleotide sequences of SEQ ID NOS: 1-5,191 are routine and readily available to the skilled artisan. For example, the well known fasta algorithm described in Pearson and Lipman, Proc. Natl. Acad. Sci. USA 85: 2444 (1988) can be used to generate the percent identity of nucleotide sequences. The


[0076] BLASTN program also can be used to generate an identity score of polynucleotides compared to one another.



COMPUTER RELATED EMBODIMENTS

[0077] The nucleotide sequences provided in SEQ ID NOS: 1-5,191, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 96%, 97%, 98% or 99% and most preferably at least 99.9% identical to a polynucleotide sequence of SEQ ID NOS: 1-5,191 may be “provided” in a variety of mediums to facilitate use thereof. As used herein, “provided” refers to a manufacture, other than an isolated nucleic acid molecule, which contains a nucleotide sequence of the present invention; i.e., a nucleotide sequence provided in SEQ ID NOS: 1-5,191, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 96%, 97%, 98% or 99% and most preferably at least 99.9% identical to a polynucleotide of SEQ ID NOS: 1-5,191. Such a manufacture provides a large portion of the Staphylococcus aureus genome and parts thereof (e.g., a Staphylococcus aureus open reading frame (ORF)) in a form which allows a skilled artisan to examine the manufacture using means not directly applicable to examining the Staphylococcus aureus genome or a subset thereof as it exists in nature or in purified form.


[0078] In one application of this embodiment, a nucleotide sequence of the present invention can be recorded on computer readable media. As used herein, “computer readable media” refers to any medium which can be read and accessed directly by a computer. Such media include, but are not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories, such as magnetic/optical storage media. A skilled artisan can readily appreciate how any of the presently known computer readable mediums can be used to create a manufacture comprising computer readable medium having recorded thereon a nucleotide sequence of the present invention. Likewise, it will be clear to those of skill how additional computer readable media that may be developed also can be used to create analogous manufactures having recorded thereon a nucleotide sequence of the present invention.


[0079] As used herein, “recorded” refers to a process for storing information on computer readable medium. A skilled artisan can readily adopt any of the presently know methods for recording information on computer readable medium to generate manufactures comprising the nucleotide sequence information of the present invention.


[0080] A variety of data storage structures are available to a skilled artisan for creating a computer readable medium having recorded thereon a nucleotide sequence of the present invention. The choice of the data storage structure will generally be based on the means chosen to access the stored information. In addition, a variety of data processor programs and formats can be used to store the nucleotide sequence information of the present invention on computer readable medium. The sequence information can be represented in a word processing text file, formatted in commercially-available software such as WordPerfect and MicroSoft Word, or represented in the form of an ASCII file, stored in a database application, such as DB2, Sybase, Oracle, or the like. A skilled artisan can readily adapt any number of data-processor structuring formats (e.g., text file or database) in order to obtain computer readable medium having recorded thereon the nucleotide sequence information of the present invention.


[0081] Computer software is publicly available which allows a skilled artisan to access sequence information provided in a computer readable medium. Thus, by providing in computer readable form the nucleotide sequences of SEQ ID NOS: 1-5,191, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 96%, 97%, 98% or 99% and most preferably at least 99.9% identical to a sequence of SEQ ID NOS: 1-5,191 the present invention enables the skilled artisan routinely to access the provided sequence information for a wide variety of purposes.


[0082] The examples which follow demonstrate how software which implements the BLAST (Altschul et al., J. Mol. Biol. 215:403-410 (1990)) and BLAZE (Brutlag et al., Comp. Chem. 17:203-207 (1993)) search algorithms on a Sybase system was used to identify open reading frames (ORFs) within the Staphylococcus aureus genome which contain homology to ORFs or proteins from both Staphylococcus aureus and from other organisms. Among the ORFs discussed herein are protein encoding fragments of the Staphylococcus aureus genome useful in producing commercially important proteins, such as enzymes used in fermentation reactions and in the production of commercially useful metabolites.


[0083] The present invention further provides systems, particularly computer-based systems, which contain the sequence information described herein. Such systems are designed to identify, among other things, commercially important fragments of the Staphylococcus aureus genome.


[0084] As used herein, “a computer-based system” refers to the hardware means, software means, and data storage means used to analyze the nucleotide sequence information of the present invention. The minimum hardware means of the computer-based systems of the present invention comprises a central processing unit (CPU), input means, output means, and data storage means. A skilled artisan can readily appreciate that any one of the currently available computer-based system are suitable for use in the present invention.


[0085] As stated above, the computer-based systems of the present invention comprise a data storage means having stored therein a nucleotide sequence of the present invention and the necessary hardware means and software means for supporting and implementing a search means.


[0086] As used herein, “data storage means” refers to memory which can store nucleotide sequence information of the present invention, or a memory access means which can access manufactures having recorded thereon the nucleotide sequence information of the present invention.


[0087] As used herein, “search means” refers to one or more programs which are implemented on the computer- based system to compare a target sequence or target structural motif with the sequence information stored within the data storage means. Search means are used to identify fragments or regions of the present genomic sequences which match a particular target sequence or target motif. A variety of known algorithms are disclosed publicly and a variety of commercially available software for conducting search means are and can be used in the computer-based systems of the present invention. Examples of such software includes, but is not limited to, MacPattern (EMBL), BLASTN and BLASTX (NCBIA). A skilled artisan can readily recognize that any one of the available algorithms or implementing software packages for conducting homology searches can be adapted for use in the present computer-based systems.


[0088] As used herein, a “target sequence” can be any DNA or amino acid sequence of six or more nucleotides or two or more amino acids. A skilled artisan can readily recognize that the longer a target sequence is, the less likely a target sequence will be present as a random occurrence in the database. The most preferred sequence length of a target sequence is from about 10 to 100 amino acids or from about 30 to 300 nucleotide residues. However, it is well recognized that searches for commercially important fragments, such as sequence fragments involved in gene expression and protein processing, may be of shorter length.


[0089] As used herein, “a target structural motif,” or “target motif,” refers to any rationally selected sequence or combination of sequences in which the sequence(s) are chosen based on a three-dimensional configuration which is formed upon the folding of the target motif. There are a variety of target motifs known in the art. Protein target motifs include, but are not limited to, enzymatic active sites and signal sequences. Nucleic acid target motifs include, but are not limited to, promoter sequences, hairpin structures and inducible expression elements (protein binding sequences).


[0090] A variety of structural formats for the input and output means can be used to input and output the information in the computer-based systems of the present invention. A preferred format for an output means ranks fragments of the Staphylococcus aureus genomic sequences possessing varying degrees of homology to the target sequence or target motif. Such presentation provides a skilled artisan with a ranking of sequences which contain various amounts of the target sequence or target motif and identifies the degree of homology contained in the identified fragment.


[0091] A variety of comparing means can be used to compare a target sequence or target motif with the data storage means to identify sequence fragments of the Staphylococcus aureus genome. In the present examples, implementing software which implement the BLAST and BLAZE algorithms, described in Altschul et al., J. Mol. Biol. 215: 403-410 (1990), was used to identify open reading frames within the Staphylococcus aureus genome. A skilled artisan can readily recognize that any one of the publicly available homology search programs can be used as the search means for the computer-based systems of the present invention. Of course, suitable proprietary systems that may be known to those of skill also may be employed in this regard.


[0092]
FIG. 1 provides a block diagram of a computer system illustrative of embodiments of this aspect of present invention. The computer system 102 includes a processor 106 connected to a bus 104. Also connected to the bus 104 are a main memory 108 (preferably implemented as random access memory, RAM) and a variety of secondary storage devices 110, such as a hard drive 112 and a removable medium storage device 114. The removable medium storage device 114 may represent, for example, a floppy disk drive, a CD-ROM drive, a magnetic tape drive, etc. A removable storage medium 116 (such as a floppy disk, a compact disk, a magnetic tape, etc.) containing control logic and/or data recorded therein may be inserted into the removable medium storage device 114. The computer system 102 includes appropriate software for reading the control logic and/or the data from the removable medium storage device 114, once it is inserted into the removable medium storage device 114.


[0093] A nucleotide sequence of the present invention may be stored in a well known manner in the main memory 108, any of the secondary storage devices 110, and/or a removable storage medium 116. During execution, software for accessing and processing the genomic sequence (such as search tools, comparing tools, etc.) reside in main memory 108, in accordance with the requirements and operating parameters of the operating system, the hardware system and the software program or programs.



BIOCHEMICAL EMBODIMENTS

[0094] Other embodiments of the present invention are directed to isolated fragments of the Staphylococcus aureus genome. The fragments of the Staphylococcus aureus genome of the present invention include, but are not limited to fragments which encode peptides, hereinafter open reading frames (ORFs), fragments which modulate the expression of an operably linked ORF, hereinafter expression modulating fragments (EMFs) and fragments which can be used to diagnose the presence of Staphylococcus aureus in a sample, hereinafter diagnostic fragments (DFs).


[0095] As used herein, an “isolated nucleic acid molecule” or an “isolated fragment of the Staphylococcus aureus genome” refers to a nucleic acid molecule possessing a specific nucleotide sequence which has been subjected to purification means to reduce, from the composition, the number of compounds which are normally associated with the composition. Particularly, the term refers to the nucleic acid molecules having the sequences set out in SEQ ID NOS: 1-5,191, to representative fragments thereof as described above, to polynucleotides at least 95%, preferably at least 96%, 97%, 98% or 99% and especially preferably at least 99.9% identical in sequence thereto, also as set out above.


[0096] A variety of purification means can be used to generated the isolated fragments of the present invention. These include, but are not limited to methods which separate constituents of a solution based on charge, solubility, or size.


[0097] In one embodiment, Staphylococcus aureus DNA can be mechanically sheared to produce fragments of 15-20 kb in length. These fragments can then be used to generate an Staphylococcus aureus library by inserting them into lambda clones as described in the Examples below. Primers flanking, for example, an ORF, such as those enumerated in Tables 1-3 can then be generated using nucleotide sequence information provided in SEQ ID NOS: 1-5,191. Well known and routine techniques of PCR cloning then can be used to isolate the ORF from the lambda DNA library of Staphylococcus aureus genomic DNA. Thus, given the availability of SEQ ID NOS: 1-5,191, the information in Tables 1, 2 and 3, and the information that may be obtained readily by analysis of the sequences of SEQ ID NOS: 1-5,191 using methods set out above, those of skill will be enabled by the present disclosure to isolate any ORF-containing or other nucleic acid fragment of the present invention.


[0098] The isolated nucleic acid molecules of the present invention include, but are not limited to single stranded and double stranded DNA, and single stranded RNA.


[0099] As used herein, an “open reading frame,” ORF, means a series of triplets coding for amino acids without any termination codons and is a sequence translatable into protein.


[0100] Tables 1, 2 and 3 list ORFs in the Staphylococcus aureus genomic contigs of the present invention that were identified as putative coding regions by the GeneMark software using organism-specific second-order Markov probability transition matrices. It will be appreciated that other criteria can be used, in accordance with well known analytical methods, such as those discussed herein, to generate more inclusive, more restrictive or more selective lists.


[0101] Table 1 sets out ORFs in the Staphylococcus aureus contigs of the present invention that are at least 80 amino acids long and over a continuous region of at least 50 bases which are 95% or more identical (by BLAST analysis) to an S. aureus nucleotide sequence available through Genbank in November 1996.


[0102] Table 2 sets out ORFs in the Staphylococcus aureus contigs of the present invention that are not in Table 1 and match, with a BLASTP probability score of 0.01 or less, a polypeptide sequence available through Genbank by September 1996.


[0103] Table 3 sets out ORFs in the Staphylococcus aureus contigs of the present invention that do not match significantly, by BLASTP analysis, a polypeptide sequence available through Genbank by September 1996.


[0104] In each table, the first and second columns identify the ORF by, respectively, contig number (SEQ ID NO) and ORF number within the contig; the third column indicates the first nucleotide of the ORF, counting from the 5′ end of the contig strand shown in the sequence listing; and the fifth column indicates the length of each ORF in nucleotides. It will be appreciated that some ORFs are located on the reverse strand. The numbering identifying such ORFs also represents nucleotide positions counting from the 5′ end of the strand shown in the sequence listing.


[0105] In Tables 1 and 2, column five, lists the “match accession” for the closest matching sequence available through Genbank. These reference numbers are the databases entry numbers commonly used by those of skill in the art, who will be familiar with their denominators. Descriptions of the nomenclature are available from the National Center for Biotechnology Information. Column six in Tables 1 and 2 provides the “gene name” of the matching sequence; column seven provides the BLAST “similarity”; column eight provides the BLAST “identity” score from the comparison of the ORF and the homologous gene; and column nine indicates the length in nucleotides of the highest scoring “segment pair” identified by the BLAST identity analysis.


[0106] The concepts of percent identity and percent similarity of two polypeptide sequences is well understood in the art. For example, two polypeptides 10 amino acids in length which differ at three amino acid positions (e.g., at positions 1, 3 and 5) are said to have a percent identity of 70%. However, the same two polypeptides would be deemed to have a percent similarity of 80% if, for example at position 5, the amino acids moieties, although not identical, were “similar” (i.e., possessed similar biochemical characteristics). Many programs for analysis of nucleotide or amino acid sequence similarity, such as fasta and BLAST specifically list percent identity of a matching region as an output parameter. Thus, for instance, Tables 1 and 2 herein enumerate the percent identity “of the highest scoring segment pair” in each ORF and its listed relative. Further details concerning the algorithms and criteria used for homology searches are provided below and are described in the pertinent literature highlighted by the citations provided below.


[0107] It will be appreciated that other criteria can be used to generate more inclusive and more exclusive listings of the types set out in the tables. As those of skill will appreciate, narrow and broad searches both are useful. Thus, a skilled artisan can readily identify ORFs in contigs of the Staphylococcus aureus genome other than those listed in Tables 1-3, such as ORFs which are overlapping or encoded by the opposite strand of an identified ORF in addition to those ascertainable using the computer-based systems of the present invention.


[0108] As used herein, an “expression modulating fragment,” EMF, means a series of nucleotide molecules which modulates the expression of an operably linked ORF or EMF.


[0109] As used herein, a sequence is said to “modulate the expression of an operably linked sequence” when the expression of the sequence is altered by the presence of the EMF. EMFs include, but are not limited to, promoters, and promoter modulating sequences (inducible elements). One class of EMFs are fragments which induce the expression or an operably linked ORF in response to a specific regulatory factor or physiological event.


[0110] EMF sequences can be identified within the contigs of the Staphylococcus aureus genome by their proximity to the ORFs provided in Tables 1-3. An intergenic segment, or a fragment of the intergenic segment, from about 10 to 200 nucleotides in length, taken from any one of the ORFs of Tables 1-3 will modulate the expression of an operably linked ORF in a fashion similar to that found with the naturally linked ORF sequence. As used herein, an “intergenic segment” refers to fragments of the Staphylococcus aureus genome which are between two ORF(s) herein described. EMFs also can be identified using known EMFs as a target sequence or target motif in the computer-based systems of the present invention. Further, the two methods can be combined and used together.


[0111] The presence and activity of an EMF can be confirmed using an EMF trap vector. An EMF trap vector contains a cloning site linked to a marker sequence. A marker sequence encodes an identifiable phenotype, such as antibiotic resistance or a complementing nutrition auxotrophic factor, which can be identified or assayed when the EMF trap vector is placed within an appropriate host under appropriate conditions. As described above, a EMF will modulate the expression of an operably linked marker sequence. A more detailed discussion of various marker sequences is provided below.


[0112] A sequence which is suspected as being an EMF is cloned in all three reading frames in one or more restriction sites upstream from the marker sequence in the EMF trap vector. The vector is then transformed into an appropriate host using known procedures and the phenotype of the transformed host in examined under appropriate conditions. As described above, an EMF will modulate the expression of an operably linked marker sequence.


[0113] As used herein, a “diagnostic fragment,” DF, means a series of nucleotide molecules which selectively hybridize to Staphylococcus aureus sequences. DFs can be readily identified by identifying unique sequences within contigs of the Staphylococcus aureus genome, such as by using well-known computer analysis software, and by generating and testing probes or amplification primers consisting of the DF sequence in an appropriate diagnostic format which determines amplification or hybridization selectivity.


[0114] The sequences falling within the scope of the present invention are not limited to the specific sequences herein described, but also include allelic and species variations thereof. Allelic and species variations can be routinely determined by comparing the sequences provided in SEQ ID NOS: 1-5,191, a representative fragment thereof, or a nucleotide sequence at least 99% and preferably 99.9% identical to SEQ ID NOS: 1-5,191, with a sequence from another isolate of the same species.


[0115] Furthermore, to accommodate codon variability, the invention includes nucleic acid molecules coding for the same amino acid sequences as do the specific ORFs disclosed herein. In other words, in the coding region of an ORF, substitution of one codon for another which encodes the same amino acid is expressly contemplated.


[0116] Any specific sequence disclosed herein can be readily screened for errors by resequencing a particular fragment, such as an ORF, in both directions (i.e., sequence both strands). Alternatively, error screening can be performed by sequencing corresponding polynucleotides of Staphylococcus aureus origin isolated by using part or all of the fragments in question as a probe or primer.


[0117] Each of the ORFs of the Staphylococcus aureus genome disclosed in Tables 1, 2 and 3, and the EMFs found 5′ to the ORFs, can be used as polynucleotide reagents in numerous ways. For example, the sequences can be used as diagnostic probes or diagnostic amplification primers to detect the presence of a specific microbe in a sample, particular Staphylococcus aureus. Especially preferred in this regard are ORF such as those of Table 3, which do not match previously characterized sequences from other organisms and thus are most likely to be highly selective for Staphylococcus aureus. Also particularly preferred are ORFs that can be used to distinguish between strains of Staphylococcus aureus, particularly those that distinguish medically important strain, such as drug-resistant strains.


[0118] In addition, the fragments of the present invention, as broadly described, can be used to control gene expression through triple helix formation or antisense DNA or RNA, both of which methods are based on the binding of a polynucleotide sequence to DNA or RNA. Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Information from the sequences of the present invention can be used to design antisense and triple helix-forming oligonucleotides. Polynucleotides suitable for use in these methods are usually 20 to 40 bases in length and are designed to be complementary to a region of the gene involved in transcription, for triple-helix formation, or to the mRNA itself, for antisense inhibition. Both techniques have been demonstrated to be effective in model systems, and the requisite techniques are well known and involve routine procedures. Triple helix techniques are discussed in, for example, Lee et al., Nucl. Acids Res. 6: 3073 (1979); Cooney et al, Science 241: 456 (1988); and Dervan et al., Science 251: 1360 (1991). Antisense techniques in general are discussed in, for instance, Okano, J. Neurochem. 56: 560 (1991) and OLIGODEOXYNUCLEOTIDES AS ANTISENSE INHIBITORS OF GENE EXPRESSION, CRC Press, Boca Raton, Fla. (1988)).


[0119] The present invention further provides recombinant constructs comprising one or more fragments of the Staphylococcus aureus genomic fragments and contigs of the present invention. Certain preferred recombinant constructs of the present invention comprise a vector, such as a plasmid or viral vector, into which a fragment of the Staphylococcus aureus genome has been inserted, in a forward or reverse orientation. In the case of a vector comprising one of the ORFs of the present invention, the vector may further comprise regulatory sequences, including for example, a promoter, operably linked to the ORF. For vectors comprising the EMFs of the present invention, the vector may further comprise a marker sequence or heterologous ORF operably linked to the EMF.


[0120] Large numbers of suitable vectors and promoters are known to those of skill in the art and are commercially available for generating the recombinant constructs of the present invention. The following vectors are provided by way of example. Useful bacterial vectors include phagescript, PsiX174, pBluescript SK and KS (+and −), pNH8a, pNH16a, pNH18a, pNH46a (available from Stratagene); pTrc99A, pKK223-3, pKK233-3, pDR540, pRIT5 (available from Pharmacia). Useful eukaryotic vectors include pWLneo, pSV2cat, pOG44, pXT1, pSG (available from Stratagene) pSVK3, pBPV, pMSG, pSVL (available from Pharmacia).


[0121] Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are pKK232-8 and pCM7. Particular named bacterial promoters include lacI, lacZ, T3, T7, gpt, lambda PR, and trc. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein-I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art.


[0122] The present invention further provides host cells containing any one of the isolated fragments of the Staphylococcus aureus genomic fragments and contigs of the present invention, wherein the fragment has been introduced into the host cell using known methods. The host cell can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic host cell, such as a yeast cell, or a procaryotic cell, such as a bacterial cell.


[0123] A polynucleotide of the present invention, such as a recombinant construct comprising an ORF of the present invention, may be introduced into the host by a variety of well established techniques that are standard in the art, such as calcium phosphate transfection, DEAE, dextran mediated transfection and electroporation, which are described in, for instance, Davis, L. et al., BASIC METHODS IN MOLECULAR BIOLOGY (1986).


[0124] A host cell containing one of the fragments of the Staphylococcus aureus genomic fragments and contigs of the present invention, can be used in conventional manners to produce the gene product encoded by the isolated fragment (in the case of an ORF) or can be used to produce a heterologous protein under the control of the EMF.


[0125] The present invention further provides isolated polypeptides encoded by the nucleic acid fragments of the present invention or by degenerate variants of the nucleic acid fragments of the present invention. By “degenerate variant” is intended nucleotide fragments which differ from a nucleic acid fragment of the present invention (e.g., an ORF) by nucleotide sequence but, due to the degeneracy of the Genetic Code, encode an identical polypeptide sequence.


[0126] Preferred nucleic acid fragments of the present invention are the ORFs depicted in Tables 2 and 3 which encode proteins.


[0127] A variety of methodologies known in the art can be utilized to obtain any one of the isolated polypeptides or proteins of the present invention. At the simplest level, the amino acid sequence can be synthesized using commercially available peptide synthesizers. This is particularly useful in producing small peptides and fragments of larger polypeptides. Such short fragments as may be obtained most readily by synthesis are useful, for example, in generating antibodies against the native polypeptide, as discussed further below.


[0128] In an alternative method, the polypeptide or protein is purified from bacterial cells which naturally produce the polypeptide or protein. One skilled in the art can readily employ well-known methods for isolating polypeptides and proteins to isolate and purify polypeptides or proteins of the present invention produced naturally by a bacterial strain, or by other methods. Methods for isolation and purification that can be employed in this regard include, but are not limited to, immunochromatography, HPLC, size-exclusion chromatography, ion-exchange chromatography, and immuno-affinity chromatography.


[0129] The polypeptides and proteins of the present invention also can be purified from cells which have been altered to express the desired polypeptide or protein. As used herein, a cell is said to be altered to express a desired polypeptide or protein when the cell, through genetic manipulation, is made to produce a polypeptide or protein which it normally does not produce or which the cell normally produces at a lower level. Those skilled in the art can readily adapt procedures for introducing and expressing either recombinant or synthetic sequences into eukaryotic or prokaryotic cells in order to generate a cell which produces one of the polypeptides or proteins of the present invention.


[0130] Any host/vector system can be used to express one or more of the ORFs of the present invention. These include, but are not limited to, eukaryotic hosts such as HeLa cells, CV-1 cell, COS cells, and Sf9 cells, as well as prokaryotic host such as E. coli and B. subtilis. The most preferred cells are those which do not normally express the particular polypeptide or protein or which expresses the polypeptide or protein at low natural level.


[0131] “Recombinant,” as used herein, means that a polypeptide or protein is derived from recombinant (e.g., microbial or mammalian) expression systems. “Microbial” refers to recombinant polypeptides or proteins made in bacterial or fungal (e.g., yeast) expression systems. As a product, “recombinant microbial” defines a polypeptide or protein essentially free of native endogenous substances and unaccompanied by associated native glycosylation. Polypeptides or proteins expressed in most bacterial cultures, e.g., E. coli, will be free of glycosylation modifications; polypeptides or proteins expressed in yeast will have a glycosylation pattern different from that expressed in mammalian cells.


[0132] “Nucleotide sequence” refers to a heteropolymer of deoxyribonucleotides. Generally, DNA segments encoding the polypeptides and proteins provided by this invention are assembled from fragments of the Staphylococcus aureus genome and short oligonucleotide linkers, or from a series of oligonucleotides, to provide a synthetic gene which is capable of being expressed in a recombinant transcriptional unit comprising regulatory elements derived from a microbial or viral operon.


[0133] “Recombinant expression vehicle or vector” refers to a plasmid or phage or virus or vector, for expressing a polypeptide from a DNA (RNA) sequence. The expression vehicle can comprise a transcriptional unit comprising an assembly of (1) a genetic regulatory elements necessary for gene expression in the host, including elements required to initiate and maintain transcription at a level sufficient for suitable expression of the desired polypeptide, including, for example, promoters and, where necessary, an enhancers and a polyadenylation signal; (2) a structural or coding sequence which is transcribed into mRNA and translated into protein, and (3) appropriate signals to initiate translation at the beginning of the desired coding region and terminate translation at its end. Structural units intended for use in yeast or eukaryotic expression systems preferably include a leader sequence enabling extracellular secretion of translated protein by a host cell. Alternatively, where recombinant protein is expressed without a leader or transport sequence, it may include an N-terminal methionine residue. This residue may or may not be subsequently cleaved from the expressed recombinant protein to provide a final product.


[0134] “Recombinant expression system” means host cells which have stably integrated a recombinant transcriptional unit into chromosomal DNA or carry the recombinant transcriptional unit extra chromosomally. The cells can be prokaryotic or eukaryotic. Recombinant expression systems as defined herein will express heterologous polypeptides or proteins upon induction of the regulatory elements linked to the DNA segment or synthetic gene to be expressed.


[0135] Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described in Sambrook et al., MOLECULAR CLONING:A LABORATORY MANUAL, 2nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989), the disclosure of which is hereby incorporated by reference in its entirety.


[0136] Generally, recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of E. coli and S. cerevisiae TRPI gene, and a promoter derived from a highly expressed gene to direct transcription of a downstream structural sequence. Such promoters can be derived from operons encoding glycolytic enzymes such as 3-phosphoglycerate kinase (PGK), alpha-factor, acid phosphatase, or heat shock proteins, among others. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium. Optionally, the heterologous sequence can encode a fusion protein including an N-terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product.


[0137] Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter. The vector will comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and, when desirable, provide amplification within the host.


[0138] Suitable prokaryotic hosts for transformation include strains of Staphylococcus aureus, E. coli, B. subtilis, Salmonella typhimurium and various species within the genera Pseudomonas, Streptomyces, and Staphylococcus. Others may, also be employed as a matter of choice.


[0139] As a representative but non-limiting example, useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example, pKK223-3 (available form Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM 1 (available from Promega Biotec, Madison, Wis., USA). These pBR322 “backbone” sections are combined with an appropriate promoter and the structural sequence to be expressed.


[0140] Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter, where it is inducible, is derepressed or induced by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period to provide for expression of the induced gene product. Thereafter cells are typically harvested, generally by centrifugation, disrupted to release expressed protein, generally by physical or chemical means, and the resulting crude extract is retained for further purification.


[0141] Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts, described in Gluzman, Cell 23: 175 (1981), and other cell lines capable of expressing a compatible vector, for example, the C127, 3T3, CHO, HeLa and BHK cell lines.


[0142] Mammalian expression vectors will comprise an origin of replication, a suitable promoter and enhancer, and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5′ flanking nontranscribed sequences. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early promoter, enhancer, splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements.


[0143] Recombinant polypeptides and proteins produced in bacterial culture is usually isolated by initial extraction from cell pellets, followed by one or more salting-out, aqueous ion exchange or size exclusion chromatography steps. Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps.


[0144] An additional aspect of the invention includes Staphylococcus aureus polypeptides which are useful as immunodiagnostic antigens and/or immunoprotective vaccines, collectively “immunologically useful polypeptides”. Such immunologically useful polypeptides may be selected from the ORFs disclosed herein based on techniques well known in the art and described elsewhere herein. The inventors have used the following criteria to select several immunologically useful polypeptides:


[0145] As is known in the art, an amino terminal type I signal sequence directs a nascent protein across the plasma and outer membranes to the exterior of the bacterial cell. Such outer membrane polypeptides are expected to be immunologically useful. According to Izard, J. W. et al., Mol. Microbiol. 13, 765-773; (1994), polypeptides containing type I signal sequences contain the following physical attributes: The length of the type I signal sequence is approximately 15 to 25 primarily hydrophobic amino acid residues with a net positive charge in the extreme amino terminus; the central region of the signal sequence must adopt an alpha-helical conformation in a hydrophobic environment; and the region surrounding the actual site of cleavage is ideally six residues long, with small side-chain amino acids in the −1 and −3 positions.


[0146] Also known in the art is the type IV signal sequence which is an example of the several types of functional signal sequences which exist in addition to the type I signal sequence detailed above. Although functionally related, the type IV signal sequence possesses a unique set of biochemical and physical attributes (Strom, M. S. and Lory, S., J. Bacteriol. 174, 7345-7351; 1992)). These are typically six to eight amino acids with a net basic charge followed by an additional sixteen to thirty primarily hydrophobic residues. The cleavage site of a type IV signal sequence is typically after the initial six to eight amino acids at the extreme amino terminus. In addition, all type IV signal sequences contain a phenylalanine residue at the +1 site relative to the cleavage site.


[0147] Studies of the cleavage sites of twenty-six bacterial lipoprotein precursors has allowed the definition of a consensus amino acid sequence for lipoprotein cleavage. Nearly three-fourths of the bacterial lipoprotein precursors examined contained the sequence L-(A,S)-(G,A)-C at positions −3 to +1, relative to the point of cleavage (Hayashi, S. and Wu, H. C. Lipoproteins in bacteria. J Bioenerg. Biomembr. 22, 451-471; 1990).


[0148] It is well known that most anchored proteins found on the surface of gram-positive bacteria possess a highly conserved carboxy terminal sequence. More than fifty such proteins from organisms such as S. pyogenes, S. mutans, E. faecalis, S. pneumoniae, and others, have been identified based on their extracellular location and carboxy terminal amino acid sequence (Fischetti, V. A. Gram-positive commensal bacteria deliver antigens to elicit mucosal and systemic immunity. ASM News 62, 405-410; 1996). The conserved region is comprised of six charged amino acids at the extreme carboxy terminus coupled to 15-20 hydrophobic amino acids presumed to function as a transmembrane domain. Immediately adjacent to the transmembrane domain is a six amino acid sequence conserved in nearly all proteins examined. The amino acid sequence of this region is L-P-X-G-X (SEQ ID NO:5256), where X is any amino acid.


[0149] Amino acid sequence similarities to proteins of known function by BLAST enables the assignment of putative functions to novel amino acid sequences and allows for the selection of proteins thought to function outside the cell wall. Such proteins are well known in the art and include “lipoprotein”, “periplasmic”, or “antigen”.


[0150] An algorithm for selecting antigenic and immunogenic Staphylococcus aureus polypeptides including the foregoing criteria was developed by the present inventors. Use of the algorithm by the inventors to select immunologically useful Staphylococcus aureus polypeptides resulted in the selection of several ORFs which are predicted to be outer membrane-associated proteins. These proteins are identified below, and shown in the Sequence Listing as SEQ ID NOS: 5,192 to 5,255. Thus the amino acid sequence of each of several antigenic Staphylococcus aureus polypeptides can be determined, for example, by locating the amino acid sequence of the ORF in the Sequence Listing. Likewise the polynucleotide sequence encoding each ORF can be found by locating the corresponding polynucleotide SEQ ID in Tables 1, 2, or 3, and finding the corresponding nucleotide sequence in the sequence listing.


[0151] As will be appreciated by those of ordinary skill in the art, although a polypeptide representing an entire ORF may be the closest approximation to a protein found in vivo, it is not always technically practical to express a complete ORF in vitro. It may be very challenging to express and purify a highly hydrophobic protein by common laboratory methods. As a result, the immunologically useful polypeptides described herein as SEQ ID NOS: 5,192-5,255 may have been modified slightly to simplify the production of recombinant protein, and are the preferred embodiments. In general, nucleotide sequences which encode highly hydrophobic domains, such as those found at the amino terminal signal sequence, are excluded for enhanced in vitro expression of the polypeptides. Furthermore, any highly hydrophobic amino acid sequences occurring at the carboxy terminus are also excluded. Such truncated polypeptides include for example the mature forms of the polypeptides expected to exist in nature.


[0152] Those of ordinary skill in the art can identify soluble portions the polypeptide, and in the case of truncated polypeptides sequences shown as SEQ ID NOS: 5,192-5,255, may obtain the complete predicted amino acid sequence of each polypeptide by translating the corresponding polynucleotides sequences of the corresponding ORF listed in Tables 1,2 and 3 and found in the sequence listing.


[0153] Accordingly, polypeptides comprising the complete amino acid sequence of an immunologically useful polypeptide selected from the group of polypeptides encoded by the ORFs shown as SEQ ID NOS: 5,192-5,255, or an amino acid sequence at least 95% identical thereto, preferably at least 97% identical thereto, and most preferably at least 99% identical thereto form an embodiment of the invention; in addition, polypeptides comprising an amino acid sequence selected from the group of amino acid sequences shown in the sequence listing as SEQ ID NOS: 5,191-5,255, or an amino acid sequence at least 95% identical thereto, preferably at least 97% identical thereto and most preferably 99% identical thereto, form an embodiment of the invention. Polynucleotides encoding the foregoing polypeptides also form part of the invention.


[0154] In another aspect, the invention provides a peptide or polypeptide comprising an epitope-bearing portion of a polypeptide of the invention, particularly those epitope-bearing portions (antigenic regions) identified in the sequence listing as SEQ ID NOS: 5,191-5,255. The epitope-bearing portion is an immunogenic or antigenic epitope of a polypeptide of the invention. An “immunogenic epitope” is defined as a part of a protein that elicits an antibody response when the whole protein is the immunogen. On the other hand, a region of a protein molecule to which an antibody can bind is defined as an “antigenic epitope.” The number of immunogenic epitopes of a protein generally is less than the number of antigenic epitopes. See, for instance, Geysen et al., Proc. Natl. Acad. Sci. USA 81:3998-4002 (1983).


[0155] As to the selection of peptides or polypeptides bearing an antigenic epitope (i.e., that contain a region of a protein molecule to which an antibody can bind), it is well known in that art that relatively short synthetic peptides that mimic part of a protein sequence are routinely capable of eliciting an antiserum that reacts with the partially mimicked protein. See, for instance, Sutcliffe, J. G., Shinnick, T. M., Green, N. and Learner, R. A. (1983) “Antibodies that react with predetermined sites on proteins”, Science, 219:660-666. Peptides capable of eliciting protein-reactive sera are frequently represented in the primary sequence of a protein, can be characterized by a set of simple chemical rules, and are confined neither to immunodominant regions of intact proteins (i.e., immunogenic epitopes) nor to the amino or carboxyl terminals.


[0156] Antigenic epitope-bearing peptides and polypeptides of the invention are therefore useful to raise antibodies, including monoclonal antibodies, that bind specifically to a polypeptide of the invention. See, for instance, Wilson et al., Cell 37:767-778 (1984) at 777.


[0157] Antigenic epitope-bearing peptides and polypeptides of the invention preferably contain a sequence of at least seven, more preferably at least nine and most preferably between about 15 to about 30 amino acids contained within the amino acid sequence of a polypeptide of the invention. Non-limiting examples of antigenic polypeptides or peptides that can be used to generate S. aureus specific antibodies include: a polypeptide comprising peptides shown below. These polypeptide fragments have been determined to bear antigenic epitopes of indicated S. aureus proteins by the analysis of the Jameson-Wolf antigenic index, a representative sample of which is shown in FIG. 3.


[0158] The epitope-bearing peptides and polypeptides of the invention may be produced by any conventional means. See, e.g., Houghten, R. A. (1985) General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. Proc. Natl. Acad. Sci. USA 82:5131-5135; this “Simultaneous Multiple Peptide Synthesis (SMPS)” process is further described in U.S. Pat. No. 4,631,211 to Houghten et al. (1986).


[0159] Epitope-bearing peptides and polypeptides of the invention are used to induce antibodies according to methods well known in the art. See, for instance, Sutcliffe et al., supra; Wilson et al., supra; Chow, M. et al., Proc. Natl. Acad. Sci. USA 82:910-914; and Bittle, F. J. et al., J. Gen. Virol. 66:2347-2354 (1985). Immunogenic epitope-bearing peptides of the invention, i.e., those parts of a protein that elicit an antibody response when the whole protein is the immunogen, are identified according to methods known in the art. See, for instance, Geysen et al., supra. Further still, U.S. Pat. No. 5,194,392 to Geysen (1990) describes a general method of detecting or determining the sequence of monomers (amino acids or other compounds) which is a topological equivalent of the epitope (i.e., a “mimotope”) which is complementary to a particular paratope (antigen binding site) of an antibody of interest. More generally, U.S. Pat. No. 4,433,092 to Geysen (1989) describes a method of detecting or determining a sequence of monomers which is a topographical equivalent of a ligand which is complementary to the ligand binding site of a particular receptor of interest. Similarly, U.S. Pat. No. 5,480,971 to Houghten, R. A. et al. (1996) on Peralkylated Oligopeptide Mixtures discloses linear C1-C7-alkyl peralkylated oligopeptides and sets and libraries of such peptides, as well as methods for using such oligopeptide sets and libraries for determining the sequence of a peralkylated oligopeptide that preferentially binds to an acceptor molecule of interest. Thus, non-peptide analogs of the epitope-bearing peptides of the invention also can be made routinely by these methods.


[0160] Immunologically useful polypeptides may be identified by an algorithm which locates novel Staphylococcus aureus outer membrane proteins, as is described above. Also listed are epitopes or “antigenic regions” of each of the identified polypeptides. The antigenic regions, or epitopes, are delineated by two numbers x-y, where x is the number of the first amino acid in the open reading frame included within the epitope and y is the number of the last amino acid in the open reading frame included within the epitope. For example, the first epitope in ORF 168-6 is comprised of amino acids 36 to 45 of SEQ ID NO: 5,192. The inventors have identified several epitopes for each of the antigenic polypeptides identified. Accordingly, forming part of the present invention are polypeptides comprising an amino acid sequence of one or more antigenic regions identified. The invention further provides polynucleotides encoding such polypeptides.


[0161] The present invention further includes isolated polypeptides, proteins and nucleic acid molecules which are substantially equivalent to those herein described. As used herein, substantially equivalent can refer both to nucleic acid and amino acid sequences, for example a mutant sequence, that varies from a reference sequence by one or more substitutions, deletions, or additions, the net effect of which does not result in an adverse functional dissimilarity between reference and subject sequences. For purposes of the present invention, sequences having equivalent biological activity, and equivalent expression characteristics are considered substantially equivalent. For purposes of determining equivalence, truncation of the mature sequence should be disregarded.


[0162] The invention further provides methods of obtaining homologs from other strains of Staphylococcus aureus, of the fragments of the Staphylococcus aureus genome of the present invention and homologs of the proteins encoded by the ORFs of the present invention. As used herein, a sequence or protein of Staphylococcus aureus is defined as a homolog of a fragment of the Staphylococcus aureus fragments or contigs or a protein encoded by one of the ORFs of the present invention, if it shares significant homology to one of the fragments of the Staphylococcus aureus genome of the present invention or a protein encoded by one of the ORFs of the present invention. Specifically, by using the sequence disclosed herein as a probe or as primers, and techniques such as PCR cloning and colony/plaque hybridization, one skilled in the art can obtain homologs.


[0163] As used herein, two nucleic acid molecules or proteins are said to “share significant homology” if the two contain regions which possess greater than 85% sequence (amino acid or nucleic acid) homology. Preferred homologs in this regard are those with more than 90% homology. Especially preferred are those with 93% or more homology. Among especially preferred homologs those with 95% or more homology are particularly preferred. Very particularly preferred among these are those with 97% and even more particularly preferred among those are homologs with 99% or more homology. The most preferred homologs among these are those with 99.9% homology or more. It will be understood that, among measures of homology, identity is particularly preferred in this regard.


[0164] Region specific primers or probes derived from the nucleotide sequence provided in SEQ ID NOS: 1-5,191 or from a nucleotide sequence at least 95%, particularly at least 99%, especially at least 99.5% identical to a sequence of SEQ ID NOS: 1-5,191 can be used to prime DNA synthesis and PCR amplification, as well as to identify colonies containing cloned DNA encoding a homolog. Methods suitable to this aspect of the present invention are well known and have been described in great detail in many publications such as, for example, Innis et al., PCR PROTOCOLS, Academic Press, San Diego, Calif. (1990)).


[0165] When using primers derived from SEQ ID NOS: 1-5,191 or from a nucleotide sequence having an aforementioned identity to a sequence of SEQ ID NOS: 1-5,191, one skilled in the art will recognize that by employing high stringency conditions (e.g., annealing at 50-60° C. in 6× SSPC and 50% formamide, and washing at 50-65° C. in 0.5× SSPC) only sequences which are greater than 75% homologous to the primer will be amplified. By employing lower stringency conditions (e.g., hybridizing at 35-37° C. in 5× SSPC and 40-45% formamide, and washing at 42° C. in 0.5× SSPC), sequences which are greater than 40-50% homologous to the primer will also be amplified.


[0166] When using DNA probes derived from SEQ ID NOS: 1-5,191, or from a nucleotide sequence having an aforementioned identity to a sequence of SEQ ID NOS: 1-5,191, for colony/plaque hybridization, one skilled in the art will recognize that by employing high stringency conditions (e.g., hybridizing at 50-65° C. in 5× SSPC and 50% formamide, and washing at 50-65° C. in 0.5× SSPC), sequences having regions which are greater than 90% homologous to the probe can be obtained, and that by employing lower stringency conditions (e.g., hybridizing at 35-37° C. in 5× SSPC and 40-45% formamide, and washing at 42° C. in 0.5× SSPC), sequences having regions which are greater than 35-45% homologous to the probe will be obtained.


[0167] Any organism can be used as the source for homologs of the present invention so long as the organism naturally expresses such a protein or contains genes encoding the same. The most preferred organism for isolating homologs are bacterias which are closely related to Staphylococcus aureus.



ILLUSTRATIVE USES OF COMPOSITIONS OF THE INVENTION

[0168] Each ORF provided in Tables 1 and 2 is identified with a function by homology to a known gene or polypeptide. As a result, one skilled in the art can use the polypeptides of the present invention for commercial, therapeutic and industrial purposes consistent with the type of putative identification of the polypeptide. Such identifications permit one skilled in the art to use the Staphylococcus aureus ORFs in a manner similar to the known type of sequences for which the identification is made; for example, to ferment a particular sugar source or to produce a particular metabolite. A variety of reviews illustrative of this aspect of the invention are available, including the following reviews on the industrial use of enzymes, for example, BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY HANDBOOK, 2nd Ed., Macmillan Publications, Ltd. NY (1991) and BIOCATALYSTS IN ORGANIC SYNTHESES, Tramper et al., Eds., Elsevier Science Publishers, Amsterdam, The Netherlands (1985). A variety of exemplary uses that illustrate this and similar aspects of the present invention are discussed below.


[0169] 1. Biosynthetic Enzymes


[0170] Open reading frames encoding proteins involved in mediating the catalytic reactions involved in intermediary and macromolecular metabolism, the biosynthesis of small molecules, cellular processes and other functions includes enzymes involved in the degradation of the intermediary products of metabolism, enzymes involved in central intermediary metabolism, enzymes involved in respiration, both aerobic and anaerobic, enzymes involved in fermentation, enzymes involved in ATP proton motor force conversion, enzymes involved in broad regulatory function, enzymes involved in amino acid synthesis, enzymes involved in nucleotide synthesis, enzymes involved in cofactor and vitamin synthesis, can be used for industrial biosynthesis.


[0171] The various metabolic pathways present in Staphylococcus aureus can be identified based on absolute nutritional requirements as well as by examining the various enzymes identified in Table 1-3 and SEQ ID NOS: 1-5,191.


[0172] Of particular interest are polypeptides involved in the degradation of intermediary metabolites as well as non-macromolecular metabolism. Such enzymes include amylases, glucose oxidases, and catalase.


[0173] Proteolytic enzymes are another class of commercially important enzymes. Proteolytic enzymes find use in a number of industrial processes including the processing of flax and other vegetable fibers, in the extraction, clarification and depectinization of fruit juices, in the extraction of vegetables' oil and in the maceration of fruits and vegetables to give unicellular fruits. A detailed review of the proteolytic enzymes used in the food industry is provided in Rombouts et al., Symbiosis 21: 79 (1986) and Voragen et al. in BIOCATALYSTS IN AGRICULTURAL BIOTECHNOLOGY, Whitaker et al., Eds., American Chemical Society Symposium Series 389: 93 (1989).


[0174] The metabolism of sugars is an important aspect of the primary metabolism of Staphylococcus aureus. Enzymes involved in the degradation of sugars, such as, particularly, glucose, galactose, fructose and xylose, can be used in industrial fermentation. Some of the important sugar transforming enzymes, from a commercial viewpoint, include sugar isomerases such as glucose isomerase. Other metabolic enzymes have found commercial use such as glucose oxidases which produces ketogulonic acid (KGA). KGA is an intermediate in the commercial production of ascorbic acid using the Reichstein's procedure, as described in Krueger et al., Biotechnology 6(A), Rhine et al., Eds., Verlag Press, Weinheim, Germany (1984).


[0175] Glucose oxidase (GOD) is commercially available and has been used in purified form as well as in an immobilized form for the deoxygenation of beer. See, for instance, Hartmeir et al., Biotechnology Letters 1: 21 (1979). The most important application of GOD is the industrial scale fermentation of gluconic acid. Market for gluconic acids which are used in the detergent, textile, leather, photographic, pharmaceutical, food, feed and concrete industry, as described, for example, in Bigelis et al., beginning on page 357 in GENE MANIPULATIONS AND FUNGI; Benett et al., Eds., Academic Press, New York (1985). In addition to industrial applications, GOD has found applications in medicine for quantitative determination of glucose in body fluids recently in biotechnology for analyzing syrups from starch and cellulose hydrosylates. This application is described in Owusu et al., Biochem. et Biophysica. Acta. 872: 83 (1986), for instance.


[0176] The main sweetener used in the world today is sugar which comes from sugar beets and sugar cane. In the field of industrial enzymes, the glucose isomerase process shows the largest expansion in the market today. Initially, soluble enzymes were used and later immobilized enzymes were developed (Krueger et al., Biotechnology, The Textbook of Industrial Microbiology, Sinauer Associated Incorporated, Sunderland, Mass. (1990)). Today, the use of glucose- produced high fructose syrups is by far the largest industrial business using immobilized enzymes. A review of the industrial use of these enzymes is provided by Jorgensen, Starch 40:307 (1988).


[0177] Proteinases, such as alkaline serine proteinases, are used as detergent additives and thus represent one of the largest volumes of microbial enzymes used in the industrial sector. Because of their industrial importance, there is a large body of published and unpublished information regarding the use of these enzymes in industrial processes. (See Faultman et al., Acid Proteases Structure Function and Biology, Tang, J., ed., Plenum Press, New York (1977) and Godfrey et al., Industrial Enzymes, MacMillan Publishers, Surrey, UK (1983) and Hepner et al, Report Industrial Enzymes by 1990, Hel Hepner & Associates, London (1986)).


[0178] Another class of commercially usable proteins of the present invention are the microbial lipases, described by, for instance, Macrae et al., Philosophical Transactions of the Chiral Society of London 310:227 (1985) and Poserke, Journal of the American Oil Chemist Society 61:1758 (1984). A major use of lipases is in the fat and oil industry for the production of neutral glycerides using lipase catalyzed inter-esterification of readily available triglycerides. Application of lipases include the use as a detergent additive to facilitate the removal of fats from fabrics in the course of the washing procedures.


[0179] The use of enzymes, and in particular microbial enzymes, as catalyst for key steps in the synthesis of complex organic molecules is gaining popularity at a great rate. One area of great interest is the preparation of chiral intermediates. Preparation of chiral intermediates is of interest to a wide range of synthetic chemists particularly those scientists involved with the preparation of new pharmaceuticals, agrochemicals, fragrances and flavors. (See Davies et al., Recent Advances in the Generation of Chiral Intermediates Using Enzymes, CRC Press, Boca Raton, Fla. (1990)). The following reactions catalyzed by enzymes are of interest to organic chemists: hydrolysis of carboxylic acid esters, phosphate esters, amides and nitriles, esterification reactions, trans-esterification reactions, synthesis of amides, reduction of alkanones and oxoalkanates, oxidation of alcohols to carbonyl compounds, oxidation of sulfides to sulfoxides, and carbon bond forming reactions such as the aldol reaction.


[0180] When considering the use of an enzyme encoded by one of the ORFs of the present invention for biotransformation and organic synthesis it is sometimes necessary to consider the respective advantages and disadvantages of using a microorganism as opposed to an isolated enzyme. Pros and cons of using a whole cell system on the one hand or an isolated partially purified enzyme on the other hand, has been described in detail by Bud et al., Chemistry in Britain (1987), p. 127.


[0181] Amino transferases, enzymes involved in the biosynthesis and metabolism of amino acids, are useful in the catalytic production of amino acids. The advantages of using microbial based enzyme systems is that the amino transferase enzymes catalyze the stereo- selective synthesis of only L-amino acids and generally possess uniformly high catalytic rates. A description of the use of amino transferases for amino acid production is provided by Roselle-David, Methods of Enzymology 136:479 (1987).


[0182] Another category of useful proteins encoded by the ORFs of the present invention include enzymes involved in nucleic acid synthesis, repair, and recombination. A variety of commercially important enzymes have previously been isolated from members of Staphylococcus aureus. These include Sau3A and Sau96I.


[0183] 2. Generation of Antibodies


[0184] As described here, the proteins of the present invention, as well as homologs thereof, can be used in a variety procedures and methods known in the art which are currently applied to other proteins. The proteins of the present invention can further be used to generate an antibody which selectively binds the protein. Such antibodies can be either monoclonal or polyclonal antibodies, as well fragments of these antibodies, and humanized forms.


[0185] The invention further provides antibodies which selectively bind to one of the proteins of the present invention and hybridomas which produce these antibodies. A hybridoma is an immortalized cell line which is capable of secreting a specific monoclonal antibody.


[0186] In general, techniques for preparing polyclonal and monoclonal antibodies as well as hybridomas capable of producing the desired antibody are well known in the art (Campbell, A. M., MONOCLONAL ANTIBODY TECHNOLOGY: LABORATORY TECHNIQUES IN BIOCHEMISTRY AND MOLECULAR BIOLOGY, Elsevier Science Publishers, Amsterdam, The Netherlands (1984); St. Groth et al., J. Immunol. Methods 35: 1-21 (1980), Kohler and Milstein, Nature 256: 495-497 (1975)), the trioma technique, the human B-cell hybridoma technique (Kozbor et al., Immunology Today-4: 72 (1983), pgs. 77-96 of Cole et al., in MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc. (1985)).


[0187] Any animal (mouse, rabbit, etc.) which is known to produce antibodies can be immunized with the pseudogene polypeptide. Methods for immunization are well known in the art. Such methods include subcutaneous or interperitoneal injection of the polypeptide. One skilled in the art will recognize that the amount of the protein encoded by the ORF of the present invention used for immunization will vary based on the animal which is immunized, the antigenicity of the peptide and the site of injection.


[0188] The protein which is used as an immunogen may be modified or administered in an adjuvant in order to increase the protein's antigenicity. Methods of increasing the antigenicity of a protein are well known in the art and include, but are not limited to coupling the antigen with a heterologous protein (such as globulin or galactosidase) or through the inclusion of an adjuvant during immunization.


[0189] For monoclonal antibodies, spleen cells from the immunized animals are removed, fused with myeloma cells, such as SP2/0-Ag14 myeloma cells, and allowed to become monoclonal antibody producing hybridoma cells.


[0190] Any one of a number of methods well known in the art can be used to identify the hybridoma cell which produces an antibody with the desired characteristics. These include screening the hybridomas with an ELISA assay, western blot analysis, or radioimmunoassay (Lutz et al., Exp. Cell Res. 175: 109-124 (1988)).


[0191] Hybridomas secreting the desired antibodies are cloned and the class and subclass is determined using procedures known in the art (Campbell, A. M., Monoclonal Antibody Technology: Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1984)).


[0192] Techniques described for the production of single chain antibodies (U.S. Pat. No. 946,778) can be adapted to produce single chain antibodies to proteins of the present invention.


[0193] For polyclonal antibodies, antibody containing antisera is isolated from the immunized animal and is screened for the presence of antibodies with the desired specificity using one of the above-described procedures.


[0194] The present invention further provides the above- described antibodies in detectably labeled form. Antibodies can be detectably labeled through the use of radioisotopes, affinity labels (such as biotin, avidin, etc.), enzymatic labels (such as horseradish peroxidase, alkaline phosphatase, etc.) fluorescent labels (such as FITC or rhodamine, etc.), paramagnetic atoms, etc. Procedures for accomplishing such labeling are well-known in the art, for example see Stemberger et al., J. Histochem. Cytochem. 18:315 (1970); Bayer, E. A. et al., Meth. Enzym. 62:308 (1979); Engval, E. et al., Immunol. 109-129 (1972); Goding, J. W. J. Immunol. Meth. 13:215 (1976)).


[0195] The labeled antibodies of the present invention can be used for in vitro, in vivo, and in situ assays to identify cells or tissues in which a fragment of the Staphyococcus aureus genome is expressed.


[0196] The present invention further provides the above-described antibodies immoblized on a solid support. Examples of such solid supports include plastics such as polycarbonate, complex carbohydrates such as agarose and sepharose, acrylic resins and such as polyacrylamide and latex beads. Techniques for coupling antibodies to such solid supports are well known in the art (Weir, D. M. et al., “Handbook of Experimental Immunology” 4th Ed., Blackwell Scientific Publications, Oxford, England, Chapter 10 (1986); Jacoby, W. D. et al., Meth. Enzym. 34 Academic Press, N.Y. (1974)). The immobilized antibodies of the present invention can be used for in vitro, in vivo, and in situ assays as well as for immunoaffinity purification of the proteins of the present invention.


[0197] 3. Diagnostic Assays and Kits


[0198] The present invention further provides methods to identify the expression of one of the ORFs of the present invention, or homolog thereof, in a test sample, using one of the DFs, antigens or antibodies of the present invention.


[0199] In detail, such methods comprise incubating a test sample with one or more of the antibodies, or one or more of the DFs, or one or more antigens of the present invention and assaying for binding of the DFs, antigens or antibodies to components within the test sample.


[0200] Conditions for incubating a DF, antigen or antibody with a test sample vary. Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the DF or antibody used in the assay. One skilled in the art will recognize that any one of the commonly available hybridization, amplification or immunological assay formats can readily be adapted to employ the Dfs, antigens or antibodies of the present invention. Examples of such assays can be found in Chard, T., An Introduction to Radioimmunoassay and Related Techniques, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock, G. R. et al., Techniques in inmunocytochemistry, Academic Press, Orlando, Fla. Vol. 1 (1982), Vol. 2 (1983), Vol. 3 (1985); Tijssen, P., Practice and Theory of Enzyme Immunoassays: Laboratory Techniques in Biochemistry; PCT publication W095/32291, and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1985), all of which are hereby incorporated herein by reference.


[0201] The test samples of the present invention include cells, protein or membrane extracts of cells, or biological fluids such as sputum, blood, serum,, plasma, or urine. The test sample used in the above-described method will vary based on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing protein extracts or membrane extracts of cells are well known in the art and can be readily be adapted in order to obtain a sample which is compatible with the system utilized.


[0202] In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the assays of the present invention.


[0203] Specifically, the invention provides a compartmentalized kit to receive, in close confinement, one or more containers which comprises:(a) a first container comprising one of the Dfs, antigens or antibodies of the present invention; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of a bound DF, antigen or antibody.


[0204] In detail, a compartmentalized kit includes any kit in which reagents are contained in separate containers. Such containers include small glass containers, plastic containers or strips of plastic or paper. Such containers allows one to efficiently transfer reagents from one compartment to another compartment such that the samples and reagents are not cross-contaminated, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another. Such containers will include a container which will accept the test sample, a container which contains the antibodies used in the assay, containers which contain wash reagents (such as phosphate buffered saline, Tris-buffers, etc.), and containers which contain the reagents used to detect the bound antibody, antigen or DF.


[0205] Types of detection reagents include labeled nucleic acid probes, labeled secondary antibodies, or in the alternative, if the primary antibody is labeled, the enzymatic, or antibody binding reagents which are capable of reacting with the labeled antibody. One skilled in the art will readily recognize that the disclosed Dfs, antigens and antibodies of the present invention can be readily incorporated into one of the established kit formats which are well known in the art.


[0206] 4. Screening Assay for Binding Agents


[0207] Using the isolated proteins of the present invention, the present invention further provides methods of obtaining and identifying agents which bind to a protein encoded by one of the ORFs of the present invention or to one of the fragments and the Staphylococcus aureus fragment and contigs herein described.


[0208] In general, such methods comprise steps of:


[0209] contacting an agent with an isolated protein encoded by one of the ORFs of the present invention, or an isolated fragment of the Staphylococcus aureus genome; and


[0210] determining whether the agent binds to said protein or said fragment.


[0211] The agents screened in the above assay can be, but are not limited to, peptides, carbohydrates, vitamin derivatives, or other pharmaceutical agents. The agents can be selected and screened at random or rationally selected or designed using protein modeling techniques.


[0212] For random screening, agents such as peptides, carbohydrates, pharmaceutical agents and the like are selected at random and are assayed for their ability to bind to the protein encoded by the ORF of the present invention.


[0213] Alternatively, agents may be rationally selected or designed. As used herein, an agent is said to be “rationally selected or designed” when the agent is chosen based on the configuration of the particular protein. For example, one skilled in the art can readily adapt currently available procedures to generate peptides, pharmaceutical agents and the like capable of binding to a specific peptide sequence in order to generate rationally designed antipeptide peptides, for example see Hurby et al., Application of Synthetic Peptides: Antisense Peptides,” In Synthetic Peptides, A User's Guide, W. H. Freeman, NY (1992), pp. 289-307, and Kaspczak et al., Biochemistry 28:9230-8 (1989), or pharmaceutical agents, or the like.


[0214] In addition to the foregoing, one class of agents of the present invention, as broadly described, can be used to control gene expression through binding to one of the ORFs or EMFs of the present invention. As described above, such agents can be randomly screened or rationally designed/selected. Targeting the ORF or EMF allows a skilled artisan to design sequence specific or element specific agents, modulating the expression of either a single ORF or multiple ORFs which rely on the same EMF for expression control.


[0215] One class of DNA binding agents are agents which contain base residues which hybridize or form a triple helix by binding to DNA or RNA. Such agents can be based on the classic phosphodiester, ribonucleic acid backbone, or can be a variety of sulfhydryl or polymeric derivatives which have base attachment capacity.


[0216] Agents suitable for use in these methods usually contain 20 to 40 bases and are designed to be complementary to a region of the gene involved in transcription (triple helix—see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251: 1360 (1991)) or to the mRNA itself (antisense—Okano, J. Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, Fla. (1988)). Triple helix- formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems. Information contained in the sequences of the present invention can be used to design antisense and triple helix-forming oligonucleotides, and other DNA binding agents.


[0217] 5. Pharmaceutical Compositions and Vaccines


[0218] The present invention further provides pharmaceutical agents which can be used to modulate the growth or pathogenicity of Staphylococcus aureus, or another related organism, in vivo or in vitro. As used herein, a “pharmaceutical agent” is defined as a composition of matter which can be formulated using known techniques to provide a pharmaceutical compositions. As used herein, the “pharmaceutical agents of the present invention” refers the pharmaceutical agents which are derived from the proteins encoded by the ORFs of the present invention or are agents which are identified using the herein described assays.


[0219] As used herein, a pharmaceutical agent is said to “modulate the growth or pathogenicity of Staphylococcus aureus or a related organism, in vivo or in vitro,” when the agent reduces the rate of growth, rate of division, or viability of the organism in question. The pharmaceutical agents of the present invention can modulate the growth or pathogenicity of an organism in many fashions, although an understanding of the underlying mechanism of action is not needed to practice the use of the pharmaceutical agents of the present invention. Some agents will modulate the growth or pathogenicity by binding to an important protein thus blocking the biological activity of the protein, while other agents may bind to a component of the outer surface of the organism blocking attachment or rendering the organism more prone to act the bodies nature immune system. Alternatively, the agent may comprise a protein encoded by one of the ORFs of the present invention and serve as a vaccine. The development and use of vaccines derived from membrane associated polypeptides are well known in the art. The inventors have identified particularly preferred immunogenic Staphylococcus aureus polypeptides for use as vaccines. Such immunogenic polypeptides are described above and summarized below.


[0220] As used herein, a “related organism” is a broad term which refers to any organism whose growth or pathogenicity can be modulated by one of the pharmaceutical agents of the present invention. In general, such an organism will contain a homolog of the protein which is the target of the pharmaceutical agent or the protein used as a vaccine. As such, related organisms do not need to be bacterial but may be fungal or viral pathogens.


[0221] The pharmaceutical agents and compositions of the present invention may be administered in a convenient manner, such as by the oral, topical, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal routes. The pharmaceutical compositions are administered in an amount which is effective for treating and/or prophylaxis of the specific indication. In general, they are administered in an amount of at least about 1 mg/kg body weight and in most cases they will be administered in an amount not in excess of about 1 g/kg body weight per day. In most cases, the dosage is from about 0.1 mg/kg to about 10 g/kg body weight daily, taking into account the routes of administration, symptoms, etc.


[0222] The agents of the present invention can be used in native form or can be modified to form a chemical derivative. As used herein, a molecule is said to be a “chemical derivative” of another molecule when it contains additional chemical moieties not normally a part of the molecule. Such moieties may improve the molecule's solubility, absorption, biological half life, etc. The moieties may alternatively decrease the toxicity of the molecule, eliminate or attenuate any undesirable side effect of the molecule, etc. Moieties capable of mediating such effects are disclosed in, among other sources, REMINGTON'S PHARMACEUTICAL SCIENCES (1980) cited elsewhere herein.


[0223] For example, such moieties may change an immunological character of the functional derivative, such as affinity for a given antibody. Such changes in immunomodulation activity are measured by the appropriate assay, such as a competitive type immunoassay. Modifications of such protein properties as redox or thermal stability, biological half-life, hydrophobicity, susceptibility to proteolytic degradation or the tendency to aggregate with carriers or into multimers also may be effected in this way and can be assayed by methods well known to the skilled artisan.


[0224] The therapeutic effects of the agents of the present invention may be obtained by providing the agent to a patient by any suitable means (e.g., inhalation, intravenously, intramuscularly, subcutaneously, enterally, or parenterally). It is preferred to administer the agent of the present invention so as to achieve an effective concentration within the blood or tissue in which the growth of the organism is to be controlled. To achieve an effective blood concentration, the preferred method is to administer the agent by injection. The administration may be by continuous infusion, or by single or multiple injections.


[0225] In providing a patient with one of the agents of the present invention, the dosage of the administered agent will vary depending upon such factors as the patient's age, weight, height, sex, general medical condition, previous medical history, etc. In general, it is desirable to provide the recipient with a dosage of agent which is in the range of from about 1 pg/kg to 10 mg/kg (body weight of patient), although a lower or higher dosage may be administered. The therapeutically effective dose can be lowered by using combinations of the agents of the present invention or another agent.


[0226] As used herein, two or more compounds or agents are said to be administered “in combination” with each other when either (1) the physiological effects of each compound, or (2) the serum concentrations of each compound can be measured at the same time. The composition of the present invention can be administered concurrently with, prior to, or following the administration of the other agent.


[0227] The agents of the present invention are intended to be provided to recipient subjects in an amount sufficient to decrease the rate of growth (as defined above) of the target organism.


[0228] The administration of the agent(s) of the invention may be for either a “prophylactic” or “therapeutic” purpose. When provided prophylactically, the agent(s) are provided in advance of any symptoms indicative of the organisms growth. The prophylactic administration of the agent(s) serves to prevent, attenuate, or decrease the rate of onset of any subsequent infection. When provided therapeutically, the agent(s) are provided at (or shortly after) the onset of an indication of infection. The therapeutic administration of the compound(s) serves to attenuate the pathological symptoms of the infection and to increase the rate of recovery.


[0229] The agents of the present invention are administered to a subject, such as a mammal, or a patient, in a pharmaceutically acceptable form and in a therapeutically effective concentration. A composition is said to be “pharmacologically acceptable” if its administration can be tolerated by a recipient patient. Such an agent is said to be administered in a “therapeutically effective amount” if the amount administered is physiologically significant. An agent is physiologically significant if its presence results in a detectable change in the physiology of a recipient patient.


[0230] The agents of the present invention can be formulated according to known methods to prepare pharmaceutically useful compositions, whereby these materials, or their functional derivatives, are combined in admixture with a pharmaceutically acceptable carrier vehicle. Suitable vehicles and their formulation, inclusive of other human proteins, e.g., human serum albumin, are described, for example, in REMINGTON'S PHARMACEUTICAL SCIENCES, 16th Ed., Osol, A., Ed., Mack Publishing, Easton Pa. (1980). In order to form a pharmaceutically acceptable composition suitable for effective administration, such compositions will contain an effective amount of one or more of the agents of the present invention, together with a suitable amount of carrier vehicle.


[0231] Additional pharmaceutical methods may be employed to control the duration of action. Control release preparations may be achieved through the use of polymers to complex or absorb one or more of the agents of the present invention. The controlled delivery may be effectuated by a variety of well known techniques, including formulation with macromolecules such as, for example, polyesters, polyamino acids, polyvinyl, pyrrolidone, ethylenevinylacetate, methylcellulose, carboxymethylcellulose, or protamine, sulfate, adjusting the concentration of the macromolecules and the agent in the formulation, and by appropriate use of methods of incorporation, which can be manipulated to effectuate a desired time course of release. Another possible method to control the duration of action by controlled release preparations is to incorporate agents of the present invention into particles of a polymeric material such as polyesters, polyamino acids, hydrogels, poly(lactic acid) or ethylene vinylacetate copolymers. Alternatively, instead of incorporating these agents into polymeric particles, it is possible to entrap these materials in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization with, for example, hydroxymethylcellulose or gelatine-microcapsules and poly(methylmethacylate) microcapsules, respectively, or in colloidal drug delivery systems, for example, liposomes, albumin microspheres, microemulsions, nanoparticles, and nanocapsules or in macroemulsions. Such techniques are disclosed in REMINGTON'S PHARMACEUTICAL SCIENCES (1980).


[0232] The invention further provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.


[0233] In addition, the agents of the present invention may be employed in conjunction with other therapeutic compounds.


[0234] 6. Shot-Gun Approach to Megabase DNA Sequencing


[0235] The present invention further demonstrates that a large sequence can be sequenced using a random shotgun approach. This procedure, described in detail in the examples that follow, has eliminated the up front cost of isolating and ordering overlapping or contiguous subclones prior to the start of the sequencing protocols.


[0236] Certain aspects of the present invention are described in greater detail in the examples that follow. The examples are provided by way of illustration. Other aspects and embodiments of the present invention are contemplated by the inventors, as will be clear to those of skill in the art from reading the present disclosure.



ILLUSTRATIVE EXAMPLES

[0237] Libraries and Sequencing


[0238] 1. Shotgun Sequencing Probability Analysis


[0239] The overall strategy for a shotgun approach to whole genome sequencing follows from the Lander and Waterman (Landerman and Waterman, Genomics 2: 231 (1988)) application of the equation for the Poisson distribution. According to this treatment, the probability, P0, that any given base in a sequence of size L, in nucleotides, is not sequenced after a certain amount, n, in nucleotides, of random sequence has been determined can be calculated by the equation P0=e−m, where m is L/n, the fold coverage.” For instance, for a genome of 2.8 Mb, m=1 when 2.8 Mb of sequence has been randomly generated (1× coverage). At that point, P0=e−1=0.37. The probability that any given base has not been sequenced is the same as the probability that any region of the whole sequence L has not been determined and, therefore, is equivalent to the fraction of the whole sequence that has yet to be determined. Thus, at one-fold coverage, approximately 37% of a polynucleotide of size L, in nucleotides has not been sequenced. When 14 Mb of sequence has been generated, coverage is 5× for a 0.2.8 Mb and the unsequenced fraction drops to 0.0067 or 0.67%. 5× coverage of a 2.8 Mb sequence can be attained by sequencing approximately 17,000 random clones from both insert ends with an average sequence read length of 410 bp.


[0240] Similarly, the total gap length, G, is determined by the equation G=Le−m, and the average gap size, g, follows the equation, g=L/n. Thus, 5× coverage leaves about 240 gaps averaging about 82 bp in size in a sequence of a polynucleotide 2.8 Mb long.


[0241] The treatment above is essentially that of Lander and Waterman, Genomics 2: 231 (1988).


[0242] 2. Random Library Construction


[0243] In order to approximate the random model described above during actual sequencing, a nearly ideal library of cloned genomic fragments is required. The following library construction procedure was developed to achieve this end.


[0244]

Staphylococcus aureus
DNA was prepared by phenol extraction. A mixture containing 600 ug DNA in 3.3 ml of 300 mM sodium acetate, 10 mM Tris-HCl, 1 mM Na-EDTA, 30% glycerol was sonicated for 1 min. at 0° C. in a Branson Model 450 Sonicator at the lowest energy setting using a 3 mm probe. The sonicated DNA was ethanol precipitated and redissolved in 500 ul TE buffer.


[0245] To create blunt-ends, a 100 ul aliquot of the resuspended DNA was digested with 5 units of BAL31 nuclease (New England BioLabs) for 10 min at 30° C. in 200 ul BAL31 buffer. The digested DNA was phenol-extracted, ethanol-precipitated, redissolved in 100 ul TE buffer, and then size-fractionated by electrophoresis through a 1.0% low melting temperature agarose gel. The section containing DNA fragments 1.6-2.0 kb in size was excised from the gel, and the LGT agarose was melted and the resulting solution was extracted with phenol to separate the agarose from the DNA. DNA was ethanol precipitated and redissolved in 20 ul of TE buffer for ligation to vector.


[0246] A two-step ligation procedure was used to produce a plasmid library with 97% inserts, of which >99% were single inserts. The first ligation mixture (50 ul) contained 2 ug of DNA fragments, 2 ug pUC18 DNA (Pharmacia) cut with SmaI and dephosphorylated with bacterial alkaline phosphatase, and 10 units of T4 ligase (GIBCO/BRL) and was incubated at 14° C. for 4 hr. The ligation mixture then was phenol extracted and ethanol precipitated, and the precipitated DNA was dissolved in 20 ul TE buffer and electrophoresed on a 1.0% low melting agarose gel. Discrete bands in a ladder were visualized by ethidium bromide-staining and UV illumination and identified by size as insert (i), vector (v), v+i, v+2i, v+3i, etc. The portion of the gel containing v+i DNA was excised and the v+i DNA was recovered and resuspended into 20 ul TE. The v+i DNA then was blunt-ended by T4 polymerase treatment for 5 min. at 37° C. in a reaction mixture (50 ul) containing the v+i linears, 500 uM each of the 4 dNTPs, and 9 units of T4 polymerase (New England BioLabs), under recommended buffer conditions. After phenol extraction and ethanol precipitation the repaired v+i linears were dissolved in 20 ul TE. The final ligation to produce circles was carried out in a 50 ul reaction containing 5 ul of v+i linears and 5 units of T4 ligase at 14° C overnight. After 10 min. at 70° C. the following day, the reaction mixture was stored at −20° C.


[0247] This two-stage procedure resulted in a molecularly random collection of single-insert plasmid recombinants with minimal contamination from double-insert chimeras (<1%) or free vector (<3%).


[0248] Since deviation from randomness can arise from propagation the DNA in the host, E. coli host cells deficient in all recombination and restriction functions (A. Greener, Strategies 3 (1):5 (1990)) were used to prevent rearrangements, deletions, and loss of clones by restriction. Furthermore, transformed cells were plated directly on antibiotic diffusion plates to avoid the usual broth recovery phase which allows multiplication and selection of the most rapidly growing cells.


[0249] Plating was carried out as follows. A 100 ul aliquot of Epicurian Coli SURE II Supercompetent Cells (Stratagene 200152) was thawed on ice and transferred to a chilled Falcon 2059 tube on ice. A 1.7 ul aliquot of 1.42 M beta-mercaptoethanol was added to the aliquot of cells to a final concentration of 25 mM. Cells were incubated on ice for 10 min. A 1 ul aliquot of the final ligation was added to the cells and incubated on ice for 30 min. The cells were heat pulsed for 30 sec. at 42° C. and placed back on ice for 2 min. The outgrowth period in liquid culture was eliminated from this protocol in order to minimize the preferential growth of any given transformed cell. Instead the transformation mixture was plated directly on a nutrient rich SOB plate containing a 5 ml bottom layer of SOB agar (5% SOB agar: 20 g tryptone, 5 g yeast extract, 0.5 g NaCl, 1.5% Difco Agar per liter of media). The 5 ml bottom layer is supplemented with 0.4 ml of 50 mg/ml ampicillin per 100 ml SOB agar. The 15 ml top layer of SOB agar is supplemented with 1 ml X-Gal (2%), 1 ml MgCl2 (1 M), and 1 ml MgSO4/100 ml SOB agar. The 15 ml top layer was poured just prior to plating. Our titer was approximately 100 colonies/10 ul aliquot of transformation.


[0250] All colonies were picked for template preparation regardless of size. Thus, only clones lost due to “poison” DNA or deleterious gene products would be deleted from the library, resulting in a slight increase in gap number over that expected.


[0251] 3. Random DNA Sequencing


[0252] High quality double stranded DNA plasmid templates were prepared using an alkaline lysis method developed in collaboration with 5Prime- - - >3Prime Inc. (Boulder, Co.). Plasmid preparation was performed in a 96-well format for all stages of DNA preparation from bacterial growth through final DNA purification. Average template concentration was determined by running 25% of the samples on an agarose gel. DNA concentrations were not adjusted.


[0253] Templates were also prepared from a Staphylococcus aureus lambda genomic library. An unamplified library was constructed in Lambda DASH II vector (Stratagene). Staphylococcus aureus DNA (>100 kb) was partially digested in a reaction mixture (200 ul) containing 50 ug DNA, 1× Sau3AI buffer, 20 units Sau3AI for 6 min. at 23 C. The digested DNA was phenol-extracted and centrifuges over a 10-40% sucrose gradient. Fractions containing genomic DNA of 15-25 kb were recovered by precipitation. One ul of fragments was used with 1 ul of DASHII vector (Stratagene) in the recommended ligation reaction. One ul of the ligation mixture was used per packaging reaction following the recommended protocol with the Gigapack II XL Packaging Extract Phage were plated directly without amplification from the packaging mixture (after dilution with 500 ul of recommended SM buffer and chloroform treatment). Yield was about 2.5×109 pfu/ul.


[0254] An amplified library was prepared from the primary packaging mixture according to the manufacturer's protocol. The amplified library is stored frozen in 7% dimethylsulfoxide. The phage titer is approximately 1×109 pfu/ml.


[0255] Mini-liquid lysates (0.1 ul) are prepared from randomly selected plaques and template is prepared by long range PCR. Samples are PCR amplified using modified T3 and T7 primers, and Elongase Supermix (LTI).


[0256] Sequencing reactions are carried out on plasmid templates using a combination of two workstations (BIOMEK 1000 and Hamilton Microlab 2200) and the Perkin-Elmer 9600 thermocycler with Applied Biosystems PRISM Ready Reaction Dye Primer Cycle Sequencing Kits for the M13 forward (M13-21) and the M13 reverse (M13RP1) primers. Dye terminator sequencing reactions are carried out on the lambda templates on a Perkin-Elmer 9600 Thermocycler using the Applied Biosystems Ready Reaction Dye Terminator Cycle Sequencing kits. Modified T7 and T3 primers are used to sequence the ends of the inserts from the Lambda DASH II library. Sequencing reactions are on a combination of AB 373 DNA Sequencers and ABI 377 DNA sequencers. All of the dye terminator sequencing reactions are analyzed using the 2×9 hour module on the AB 377. Dye primer reactions are analyzed on a combination of ABI 373 and ABI 377 DNA sequencers. The overall sequencing success rate very approximately is about 85% for M13-21 and M13RP1 sequences and 65% for dye-terminator reactions. The average usable read length is 485 bp for M13-21 sequences, 445bp for M13RP1 sequences, and 375 bp for dye-terminator reactions.


[0257] 4. Protocol for Automated Cycle Sequencing


[0258] The sequencing was carried out using Hamilton Microstation 2200, Perkin Elmer 9600 thermocyclers, ABI 373 and ABI 377 Automated DNA Sequencers. The Hamilton combines pre-aliquoted templates and reaction mixes consisting of deoxy- and dideoxynucleotides, the thermostable Taq DNA polymerase, fluorescently-labeled sequencing primers, and reaction buffer. Reaction mixes and templates were combined in the wells of a 96-well thermocycling plate and transferred to the Perkin Elmer 9600 thermocycler. Thirty consecutive cycles of linear amplification (i.e.., one primer synthesis) steps were performed including denaturation, annealing of primer and template, and extension; i.e., DNA synthesis. A heated lid with rubber gaskets on the thermocycling plate prevents evaporation without the need for an oil overlay.


[0259] Two sequencing protocols were used: one for dye-labeled primers and a second for dye-labeled dideoxy chain terminators. The shotgun sequencing involves use of four dye-labeled sequencing primers, one for each of the four terminator nucleotide. Each dye-primer was labeled with a different fluorescent dye, permitting the four individual reactions to be combined into one lane of the 373 or 377 DNA Sequencer for electrophoresis, detection, and base-calling. ABI currently supplies pre-mixed reaction mixes in bulk packages containing all the necessary non-template reagents for sequencing. Sequencing can be done with both plasmid and PCR- generated templates with both dye-primers and dye-terminators with approximately equal fidelity, although plasmid templates generally give longer usable sequences.


[0260] Thirty-two reactions were loaded per ABI 373 Sequencer each day and 96 samples can be loaded on an ABI 377 per day. Electrophoresis was run overnight (ABI 373) or for 2½ hours (ABI 377) following the manufacturer's protocols. Following electrophoresis and fluorescence detection, the ABI 373 or ABI 377 performs automatic lane tracking and base-calling. The lane-tracking was confirmed visually. Each sequence electropherogram (or fluorescence lane trace) was inspected visually and assessed for quality. Trailing sequences of low quality were removed and the sequence itself was loaded via software to a Sybase database (archived daily to 8 mm tape). Leading vector polylinker sequence was removed automatically by a software program. Average edited lengths of sequences from the standard ABI 373 or ABI 377 were around 400 bp and depend mostly on the quality of the template used for the sequencing reaction.


[0261] Imformatics


[0262] 1. Data Management


[0263] A number of information management systems for a large-scale sequencing lab have been developed. (For review see, for instance, Kerlavage et al., Proceedings of the Twenty-Sixth Annual Hawaii International Conference on System Sciences, IEEE Computer Society Press, Wash. D.C., 585 (1993)) The system used to collect and assemble the sequence data was developed using the Sybase relational database management system and was designed to automate data flow wherever possible and to reduce user error. The database stores and correlates all information collected during the entire operation from template preparation to final analysis of the genome. Because the raw output of the ABI 373 Sequencers was based on a Macintosh platform and the data management system chosen was based on a Unix platform, it was necessary to design and implement a variety of multi- user, client-server applications which allow the raw data as well as analysis results to flow seamlessly into the database with a minimum of user effort.


[0264] 2. Assembly


[0265] An assembly engine (TIGR Assembler) developed for the rapid and accurate assembly of thousands of sequence fragments was employed to generate contigs. The TIGR assembler simultaneously clusters and assembles fragments of the genome. In order to obtain the speed necessary to assemble more than 104 fragments, the algorithm builds a hash table of 12 bp oligonucleotide subsequences to generate a list of potential sequence fragment overlaps. The number of potential overlaps for each fragment determines which fragments are likely to fall into repetitive elements. Beginning with a single seed sequence fragment, TIGR Assembler extends the current contig by attempting to add the best matching fragment based on oligonucleotide content. The contig and candidate fragment are aligned using a modified version of the Smith-Waterman algorithm which provides for optimal gapped alignments (Waterman, M. S., Methods in Enzymology 164: 765 (1988)). The contig is extended by the fragment only if strict criteria for the quality of the match are met. The match criteria include the minimum length of overlap, the maximum length of an unmatched end, and the minimum percentage match. These criteria are automatically lowered by the algorithm in regions of minimal coverage and raised in regions with a possible repetitive element. The number of potential overlaps for each fragment determines which fragments are likely to fall into repetitive elements. Fragments representing the boundaries of repetitive elements and potentially chimeric fragments are often rejected based on partial mismatches at the ends of alignments and excluded from the current contig. TIGR Assembler is designed to take advantage of clone size information coupled with sequencing from both ends of each template. It enforces the constraint that sequence fragments from two ends of the same template point toward one another in the contig and are located within a certain ranged of base pairs (definable for each clone based on the known clone size range for a given library).


[0266] 3. Identifying Genes


[0267] Tables 1, 2, and 3 list ORFs in the Staphylococcus aureus genomic contigs of the present invention that were identified as putative coding regions by the GeneMark software using organism-specific second-order Markov probability transition matrices. It will be appreciated that other criteria can be used, in accordance with well known analytical methods, such as those discussed herein, to generate more inclusive, more restrictive, or more selective lists.


[0268] Table 1 sets out ORFs in the Staphylococcus aureus contigs of the present invention that over a continuous region of at least 50 bases are 95% or more identical (by BLASTN analysis) to a nucleotide sequence available through Genbank in November 1996.


[0269] Table 2 sets out ORFs in the Staphylococcus aureus contigs of the present invention that are not in Table 1 and match, with a BLASTP probability score of 0.01 or less, polypeptide sequence available through a non-redundant database of known protein generated by combining the Swiss-Prot, PIR, and GenPept databases.


[0270] Table 3 sets out the remaining ORFs in the Staphylococcus aureus contigs of the present invention, which did not have significant matches to the public databases by the criteria described above.


[0271] Illustrative Applications


[0272] 1. Production of an Antibody to a Staphylococcus aureus Protein


[0273] Substantially pure protein or polypeptide is isolated from the transfected or transformed cells using any one of the methods known in the art. The protein can also be produced in a recombinant prokaryotic expression system, such as E. coli, or can by chemically synthesized. Concentration of protein in the final preparation is adjusted, for example, by concentration on an Amicon filter device, to the level of a few micrograms/ml. Monoclonal or polyclonal antibody to the protein can then be prepared as follows.


[0274] 2. Monoclonal Antibody Production by Hybridoma Fusion


[0275] Monoclonal antibody to epitopes of any of the peptides identified and isolated as described can be prepared from murine hybridomas according to the classical method of Kohler, G. and Milstein, C., Nature 256:495 (1975) or modifications of the methods thereof. Briefly, a mouse is repetitively inoculated with a few micrograms of the selected protein over a period of a few weeks. The mouse is then sacrificed, and the antibody producing cells of the spleen isolated. The spleen cells are fused by means of polyethylene glycol with mouse myeloma cells, and the excess unfused cells destroyed by growth of the system on selective media comprising aminopterin (HAT media). The successfully fused cells are diluted and aliquots of the dilution placed in wells of a microtiter plate where growth of the culture is continued. Antibody-producing clones are identified by detection of antibody in the supernatant fluid of the wells by immunoassay procedures, such as ELISA, as originally described by Engvall, E., Meth. Enzymol. 70:419 (1980), and modified methods thereof. Selected positive clones can be expanded and their monoclonal antibody product harvested for use. Detailed procedures for monoclonal antibody production are described in Davis, L. et al. Basic Methods in Molecular Biology Elsevier, New York. Section 21-2 (1989).


[0276] 3. Polyclonal Antibody Production by Immunization


[0277] Polyclonal antiserum containing antibodies to heterogenous epitopes of a single protein can be prepared by immunizing suitable animals with the expressed protein described above, which can be unmodified or modified to enhance immunogenicity. Effective polyclonal antibody production is affected by many factors related both to the antigen and the host species. For example, small molecules tend to be less immunogenic than other and may require the use of carriers and adjuvant. Also, host animals vary in response to site of inoculations and dose, with both inadequate or excessive doses of antigen resulting in low titer antisera. SmaII doses (ng level) of antigen administered at multiple intradermal sites appears to be most reliable. An effective immunization protocol for rabbits can be found in Vaitukaitis, J. et al., J. Clin. Endocrinol. Metab. 33:988-991 (1971).


[0278] Booster injections can be given at regular intervals, and antiserum harvested when antibody titer thereof, as determined semi-quantitatively, for example, by double immunodiffusion in agar against known concentrations of the antigen, begins to fall. See, for example, Ouchterlony, O. et al, Chap. 19 in: Handbook of Experimental Immunology, Wier, D., ed, Blackwell (1973). Plateau concentration of antibody is usually in the range of 0.1 to 0. 2 mg/ml of serum (about 12M). Affinity of the antisera for the antigen is determined by preparing competitive binding curves, as described, for example, by Fisher, D., Chap. 42 in: Manual of Clinical Immunology, second edition, Rose and Friedman, eds., Amer. Soc. For Microbiology, Wash., D.C. (1980)


[0279] Antibody preparations prepared according to either protocol are useful in quantitative immunoassays which determine concentrations of antigen-bearing substances in biological samples; they are also used semi-quantitatively or qualitatively to identify the presence of antigen in a biological sample. In addition, they are useful in various animal models of Staphylococcal disease known to those of skill in the art as a means of evaluating the protein used to make the antibody as a potential vaccine target or as a means of evaluating the antibody as a potential immunothereapeutic reagent.


[0280] 4. Preparation of PCR Primers and Amplification of DNA


[0281] Various fragments of the Staphylococcus aureus genome, such as those of Tables 1-3 and SEQ ID NOS: 1-5,191 can be used, in accordance with the present invention, to prepare PCR primers for a variety of uses. The PCR primers are preferably at least 15 bases, and more preferably at least 18 bases in length. When selecting a primer sequence, it is preferred that the primer pairs have approximately the same G/C ratio, so that melting temperatures are approximately the same. The PCR primers and amplified DNA of this Example find use in the Examples that follow.


[0282] 5. Gene Expression from DNA Sequences Corresponding to ORFs


[0283] A fragment of the Staphylococcus aureus genome provided in Tables 1-3 is introduced into an expression vector using conventional technology. Techniques to transfer cloned sequences into expression vectors that direct protein translation in mammalian, yeast, insect or bacterial expression systems are well known in the art. Commercially available vectors and expression systems are available from a variety of suppliers including Stratagene (La Jolla, Calif.), Promega (Madison, Wis.), and Invitrogen (San Diego, Calif.). If desired, to enhance expression and facilitate proper protein folding, the codon context and codon pairing of the sequence may be optimized for the particular expression organism, as explained by Hatfield et al., U.S. Pat. No. 5,082,767, incorporated herein by this reference.


[0284] The following is provided as one exemplary method to generate polypeptide(s) from cloned ORFs of the Staphylococcus aureus genome fragment. Bacterial ORFs generally lack a poly A addition signal. The addition signal sequence can be added to the construct by, for example, splicing out the poly A addition sequence from pSG5 (Stratagene) using BglI and SalI restriction endonuclease enzymes and incorporating it into the mammalian expression vector pXT1 (Stratagene) for use in eukaryotic expression systems. pXT1 contains the LTRs and a portion of the gag gene of Moloney Murine Leukemia Virus. The positions of the LTRs in the construct allow efficient stable transfection. The vector includes the Herpes Simplex thymidine kinase promoter and the selectable neomycin gene. The Staphylococcus aureus DNA is obtained by PCR from the bacterial vector using oligonucleotide primers complementary to the Staphylococcus aureus DNA and containing restriction endonuclease sequences for PstI incorporated into the 5′ primer and BglII at the 5′ end of the corresponding Staphylococcus aureus DNA 3′ primer, taking care to ensure that the Staphylococcus aureus DNA is positioned such that its followed with the poly A addition sequence. The purified fragment obtained from the resulting PCR reaction is digested with PstI, blunt ended with an exonuclease, digested with BglII, purified and ligated to pXT1, now containing a poly A addition sequence and digested BglII.


[0285] The ligated product is transfected into mouse NIH 3T3 cells using Lipofectin (Life Technologies, Inc., Grand Island, N.Y.) under conditions outlined in the product specification. Positive transfectants are selected after growing the transfected cells in 600 ug/ml G418 (Sigma, St. Louis, Mo.). The protein is preferably released into the supernatant. However if the protein has membrane binding domains, the protein may additionally be retained within the cell or expression may be restricted to the cell surface. Since it may be necessary to purify and locate the transfected product, synthetic 15-mer peptides synthesized from the predicted Staphylococcus aureus DNA sequence are injected into mice to generate antibody to the polypeptide encoded by the Staphylococcus aureus DNA.


[0286] Alternatively and if antibody production is not possible, the Staphylococcus aureus DNA sequence is additionally incorporated into eukaryotic expression vectors and expressed as, for example, a globin fusion. Antibody to the globin moiety then is used to purify the chimeric protein. Corresponding protease cleavage sites are engineered between the globin moiety and the polypeptide encoded by the Staphylococcus aureus DNA so that the latter may be freed from the formed by simple protease digestion. One useful expression vector for generating globin chimerics is pSG5 (Stratagene). This vector encodes a rabbit globin. Intron II of the rabbit globin gene facilitates splicing of the expressed transcript, and the polyadenylation signal incorporated into the construct increases the level of expression. These techniques are well known to those skilled in the art of molecular biology. Standard methods are published in methods texts such as Davis et al., cited elsewhere herein, and many of the methods are available from the technical assistance representatives from Stratagene, Life Technologies, Inc., or Promega. Polypeptides of the invention also may be produced using in vitro translation systems such as in vitro Express™ Translation Kit (Stratagene).


[0287] While the present invention has been described in some detail for purposes of clarity and understanding, one skilled in the art will appreciate that various changes in form and detail can be made without departing from the true scope of the invention.


[0288] All patents, patent applications and publications referred to above are hereby incorporated by reference.
1TABLE 1S. aureus - Coding regions containing known sequencesHSPORF Contig IDORF IDStart (nt)Stop (nt)match acessionmatch gene namepercent identnt lengthnt length1175795emb|X17301|SAHDS. aureus DNA for hld gene and for part of agr gene1006636631224521631emb|X52543|SAAGS. aureus agrA, agrB and hld genes998098221556514884dbj|D14711|STAHStaphylococcus aureus HSP10 and HSP60 genes982237685143971emb|X72700|SAPVS. aureus genes for S and F components of Panton-Valentine leucocidins812163695435712111emb|X72700|SAPVS. aureus genes for S and F components of Panton-Valentine leucocidins95424146110186904gb|L25288|Staphylococcus aureus gyrase-like protein alpha and beta subunit (grlA and98715819grlB) genes, complete cds16553026246gb|U35773|Staphylococcus aureus prolipoprotein diacylglyceryl transferase (lgt) gene, complete cds9425194516662497091gb|U35773|Staphylococcus aureus prolipoprotein diacylglyceryl transferase (lgt) gene,99843843complete cds16770847584gb|U35773|Staphylococcus aureus prolipoprotein diacylglyceryl transferase (lgt) gene,99342501complete cds201549103gb|L19300|Staphylococcus aureus DNA sequence encoding three ORFs, complete cds; prophage phi-11100443447sequence homology, 5′ flank202841671gb|L19300|Staphylococcus aureus DNA sequence encoding three ORFs, complete cds; prophage phi-1191137171sequence homology, 5′ flank20317981586gb|L19300|Staphylococcus aureus DNA sequence encoding three ORFs, complete cds; prophage phi-11100110213sequence homology, 5′ flank20438252350gb|M76714|Staphylococcus aureus peptidoglycan hydrolase gene, complete cds100948147620542823776gb|M76714|Staphylococcus aureus peptidoglycan hydrolase gene, complete cds1003095072612145gb|U41072|Staphylococcus aureus isoleucyl-tRNA synthetase (ileS) gene, partial cds10012614426284557gb|U41072|Staphylococcus aureus isoleucyl-tRNA synthetase (ileS) gene, partial cds994304742637633531emb|X74219|SAILS. aureus gene for isoleucyl-tRNA synthetase992769276929312614392gb|U66665|Staphylococcus aureus DNA fragment with class II promoter activity100117313231141346311949emb|X73889|SAP1S. aureus genes P1 and P2991351151531151385513469emb|X73889|SAP1S. aureus genes P1 and P29825838738171311211940gb|M12715|S. aureus geh gene encoding lipase (glycerol ester hydrolase)100372117338191343415518gb|M12715|S. aureus geh gene encoding lipase (glycerol ester hydrolase)100208520854625191727gb|U73374|Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F, cap8G,9812091209cap8H, cap8I, cap8J, cap8K, cap8L, cap8M, cap8N,cap8O, cap8P, complete cds46317202295gb|U73374|Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F, cap8G,98576576cap8H, cap8I, cap8J, cap8K, cap8L, cap8M, cap8N,cap8O, cap8P, complete cds46422593182gb|U73374|Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F, cap8G,97924924cap8H, cap8I, cap8J, cap8K, cap8L, cap8M, cap8N,cap8O, cap8P, complete cds46531734498gb|U73374|Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F, cap8G,9812831326cap8H, cap8I, cap8J, cap8K, cap8L, cap8M, cap8N,cap8O, cap8P, complete cds46645365720gb|U73374|Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F, cap8G,9811851185cap8H, cap8I, cap8J, cap8K, cap8L, cap8M, cap8N,cap8O, cap8P, complete cds46761205785gb|U73374|Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F, cap8G,99278336cap8H, cap8I, cap8J, cap8K, cap8L, cap8M, cap8N,cap8O, cap8P, complete cds4812955gb|L25893|Staphylococcus aureus recA gene, complete cds9995495450329241383emb|X85029|SAAHS. aureus AhpC gene10088154250435152922emb|X85029|SAAHS. aureus AhpC gene9854059454333921710emb|X62992|SAFNS. aureus fnbB gene for fibronectin binding protein B1001668168354441223379emb|X62992|SAFNS. aureus fnbB gene for fibronectin binding protein B9972074454545624068emb|X62992|SAFNS. aureus fnbB gene for fibronectin binding protein B10046349554683005214gb|J04151|S. aureus fibronectin-binding protein (fnbA) mRNA, complete cds1003087308758317432819emb|X87104|SADNS. aureus mdr, pbp4 and taqD genes (SG511-55 isolate)8968107758428583280emb|X91786|SAPBS. aureus abcA, pbp4, and tagD genes9942342358547013397emb|X91786|SAPBS. aureus abcA, pbp4, and tagD genes991305130558653785079gb|U29478|Staphylococcus aureus ABC transporter-like protein AbcA (abcA) gene,100300300partial cds58750866840emb|X91786|SAPBS. aureus abcA, pbp4, and tagD genes99175517557214452gb|M21854|S. aureus agr gene encoding an accessory gene regulator protein, complete100444444cds7221453449emb|X52543|SAAGS. aureus agrA, agrB and hld genes9967310058213573917emb|X64172|SARPS. aureus rp1L, orf202, rpoB(rif) and rpoC genes for ribosomal protein9923963561L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta &beta’ chains82240277677emb|X89233|SARPS. aureus DNA for rpoC gene993171365182377458068gb|U20869|Staphylococcus aureus ribosomal protein S12 (rpsL) gene, complete cds,100320324ribosomal protein S7 (rpsG) and ORF 1 genes, partial cds82481038579gb|U20869|Staphylococcus aureus ribosomal protein S12 (rpsL) gene, complete cds,100477477ribosomal protein S7 (rpsG) and ORF 1 genes, partial cds82586188821gb|U20869|Staphylococcus aureus ribosomal protein S12 (rpsL) gene, complete cds,100154204ribosomal protein S7 (rpsG) and ORF 1 genes, partial cds84118191gb|U73374|Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F, cap8G,98164174cap8H, cap8I, cap8J, cap8K, cap8L, cap8M, cap8N,cap8O, cap8P, complete cds842189893gb|U73374|Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F, cap8G,94705705cap8H, cap8I, cap8J, cap8K, cap8L, cap8M, cap8N,cap8O, cap8P, complete cds8438871660gb|U73374|Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F, cap8G,99774774cap8I, cap8J, cap8K, cap8L, cap8M, cap8N,cap8O, cap8P, complete cds84415843503gb|U73374|Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F, cap8G,9819201920cap8H, cap8I, cap8J, cap8K, cap8L, cap8M, cap8N,cap8O, cap8P, complete cds84533944521gb|U73374|Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F, cap8G,9711281128cap8H, cap8I, cap8J, cap8K, cap8L, cap8M, cap8N,cap8O, cap8P, complete cds84645195643gb|U73374|Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F, cap8G,9711251125cap8H, cap8I, cap8J, cap8K, cap8L, cap8M, cap8N,cap8O, cap8P, complete cds96212453896emb|Z18852|SACFS. aureus gene for clumping factor836602652972625882gb|U41072|Staphylococcus aureus isoleucyl-tRNA synthetase (ileS) gene, partial cds976825811113452gb|L41499|Staphylococcus aureus ORF1, partial cds, ORF2, ORF3, autolysin (atl) genes,100450450complete cds11125261041gb|L41499|Staphylococcus aureus ORF1, partial cds, ORF2, ORF3, autolysin (atl) genes,99516516complete cds117212781958gb|M83994|Staphylococcus aureus prolipoprotein signal peptidase (lsp) gene, complete10061681cds118437874254dbj|D30690|STANStaphylococcus aureus genes for ORF37; HSP20; HSP70; HSP40; ORF35, complete99467468cds130425973640emb|X13290|SATNStaphylococcus aureus multi-resistance plasmid pSK1 DNA containing789561044transposon Tn4003130538134265emb|z16422|SADIS. aureus dfrB gene for dihydrofolate reductase98416453130643095172emb|z16422|SADIS. aureus dfrB gene for dihydrofolate reductase98607864136452966207emb|X71437|SAGYS. aureus genes gyrB, gyrA and recF (partial)97838912136589876294dbj|D10489|STAGStaphylococcus aureus genes for DNA gyrase A and B, complete cds100269426941366109408994dbj|D10489|STAGStaphylococcus aureus genes for DNA gyrase A and B, complete cds991947194713671176510938gb|S77055|recF cluster: dnaA = replisome assembly protein...gyrB = DNA gyrase beta99822828subunit [Staphylococcus aureus, YB886, Genomic, 5 genes, 3573 nt]143328671563gb|U36379|Staphylococcus aureus S-adenosylmethionine synthetase gene, complete cds9913051305143431004281gb|L42943|Staphylococcus aureus (clone KIN50) phosphoenolpyruvate carboxykinase10011701182(pckA) gene, complete cds143542544718gb|U51133|Staphylococcus aureus phosphoenolpyruvate carboxykinase (pcka) gene,100449465complete cds143969777261gb|U51132|Staphylococcus aureus o-succinylbenzoic acid CoA ligase (mene), and o-10075285succinylbenzoic acid synthetase (menc) genes, complete cds1431083617258gb|U51132|Staphylococcus aureus o-succinylbenzoic acid CoA ligase (mene), and o-10011041104succinylbenzoic acid synthetase (menc) genes, complete cds1431197488264gb|U51132|Staphylococcus aureus o-succinylbenzoic acid CoA ligase (mene), and o-10014851485succinylbenzoic acid synthetase (menc) genes, complete cds14312103209901gb|U51132|Staphylococcus aureus o-succinylbenzoic acid CoA ligase (mene), and o-100332420succinylbenzoic acid synthetase (mene) genes, complete cds152524543437emb|X58434|SAPDS. aureus pdhB, pdhC and pdhD genes for pyruvate decarboxylase,99305984dihydrolipoamide acetyltransferase and dihydrolipoamide dehydrogenase152635134820emb|X58434|SAPDS. aureus pdhB, pdhC and pdhD genes for pyruvate decarboxylase,9813081308dihydrolipoamide acetyltransferase and dihydrolipoamide dehydrogenase152748186230emb|X58434|SAPDS. aureus pdhB, pdhC and pdhD genes for pyruvate decarboxylase,9914131413dihydrolipoamide acetyltransferase and dihydrolipoamide dehydrogenase15313871526gb|S77055|recF cluster: dnaA = replisome assembly protein.. .gyrB = DNA gyrase beta9911401140subunit [Staphylococcus aureus, YB886, Genomic, 5 genes, 3573 nt]153218772152gb|S77055|recF cluster: dnaA = replisome assembly protein...gyrB = DNA gyrase beta100276276subunit [Staphylococcus aureus, YB886, Genomic, 5 genes, 3573 nt]153321432289gb|S77055|recF cluster; dnaA = replisome assembly protein...gyrB = DNA gyrase beta99113147subunit [Staphylococcus aureus, YB886, Genomic, 5 genes, 3573 nt]1541093147836gb|U06451|Staphylococcus aureus proline permease homolog (putP) gene, complete cds9115414791541196159295gb|U06451|Staphylococcus aureus proline permease homolog (putP) gene, complete cds9922932115412994310167gb|U06451|Staphylococcus aureus proline permease homolog (putP) gene, complete cds94123225154131008911501gb|U06451|Staphylococcus aureus proline permease homolog (putP) gene, complete cds991326141315921212229dbj|D28879|STAPStaphylococcus aureus gene for penicillin-binding protein 1, complete cds10071984161322701944gb|M83994|Staphylococcus aureus prolipoprotein signal peptidase (lsp) gene, complete92203327cds16217054gb|U21221|Staphylococcus aureus hyaluronate lyase (hysA) gene, complete cds100702702163412631772gb|U19770|Staphylococcus aureus pyrrolidone carboxyl peptidase (pcp) gene, complete96127510cds164747749117dbj|D86727|D867Staphylococcus aureus DNA for DNA polymerase III, complete cds9934704344168764475446gb|U21636|Staphylococcus aureus cmp-binding-factor 1 (cbf1) and ORF X genes, complete10010021002cds168879616384gb|U21636|Staphylococcus aureus cmp-binding-factor 1 (cbf1) and ORF X genes, complete9911581578cds173678016362gb|J03479|S. aureus enzyme III-lac (lacF), enzyme II-lac (lacE), and phospho-beta-10014401440galactosidase (lacG) genes, complete cds173795227792gb|J03479|S. aureus enzyme III-lac (lacF), enzyme II-lac (lacE), and phospho-beta-9917311731galactosidase (lacG) genes, complete cds173882858704gb|J03479|S. aureus enzyme III-lac (lacF), enzyme II-lac (lacE), and phospho-beta-100420420galactosidase (lacG) genes, complete cds173998399510gb|J03479|S. aureus enzyme III-lac (lacF), enzyme II-lac (lacE), and phospho-beta-100330330galactosidase (lacG) genes, complete cds17310108299843emb|X14827|SALAStaphylococcus aureus lacC and lacD genes100987987173111177410827emb|X14827|SALAStaphylococcus aureus lacC and lacD genes100948948173121230511772gb|M64724|S. aureus tagatose 6-phosphate isomerase gene, complete cds100534534173131277312303gb|M32103|Staphylococcus aureus lac repressor (lacR) gene, complete cds and lacA100471471repressor (lacA), partial cds173141386613099gb|M32103|Staphylococcus aureus lac repressor (lacR) gene, complete cds and lacA100768768repressor (lacA), partial cds17812655gb|U52961|Staphylococcus aureus holin-like protein LrgA (lrgA) and LrgB (lrgB) genes,100115654complete cds17821482763gh|U52961|Staphylococcus aureus holin-like protein LrgA (lrgA) and LrgB (lrgB) genes,100720720complete cds178319091457gb|U52961|Staphylococcus aureus holin-like protein LrgA (lrgA) and LrgB (lrgB) genes,100453453complete cds178415511853gb|U52961|Staphylococcus aureus holin-like protein LrgA (lrgA) and LrgB (lrgB) genes,100303303complete cds178527772013gb|L42945|Staphylococcus aureus lytS and lytR genes, complete cds99765765178630252756gb|L42945|Staphylococcus aureus lytS and lytR genes, complete cds99270270181159066gb|M63177|S. aureus sigma factor (plaC) gene, complete cds9949952518213341emb|X61307|SASPStaphylococcus aureus spa gene for protein A9827733918226902312gb|J01786|S. aureus spa gene coding for protein A, complete csd9713321623182342512641emb|X61307|SASPStaphylococcus aureus spa gene for protein A99119161118513824gb|U31979|Staphylococcus aureus chorismate synthase (aroC) and nucleoside diphosphate90132822kinase (ndk) genes, complete cds, dehydroauinate synthase (aroB) andgeranylgeranyl pyrophosphate synthetase homolog (gerCC) genes, partial cds19138412760emb|X17679|SACOStaphylococcus aureus coa gene for coagulase9919201920191429673143emb|X16457|SASTStaphylococcus aureus gene for staphylocoagulase99177177191545663364emb|X16457|SASTStaphylococcus aureus gene for staphylocoagulase99250120319618723gb|L36472|Staphylococcus aureus lysyl-tRNA sythetase gene, complete cds, transfer RNA99870870(tRNA) genes, 5S ribosomal RNA (5S rRNA) gene, 16S ribosomal RNA (16SrRNA) gene, 23S ribosomal RNA (23S rRNA) gene198316882011emb|X93205|SAPTS. aureus ptsH and ptsI genes99324324198420052310emb|X93205|SAPTS. aureus ptsH and ptsI genes9730430620211631305emb|X97985|SA12S. aureus orfs 1,2,3 & 49911431143202213032175emb|X73889|SAP1S. aureus genes P1 and P294444873 210115582dbj|D17366|STAAStaphylococcus aureus atl gene for autolysin, complete cds and other ORFs9915521557210222321525gb|L41499|Staphylococcus aureus ORF1, partial cds, ORF2, ORF3, autolysin (atl) genes,99684708complete cds2141174297770dbj|D86240|D862Staphylococcus aureus gene for unkown function and dlt operon dltA, dltB,96157342dltC and dltD genes, complete cds21633981318emb|X72700|SAPVS. aureus genes for S and F components of Panton-Valentine leucocidins8826592121921073336dbj|D30690|STANStaphylococcus aureus genes for ORF37; HSP20; HSP70; HSP40; ORF35, complete10060738cds219320351091dbj|D30690|STANStaphylococcus aureus genes for ORF37; HSP20; HSP70; HSP40; ORF35, complete99945945cds219431962033dbj|D30690|STANStaphylococcus aureus genes for ORF37; HSP20; HSP70; HSP40; ORF35, complete9911641164cds219551763308dbj|D30690|STANStaphylococcus aureus genes for ORF37; HSP20; HSP70; HSP40; ORF35, complete9818691869cds219658835209dbj|D30690|STANStaphylococcus aureus genes for ORF37; HSP20; HSP70; HSP40, ORF35, complete99675675cds219763345867dbj|D30690|STANStaphylococcus aureus genes for ORF37; HSP20; HSP70; HSP40; ORF35, complete98468468cds2218100349252gb|L19298|Staphylococcus aureus phosphatidylinositol-specific phospholipase C (plc)9167783gene, complete cds22311506157gb|U73374|Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D,991021350cap8E, cap8F, cap8G, cap8H, cap8I, cap8J, cap8K, cap8L, cap8M, cap8N,cap8O, cap8P, complete cds234121357emb|X97985|SA12S. aureus orfs 1,2,3 & 41001761356234216942485emb|X97985|SA12S. aureus orfs 1,2,3 & 4100792792234326483148emb|X97985|SA12S. aureus orfs 1,2,3 & 499501501234431204604emb|X97985|SA12S. aureus orfs 1,2,3 & 49913051485236638265322gb|U48826|Staphylococcus aureus elastin binding protein (ebpS) gene, complete cds96648149724812403emb|X62288|SAPES. aureus DNA for penicillin-binding protein 21001034022482388852gb|L25426|Staphylococcus aureus penicillin-binding protein 2 (pbp2) gene, complete99465465cds25321093647gb|U46541|Staphylococcus aureus sarA gene, complete cds9644744725421501835gb|U57060|Staphylococcus aureus scdA gene, complete cds941421686254319732728gb|U57060|Staphylococcus aureus scdA gene, complete cds99756756260121900gb|M90693|Staphylococcus aureus glycerol ester hydrolase (lip) gene, complete cds991213189926511942dbj|D21131|STASStaphylococcus aureus gene for a participant in homogeneous expression of99941942high-level methicillin resistance, complete cds2652476264dbj|D21131|STASStaphylococcus aureus gene for a participant in homogeneous expression of99213213high-level methicillin resistance, complete cds265317651112dbj|D21131|STASStaphylococcus aureus gene for a participant in homogeneous expression of9869654high-level methicillin resistance, complete cds266121018dbj|D14711|STAHStaphylococcus aureus HSP10 and HSP60 genes98743101728211525gb|S72488|hemB = porphobilinogen synthase [Staphylococcus aureus, SA1959, Genomic, 1087100110525nt]28225161502gb|S72488|hemB = porphobilinogen synthase [Staphylococcus aureus, SA1959, Genomic, 1087100952987nt]28413170gb|M63176|Staphylococcus aureus helicase required for T181 replication (pcrA) gene,9884168complete cds28422821034gb|M63176|Staphylococcus aureus helicase required for T181 replication (pcrA) gene,100712753complete cds284310282026gb|M63176|Staphylococcus aureus helicase required for T181 replication (pcrA) gene,99979999complete cds284419902202gb|M63176|Staphylococcus aureus helicase required for T181 replication (pcrA) gene,98187213complete cds289315361991gb|M32470|S. aureus Sau3AI-restriction-enzyme and Sau3AI-modification-enzyme genes,99338456complete cds30312868gb|L01055|Staphylococcus aureus gamma-hemolysin components A, B and C (hlgA, hlgB,99867867hglC) genes, complete cds303214092383gb|L01055|Staphylococcus aureus gamma-hemolysin components A, B and C (hlgA, hlgB,100975975hglC) genes, complete cds303323673161gb|L01055|Staphylococcus aureus gamma-hemolysin components A, B and C (hlgA, hlgB,99793795hglC) genes, complete cds305113553dbj|D17366|STAAStaphylococcus aureus atl gene for autolysin, complete cds and other ORFs9913431353311113152gb|L42945|Staphylococcus aureus lytS and lytR genes, complete cds9813141314312670197870gb|L14017|Staphylococcus aureus methicillin-resistance protein (mecR) gene and74351852unknown ORF, complete cds323110038gb|U31175|Staphylococcus aureus D-specific D-2-hydroxyacid dehydrogenase (ddh) gene,98996996complete cds32611237emb|Y00356|SASPStaphylococcus aureus V8 serine protease gene100108237338138889emb|X64389|SALES. aureus leuF-P83 gene for F component of leucocidin R9825930033821088348emb|X64389|SALES. aureus leuF-P83 gene for F component of leucocidin R9713774134225791754gb|U06462|Staphylococcus aureus SA4 FtsZ (ftsZ) gene, complete cds1001176117634425171248emb|V01281|SANUS. aureus mRNA for nuclease9873273234912303gb|M20393|S. aureus bacteriophage phi-11 attachment site (attB)96172228353151616gb|M83994|Staphylococcus aureus prolipoprotein signal peptidase (lsp) gene, complete100187501cds35321046510gb|M83994|Staphylococcus aureus prolipoprotein signal peptidase (lsp) gene, complete99537537cds35613674gb|U20503|Staphylococcus aureus MHC class II analog gene, complete cds7567167236111903gb|L19298|Staphylococcus aureus phosphatidylinositol-specific phospholipase C (plc)98747903gene, complete cds361211031507gb|L19298|Staphylococcus aureus phosphatidylinositol-specific phospholipase C (plc)9768405gene, complete cds373131148emb|X62288|SAPES. aureus DNA for penicillin-binding protein 2991146114638931248592emb|X62282|SATSS. aureus target site DNA for IS431 insertion9734965740011540emb|X61716|SAHLS. aureus hlb gene encoding sphingomyelinase9938954040021187681emb|X13404|SAHLStaphylococcus aureus hlb gene for beta-hemolysin9917850740811049288gb|S76213|asp23 = alkaline shock protein 23 (methicillin resistant) [Staphylococcus99163762aureus, 912, Genomic, 1360 nt]41812217gb|L41499|Staphylococcus aureus ORF1, partial cds, ORF2, ORF3, autolysin (at1) genes,100216216complete cds4182639424dbj|D17366|STAAStaphylococcus aureus at1 gene for autolysin, complete cds and other ORFs100188216421212622509gb|L43098|Transposon Tn5404 and insertion sequences IS1181 and IS1182 (from9912481248Staphylococcus aureus) DNA42212325gb|K02985|S. aureus (strain RN450) transposon Tn554 insertion site9620032442714343dbj|D28879|STAPStaphylococcus aureus gene for penicillin-binding protein 1, complete cds10043243242721122415dbj|D28879|STAPStaphylococcus aureus gene for penicillin-binding protein 1, complete cds10015170843512808dbj|D86240|D862Staphylococcus aureus gene for unkown function and dlt operon dltA, dltB,100556807dltC and dltD genes,complete cds4352832999dbj|D86240|D862Staphylococcus aureus gene for unkown function and dlt operon dltA, dltB,100134168dltC and dltD genes, complete cds436168529emb|X17688|SAFES. aureus factor essential for expression of methicillin resistance (femA)97657657gene, complete cds, and trpA gene, 3′ end43621657911emb|X17688|SAFES. aureus factor essential for expression of methicillin resistance (femA)100294747gene, complete cds, and trpA gene, 3′ end44213471300emb|X72700|SAPVS. aureus genes for S and F components of Panton-Valentine leucocidins84204954445219062178gb|L01055|Staphylococcus aureus gamma-hemolysin components A, B and C (hlgA, hlgB,98187273hglC) genes, complete cds44711671078gb|U19770|Staphylococcus aureus pyrrolidone carboxyl peptidase (pcp) gene, complete10051912cds447211761784gb|U19770|Staphylococcus aureus pyrrolidone carboxyl peptidase (pcp) gene, complete96597609cds454343191329emb|Z18852|SACFS. aureus gene for clumping factor756532991472454793062gb|L25288|Staphylococcus aureus gyrase-like protein alpha and beta subunit (grlA and9924182418grlB) genes, complete cds472567925464gb|L25288|Staphylococcus aureus gyrase-like protein alpha and beta subunit (grlA and9913281329grlB) genes, complete cds4752566889emb|X52543|SAAGS. aureus agrA, agrB and hld genes10076324481415601198emb|X64172|SARPS. aureus rplL, orf202, rpoB(rif) and rpoC genes for ribosomal protein100250363L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta & beta′ chains481512441534emb|X64172|SARPS. aureus rplL, orf202, rpoB(rif) and rpoC genes for ribosomal protein100224291L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta &beta′ chains48721188988gb|M83994|Staphylococcus aureus prolipoprotein signal peptidase (lsp) gene, complete9872201cds489113703gb|U21221|Staphylococcus aureus hyaluronate lyase (hysA) gene, complete cds99136813685032653171gb|M83994|Staphylococcus aureus prolipoprotein signal peptidase (lsp) gene, complete100108483cds511316132242gb|L14017|Staphylococcus aureus methicillin-resistance protein (mecR) gene and84323630unknown ORF, complete cds511427002278gb|S76213|asp23 = alkaline shock protein 23 (methicillin resistant) [Staphylococcus96423423aureus, 912, Genomic, 1360 nt]52027581297emb|X72014|SAFIS. aureus fib gene for fibrinogen-binding protein99540540520314361801emb|X72013|SAFIS. aureus fib gene for fibrinogen-binding protein992213665261109234dbj|D17366|STAAStaphylococcus aureus atl gene for autolysin, complete cds and other ORFs996411059528258963gb|L19300|Staphylococcus aureus DNA sequence encoding three ORFs, complete cds;99260906prophage phi-11 sequence homology, 5′ flank528310982870gb|L19300|Staphylococcus aureus DNA sequence encoding three ORFs, complete cds;998661773prophage phi-11 sequence homology, 5′ flank53013434gb|U31979|Staphylococcus aureus chorismate synthase (aroC) and nucleoside diphosphate99432432kinase (ndk) genes, complete cds, dehydroauinate synthase (aroB) andgeranylgeranyl pyrophosphate synthetase homolog (gerCC) genes, partial cds530212112395gb|U31979|Staphylococcus aureus chorismate synthase (aroC) and nucleoside diphosphate9111851185kinase (ndk) genes; complete cds, dehydroauinate synthase (aroB) andgeranylgeranyl pyrophosphate synthetase homolog (gerCC) genes, partial cds530324092801gb|U31979|Staphylococcus aureus chorismate synthase (aroC) and nucleoside diphosphate88181393kinase (ndk) genes, complete cds, dehydroauinate synthase (aroB) andgeranylgeranyl pyrophosphate synthetase homolog (gerCC) genes, partial cds530426903484gb|L05004|Staphylococcus aureus dehydroquinate synthase (aroB) gene, 3′ end cds; 3-10075795phosphoshikimate-1-carboxyvinyltransferase (aroA) gene, complete cds;ORF3, complete cds530534824792gb|L05004|Staphylococcus aureus dehydroquinate synthase (aroB) gene, 3′ end cds; 3-999051311phosphoshikimate-1-carboxyvinyltransferase (aroA) gene, complete cds;ORF3, complete cds530647905380gb|L05004|Staphylococcus aureus dehydroquinate synthase (aroB) gene, 3′ end cds; 3-100196591phosphoshikimate-1-carboxyvinyltransferase (aroA) gene, complete cds;ORF3, complete cds53913338emb|X76490|SAGLS. aureus (bb270) glnA and glnR genes993363365392336527emb|X76490|SAGLS. aureus (bb270) glnA and glnR genes10018919255413653gb|U73374|Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D,10054363cap8E, cap8F, cap8G, cap8H, cap8I, cap8J, cap8K, cap8L, cap8M, cap8N,cap8O, cap8P, complete cds55421252329gb|U73374|Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D,99918924cap8E, cap8F, cap8G, cap8H, cap8I, cap8J, cap8K, cap8L, cap8M, cap8N,cap8O, cap8P, complete cds554313741174gb|U73374|Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D,96122201cap8E, cap8F, cap8G, cap8H, cap8I, cap8J, cap8K, cap8L, cap8M, cap8N,cap8O, cap8P, complete cds5842705391gb|U21221|Staphylococcus aureus hyaluronate lyase (hysA) gene, complete cds99306315587314754288emb|Z18852|SACFS. aureus gene for clumping factor98258828145981195325dbj|D28879|STAPStaphylococcus aureus gene for penicillin-binding protein 1, complete cds991873192960512745dbj|D86240|D862Staphylococcus aureus gene for unkown function and dlt operon dltA, dltB,98338744dltC and dltD genes, complete cds60918164emb|X76490|SAGLS. aureus (bb270) glnA and glnR genes10049581361416424gb|M32103|Staphylococcus aureus lac repressor (lacR) gene, complete cds and lacA99639639repressor (lacA), partial cds626112552gb|M63176|Staphylococcus aureus helicase required for T181 replication (pcrA) gene,1002251254complete cds626222841253gb|M63176|Staphylococcus aureus helicase required for T181 replication (pcrA) gene,998381032complete cds629110013emb|X17688|SAFES. aureus factor essential for expression of methicillin resistance (femA)99990999gene, complete cds, and trpA gene, 3′ end62921195983emb|X17688|SAFES. aureus factor essential for expression of methicillin resistance (femA)98194213gene, complete cds, and trpA gene, 3′ end631232281330emb|Z18852|SACFS. aureus gene for clumping factor82489189963213551emb|Z30588|SASTS. aureus (RN4220) genes for potential ABC transporter and potential99549549membrane spanning protein63225291323emb|Z30588|SASTS. aureus (RN4220) genes for potential ABC transporter and potential99795795membrane spanning protein65111070231gb|L19300|Staphylococcus aureus DNA sequence encoding three ORFs, complete cds;99478840prophage phi-11 sequence homology, 5′ flank65721105410gb|L14017|Staphylococcus aureus methicillin-resistance protein (mecR) gene and84456696unknown ORF, complete cds66214564emb|X13404|SAHLStaphylococcus aureus hlb gene for beta-hemolysin1003694536622230475emb|X13404|SAHLStaphylococcus aureus hlb gene for beta-hemolysin10024624666237461399emb|X13404|SAHLStaphylococcus aureus hlb gene for beta-hemolysin9965365468214804gb|M63177|S. aureus sigma factor (plaC) gene, complete cds10013647768515922gb|U65000|Staphylococcus aureus type-I signal peptidase SpsA (spsA) gene, and type-I98534591signal peptidase SpsB (spaB) gene, complete cds68521153590gb|U65000|Staphylococcus aureus type-I signal peptidase SpsA (spsA) gene, and type-I96564564signal peptidase SpsB (spsB) gene, complete cds69713527gb|M63177|S. aureus sigma factor (plaC) gene, complete cds1001955256972485784gb|M63177|S. aureus sigma factor (plaC) gene, complete cds97280300710115503dbj|D86240|D862Staphylococcus aureus gene for unkown function and dlt operon dltA, dltB,99217489dltC and dltD genes, complete cds733126205gb|M80252|Staphylococcus aureus norA1199 gene (which mediates active efflux of97140180fluoroguinolones), complete cds74111197658dbj|D83951|STALStaphylococcus aureus DNA for LukM component, LukF-PV like component,81522540complete cds75211636emb|Y00356|SASPStaphylococcus aureus V8 serine protease gene996186367522588956emb|Y00356|SASPStaphylococcus aureus V8 serine protease gene993403697561709110emb|X01645|SATOStaphylococcus aureus (Wood 46) gene for alpha-toxin985676007771950318emb|Z49245|SA42S. aureus partial sod gene for superoxide dismutase9942963378015573gb|U20503|Staphylococcus aureus MHC class II analog gene, complete cds86550555784173687gb|U63529|Staphylococcus aureus novel antigen gene, complete cds995686157971182544dbj|D14711|STAHStaphylococcus aureus HSP10 and HSP60 genes98363363798130272emb|X58434|SAPDS. aureus pdhB, pdhC and pdhD genes for pyruvate decarboxylase,95196231dihydrolipoamide acetyltransferase and dihydrolipoamide dehydrogenase82313467gb|S77055|recF cluster: dnaA = replisome assembly protein...gyrB = DNA gyrase beta99156465subunit [Staphylococcus aureus, YB886, Genomic, 5 genes, 3573 nt]84811752gb|L25288|Staphylococcus aureus gyrase-like protein alpha and beta subunit (grlA and99174174grlB) genes, complete cds8482318160gb|L25288|Staphylococcus aureus gyrase-like protein alpha and beta subunit (grlA and100131159grlB) genes, complete cds86613972emb|X64172|SARPS. aureus rplL, orf202, rpoB(rif) and rpoC genes for ribosomal protein99395396L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta &beta′ chains88311285dbj|D90119|STANS. aureus norA gene99131285884133462emb|X52543|SAAGS. aureus agrA, agrB and hld genes982652738842522328emb|X52543|SAAGS. aureus agrA, agrB and hld genes1001951959122517681emb|Z30588|SASTS. aureus (RN4220) genes for potential ABC transporter and potential99163165membrane spanning protein91712265gb|M64724|S. aureus tagatose 6-phosphate isomerase gene, complete cds992472649172238396gb|M64724|S. aureus tagatose 6-phosphate isomerase gene, complete cds95147159918112154emb|X93205|SAPTS. aureus ptsH and ptsI genes991212121296711411dbj|D90119|STANS. aureus norA gene9739541199113372emb|X52543|SAAGS. aureus agrA, agrB and hld genes9933633610001845573gb|L14017|Staphylococcus aureus methicillin-resistance protein (mecR) gene and78190273unknown ORF, complete cds1001126532dbj|D86240|D862Staphylococcus aureus gene for unkown function and dlt operon dltA, dltB,99234234dltC and dltD genes, complete cds101011285gb|U21221|Staphylococcus aureus hyaluronate lyase (hysA) gene, complete cds99224285104613304emb|X72700|SAPVS. aureus genes for S and F components of Panton-Valentine leucocidins852053271060128692emb|X58434|SAPDS. aureus pdhB, pdhC and pdhD genes for pyruvate decarboxylase,99180195dihydrolipoamide acetyltransferase and dihydrolipoamide dehydrogenase107315892gb|K02985|S. aureus (strain RN450) transposon Tn554 insertion site100131588107913230dbj|D86240|D862Staphylococcus aureus gene for unkown function and dlt operon dltA, dltB,99228228dltC and dltD genes, complete cds10792218484dbj|D86240|D862Staphylococcus aureus gene for unkown function and dlt operon dltA, dltB,100267267dltC and dltD genes, complete cds10793460645dbj|D86240|D862Staphylococcus aureus gene for unkown function and dlt operon dltA, dltB,100186186dltC and dltD genes, complete cds109211463emb|X58434|SAPDS. aureus pdhB, pdhC and pdhD genes for pyruvate decarboxylase,98124144dihydrolipoamide acetyltransferase and dihydrolipoamide dehydrogenase114311243gb|M63177|S. aureus sigma factor (plaC) gene, complete cds99243243115712136emb|Z48003|SADNS. aureus gene for DNA polymerase III97127135118913612gb|S74031|norA = NorA (ISP794) [Staphylococcus aureus, NCTC 8325, Insertion, 1820 nt]99360360119012283gb|M21854|S. aureus agr gene encoding an accessory gene regulator protein, complete100282282cds11902888649emb|X52543|SAAGS. aureus agrA, agrB and hld genes100240240122512163emb|X17679|SACOStaphylococcus aureus coa gene for coagulase97124162124312529dbj|D86240|D862Staphylococcus aureus gene for unkown function and dlt operon dltA, dltB,99495528dltC and dltD genes, complete cds124411210gb|S74031|norA = NorA (ISP794) [Staphylococcus aureus, NCTC 8325, Insertion, 1820 nt]1002102101301141472emb|X76490|SAGLS. aureus (bb270) glnA and glnR genes992994321315118326emb|X64172|SARPS. aureus rplL, orf202, rpoB(rif) and rpoC genes for ribosomal protein98277309L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta &beta′ chains151912175dbj|D28879|STAPStaphylococcus aureus gene for penicillin-binding protein 1, complete cds98139174166316754dbj|D86240|D862Staphylococcus aureus gene for unkown function and dlt operon dltA, dltB,98672672dltC and dltD genes, complete cds179713244gb|U73374|Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, csp8D,99321321cap8E, cap8F, cap8G, cap8H, cap8I, cap8J, cap8K, cap8L, cap8M, cap8N,cap8O, cap8P, complete cds185711192gb|M90536|Staphylococcus aureus alpha-hemolysin gene, 3′ end98192192192312181emb|X17688|SAFES. aureus factor essential for expression of methicillin resistance (femA)100180180gene, complete cds, and trpA gene, 3′ end195712346gb|U60589|Staphylococcus aureus novel antigen gene, complete cds99345345198811402dbj|D86240|D862Staphylococcus aureus gene for unkown function and dlt operon dltA, dltB,100402402dltC and dltD genes, complete cds210012082gb|M63177|S. aureus sigma factor (plaC) gene, complete cds99207207219911402gb|U66664|Staphylococcus aureus DNA fragment with class II promoter activity99131402253711564emb|X17688|SAFES. aureus factor essential for expression of methicillin resistance (femA)99153153gene, complete cds, and trpA gene, 3′ end289112400gb|L25426|Staphylococcus aureus penicillin-binding protein 2 (pbp2) gene, complete99399399cds2950139818dbj|D30690|STANStaphylococcus aureus genes for ORF37; HSP20; HSP70; HSP40; ORF35, complete100358381cds297113398gb|U51132|Staphylococcus aureus o-succinylbenzoic acid CoA ligase (mene), and o-97272396succinylbenzoic acid synthetase (menc) genes, complete cds2978132838gb|U31979|Staphylococcus aureus chorismate synthase (aroC) and nucleoside diphosphate98250291kinase (ndk) genes, complete cds, dehydroauinate synthase (aroB) andgeranylgeranyl pyrophosphate synthetase homolog (gerCC) genes, partial cds2985146496emb|X17679|SACOStaphylococcus aureus coa gene for coagulase983473693006117841398gb|U11779|Staphylococcus aureus methicillin-resistant ATCC 33952 clone RRNV30 16S-23S8782387rRNA spacer region300812382dbj|D30690|STANStaphylococcus aureus genes for ORF37; HSP20; HSP70; HSP40; ORF35, complete88178237cds30082281111dbj|D30690|STANStaphylococcus aureus genes for ORF37; HSP20; HSP70; HSP40; ORF35, complete97120171cds301113983emb|X62992|SAFNS. aureus fnbB gene for fibronectin binding protein B9372396301912235gb|J03479|S. aureus enzyme III-lac (lacF), enzyme II-lac (lacE), and phospho-beta-97234234galactosidase (lacG) genes, complete cds3023181233gb|U06451|Staphylococcus aureus proline permease homolog (putP) gene, complete cds871001533029190287gb|U51133|Staphylococcus aureus phosphoenolpyruvate carboxykinase (pcka) gene,100135198complete cds3039118164gb|U51133|Staphylococcus aureus phosphoenolpyruvate carboxykinase (pcka) gene,97135147complete cds3039270327gb|U51133|Staphylococcus aureus phosphoenolpyruvate carboxykinase (pcka) gene,77183258complete cds305613215emb|X64172|SARPS. aureus rplL, orf202, rpoB(rif) and rpoC genes for ribosomal protein99213213L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta &beta’ chains305911261dbj|D30690|STANStaphylococcus aureus genes for ORF37; HSP20; HSP70; HSP40; ORF35, complete98234261cds3073127284gb|U06451|Staphylococcus aureus proline permease homolog (putP) gene, complete cds99229258307412397emb|X64172|SARPS. aureus rplL, orf202, rpoB(rif) and rpoC genes for ribosomal protein96250396L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta &beta’ chains308813239dbj|D86727|D867Staphylococcus aureus DNA for DNA polymerase III, complete cds952152373097124444emb|Z48003|SADNS. aureus gene for DNA polymerase III97160201310211553gb|J03479|S. aureus enzyme III-lac (lacF), enzyme II-lac (lacE), and phospho-beta-97142153galactosidase (lacG) genes, complete cds31211398228emb|X58434|SAPDS. aureus pdhB, pdhC and pdhD genes for pyruvate decarboxylase,10088171dihydrolipoamide acetyltransferase and dihydrolipoamide dehydrogenase312512333emb|X89233|SARPS. aureus DNA for rpoC gene98192231313312175emb|Z18852|SACFS. aureus gene for clumping factor96154174316012112dbj|D10489|STAGStaphylococcus aureus genes for DNA gyrase A and B, complete cds89197210317611378emb|X58434|SAPDS. aureus pdhB, pdhC and pdhD genes for pyruvate decarboxylase,9691378dihydrolipoamide acetyltransferase and dihydrolipoamide dehydrogenase319212112gb|J03479|S. aureus enzyme III-lac (lacF), enzyme II-lac (lacE), and phospho-beta-9872210galactosidase (lacG) genes, complete cds321013143gb|M76714|Staphylococcus aureus peptidoglycan hydrolase gene, complete cds96141141323231282458gb|L14017|Staphylococcus aureus methicillin-resistance protein (mecR) gene and71257825unknown ORF, complete cds353812394emb|X89233|SARPS. aureus DNA for rpoC gene9935039335431392634gb|L11530|Staphylococcus aureus transfer RNA sequence with two rRNAs99102243355513203emb|Z18852|SACFS. aureus gene for clumping factor99307318355913182emb|X17679|SACOStaphylococcus aureus coa gene for coagulase1001411803559295313emb|X17679|SACOStaphylococcus aureus coa gene for coagulase98174219356311414gb|U35773|Staphylococcus aureus prolipoprotein diacylglyceryl transferase (lgt) gene,10079138complete cds35632363199gb|U35773|Staphylococcus aureus prolipoprotein diacylglyceryl transferase (lgt) gene,98162165complete cds356613422emb|X16457|SASTStaphylococcus aureus gene for staphylocoagulase98175420358812262gb|L43098|Transposon Tn5404 and insertion sequences IS1181 and IS1182 (from99253261Staphylococcus aureus) DNA359313350gb|J03479|S. aureus enzyme III-lac (lacF), enzyme II-lac (lacE), and phospho-beta-99345348galactosidase (lacG) genes, complete cds360013814emb|Z18852|SACFS. aureus gene for clumping factor72346378360213964emb|Z18852|SACFS. aureus gene for clumping factor983193933656152843emb|Z18852|SACFS. aureus gene for clumping factor84403486368213236emb|X64172|SARPS. aureus rplL, orf202, rpoB(rif) and rpoC genes for ribosomal protein100231234L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta &beta’ chains36822224415emb|X64172|SARPS. aureus rplL, orf202, rpoB(rif) and rpoC genes for ribosomal protein100112192L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta &beta’ chains3693142388emb|X62992|SAFNS. aureus fnbB gene for fibronectin binding protein B10022933637021354115gb|L11530|Staphylococcus aureus transfer RNA sequence with two rRNAs9681240372514632emb|Z18852|SACFS. aureus gene for clumping factor713674623761145091gb|L14017|Staphylococcus aureus methicillin-resistance protein (mecR) gene and85333360unknown ORF, complete cds376711402emb|X64172|SARPS. aureus rplL, orf202, rpoB(rif) and rpoC genes for ribosomal protein98387402L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta &beta’ chains377512286emb|X64172|SARPS. aureus rplL, orf202, rpoB(rif) and rpoC genes for ribosomal protein100227285L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta &beta′ chains378612292dbj|D10489|STAGStaphylococcus aureus genes for DNA gyrase A and B, complete cds10020422837862366190dbj|D10489|STAGStaphylococcus aureus genes for DNA gyrase A and B, complete cds95123177379813251emb|X17679|SACOStaphylococcus aureus coa gene for coagulase99249249381313983gb|J04151|S. aureus fibronectin-binding protein (fnbA) mRNA, complete cds9839639638191184402emb|X68425|SA23S. aureus gene for 23S rRNA99161219384414684gb|U48826|Staphylococcus aureus elastin binding protein (ebpS) gene, complete cds87204465384511381emb|X58434|SAPDS. aureus pdhB, pdhC and pdhD genes for pyruvate decarboxylase,94356381dihydrolipoamide acetyltransferase and dihydrolipoamide dehydrogenase385614002gb|L14017|Staphylococcus aureus methicillin-resistance protein (mecR) gene and76192399unknown ORF, complete cds3859157397emb|Z18852|SACFS. aureus gene for clumping factor85347477387113274gb|M76714|Staphylococcus aureus peptidoglycan hydrolase gene, complete cds100299324387612253dbj|D10489|STAGStaphylococcus aureus genes for DNA gyrase A and B, complete cds100217252387712884gb|J03479|S. aureus enzyme III-lac (lacF), enzyme II-lac (lacE), and phospho-beta-97209285galactosidase (lacG) genes, complete cds387811237emb|X58434|SAPDS. aureus pdhB, pdhC and pdhD genes for pyruvate decarboxylase,96155237dihydrolipoamide acetyltransferase and dihydrolipoamide dehydrogenase388813173emb|X16457|SASTStaphylococcus aureus gene for staphylocoagulase98171171389311183emb|X89233|SARPS. aureus DNA for rpoC gene10017018338932181357emb|X89233|SARPS. aureus DNA for rpoC gene9879177389413485emb|X64172|SARPS. aureus rplL, orf202, rpoB(rif) and rpoC genes for ribosomal protein99450483L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta &beta’ chains389514204gb|J04151|S. aureus fibronectin-binding protein (fnbA) mRNA, complete cds994114173905148239gb|L05004|Staphylococcus aureus dehydroquinate synthase (aroB) gene, 3′ end cds; 3-100159192phosphoshikimate-1-carboxyvinyltransferase (aroA) gene, complete cds;ORF3, complete cds39052188400gb|L05004|Staphylococcus aureus dehydroquinate synthase (aroB) gene, 3′ end cds; 3-9788213phosphoshikimate-1-carboxyvinyltransferase (aroA) gene, complete cds;ORF3, complete cds391013359emb|X58434|SAPDS. aureus pdhB, pdhC and pdhD genes for pyruvate decarboxylase,99278357dihydrolipoamide acetyltransferase and dihydrolipoamide dehydrogenase391511330gb|L14017|Staphylococcus aureus methicillin-resistance protein (mecR) gene and75175330unknown ORF, complete cds396413473emb|Z48003|SADNS. aureus gene for DNA polymerase III10029534540071199390emb|X16457|SASTStaphylococcus aureus gene for staphylocoagulase98163192403613371dbj|D10489|STAGStaphylococcus aureus genes for DNA gyrase A and B, complete cds99339369404613484emb|Z18852|SACFS. aureus gene for clumping factor87221345406011375emb|Z18852|SACFS. aureus gene for clumping factor96271375406114324emb|Z48003|SADNS. aureus gene for DNA polymerase III99429429406213042gb|L14017|Staphylococcus aureus methicillin-resistance protein (mecR) gene and75198303unknown ORF, complete cds4085158402gb|U11786|Staphylococcus aureus methicillin-resistant ATCC 33952 clone RRNV42 16S-23S98127345rRNA spacer region408812301gb|L43098|Transposon Tn5404 and insertion sequences IS1181 and IS1182 (from99227300Staphylococcus aureus) DNA409312277emb|X58434|SAPDS. aureus pdhB, pdhC and pdhD genes for pyruvate decarboxylase,99276276dihydrolipoamide acetyltransferase and dihydrolipoamide dehydrogenase409711402emb|Z18852|SACFS. aureus gene for clumping factor743074024116122402gb|L05004|Staphylococcus aureus dehydroquinate synthase (aroB) gene, 3′ end cds; 3-98157381phosphoshikimate-1-carboxyvinyltransferase (aroA) gene, complete cds;ORF3, complete cds41251240401gb|U73374|Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D,10086162cap8E, cap8F, cap8G, cap8H, cap8I, cap8J, cap8K, cap8L, cap8M, cap8N,cap8O, cap8P, complete cds4149135247gb|J04151|S. aureus fibronectin-binding protein (fnbA) mRNA, complete cds9920021341511366103gb|L14017|Staphylococcus aureus methicillin-resistance protein (mecR) gene and87150264unknown ORF, complete cds4154139842emb|X64172|SARPS. aureus rplL, orf202, rpoB(rif) and rpoC genes for ribosomal protein99297357L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta &beta’ chains417911294emb|X64172|SARPS. aureus rplL, orf202, rpoB(rif) and rpoC genes for ribosomal protein98240294L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta &beta’ chains420311255emb|X89233|SARPS. aureus DNA for rpoC gene99239255420611303emb|Z18852|SACFS. aureus gene for clumping factor10023630342062195344emb|Z18852|SACFS. aureus gene for clumping factor956515042081108314emb|X58434|SAPDS. aureus pdhB, pdhC and pdhD genes for pyruvate decarboxylase,8976207dihydrolipoamide acetyltransferase and dihydrolipoamide dehydrogenase421613304emb|X58434|SAPDS. aureus pdhB, pdhC and pdhD genes for pyruvate decarboxylase,98326327dihydrolipoamide acetyltransferase and dihydrolipoamide dehydrogenase422612982gb|L11530|Staphylococcus aureus transfer RNA sequence with two rRNAs9713229742601216383gb|U11784|Staphylococcus aureus methicillin-resistant ATCC 33952 clone RRNV40 16S-23S83141168rRNA spacer region427211793emb|Z48003|SADNS. aureus gene for DNA polymerase III100164177427614177emb|X16457|SASTStaphylococcus aureus gene for staphylocoagulase99150174427711270emb|X64172|SARPS. aureus rplL, orf202, rpoB(rif) and rpoC genes for ribosomal protein99265270L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta &beta’ chains4282137763emb|X64172|SARPS. aureus rplL, orf202, rpoB(rif) and rpoC genes for ribosomal protein98282315L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta &beta’ chains429111913emb|X64172|SARPS. aureus rplL, orf202, rpoB(rif) and rpoC genes for ribosomal protein99183189L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta &beta’ chains429513329emb|X16457|SASTStaphylococcus aureus gene for staphylocoagulase9414432743131280125gb|L11530|Staphylococcus aureus transfer RNA sequence with two rRNAs10094156431513185gb|J03479|S. aureus enzyme III-lac (lacF), enzyme II-lac (lacE), and phospho-beta-100158183galactosidase (lacG) genes, complete cds43152101310gb|J03479|S. aureus enzyme III-lac (lacF), enzyme II-lac (lacE), and phospho-beta-9875210galactosidase (lacG) genes, complete cds432711294gb|L43098|Transposon Tn5404 and insertion sequences IS1181 and IS1182 (from98294294Staphylococcus aureus) DNA4360131935gb|U02910|Staphylococcus aureus ATCC 25923 16S rRNA gene, partial sequence100116285436413146emb|X64172|SARPS. aureus rplL, orf202, rpoB(rif) and rpoC genes for ribosomal protein95140144L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta &beta’ chains43881167310emb|X62992|SAFNS. aureus fnbB gene for fibronectin binding protein B73119144440112313emb|X62992|SAFNS. aureus fnbB gene for fibronectin binding protein B972433124421136281dbj|D12572|STA2Staphylococcus aureus rrnA gene for 23S ribosomal RNA100112246442613293emb|Z18852|SACFS. aureus gene for clumping factor85185291442812483emb|X64172|SARPS. aureus rplL, orf202, rpoB(rif) and rpoC genes for ribosomal protein100139246L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta &beta′ chains446212271emb|X64172|SARPS. aureus rplL, orf202, rpoB(rif) and rpoC genes for ribosomal protein99270270L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta &beta′ chains446611240emb|Z18852|SACFS. aureus gene for clumping factor99231240446911312gb|J03479|S. aureus enzyme III-lac (lacF), enzyme II-lac (lacE), and phospho-beta-99265312galactosidase (lacG) genes, complete cds448513263gb|L43098|Transposon Tn5404 and insertion sequences IS1181 and IS1182 (from98259261Staphylococcus aureus) DNA4492174400gb|M86227|Staphylococcus aureus DNA gyrase B subunit (gyrB) RecF homologue (recF) and85104327DNA gyrase A subunit (gyrA) gene, complete cds449712693emb|Z18852|SACFS. aureus gene for clumping factor99213267452912172emb|X64172|SARPS. aureus rplL, orf202, rpoB(rif) and rpoC genes for ribosomal protein100151171L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta &beta′ chains454711300emb|X62992|SAFNS. aureus fnbB gene for fibronectin binding protein B100157300455411602emb|Z18852|SACFS. aureus gene for clumping factor84126159456519227emb|Z18852|SACFS. aureus gene for clumping factor842132194569179222emb|Z18852|SACFS. aureus gene for clumping factor981271444608122216emb|X58434|SAPDS. aureus pdhB, pdhC and pdhD genes for pyruvate decarboxylase,92168195dihydrolipoamide acetyltransferase and dihydrolipoamide dehydrogenase461412344emb|Z18852|SACFS. aureus gene for clumping factor8616923146231105302gb|J04151|S. aureus fibronectin-binding protein (fnbA) mRNA, complete cds991521984632118206gb|J03479|S. aureus enzyme III-lac (lacF), enzyme II-lac (lacE), and phospho-beta-98183189galactosidase (lacG) genes, complete cds464611222emb|Z18852|SACFS. aureus gene for clumping factor84100222468712166gb|J04151|S. aureus fibronectin-binding protein (fnbA) mRNA, complete cds98156165469511583gb|L14017|Staphylococcus aureus methicillin-resistance protein (mecR) gene and75155156unknown ORF, complete cds470311153emb|X58434|SAPDS. aureus pdhB, pdhC and pdhD genes for pyruvate decarboxylase,98103153dihydrolipoamide acetyltransferase and dihydrolipoamide dehydrogenase


[0289]

2





TABLE 2












S. aureus
- Putative coding regions of novel proteins similar to known proteins


















Start
Stop
match






Contig ID
ORF ID
(nt)
(nt)
acession
match gene name
% sim
% ident
length (nt)


















20
6
4679
4269
gi|511839
ORF1 [Staphylococcus bacteriophage phi 11]
100
100
411


149
3
1577
1122
pir|B49703|B497
int gene activator RinA - bacteriophage phi 11
100
100
456


149
5
1912
1715
gi|166161
Bacteriophage phi-11 int gene activator [Staphylococcus acteriophage phi
100
100
198







11]


349
2
409
260
gi|166159
integrase (int) [Staphylococcus bacteriophage phi 11]
100
100
150


398
1
707
42
gi|166159
integrase (int) [Staphylococcus bacteriophage phi 11]
100
99
666


398
2
783
1001
gi|455128
excisionase (xis) [Staphylococcus bacteriophage phi 11]
100
100
219


502
4
1744
1574
gi|1204912


H. influenzae
predicted coding region HI0660 [Haemophilus influenzae]

100
71
171


849
1
2
262
gi|1373002
polyprotein [Bean common mosaic virus]
100
46
261


1349
1
140
3
gi|143359
protein synthesis initiation factor 2 (infB) [Bacillus subtilis] gi|49319
100
82
138







IF2 gene product [Bacillus subtilis]


2880
1
21
308
gi|862933
protein kinase C inhibitor-I [Homo sapiens]
100
98
288


3085
1
216
4
gi|1354211
PET112-like protein [Bacillus subtilis]
100
100
213


4168
2
398
225
gi|1354211
PET112-like protein [Bacillus subtilis]
100
100
174


331
1
2
247
gi|426473
nusG gene product [Staphylococcus carnosus]
98
95
246


207
2
1272
1463
gi|460259
enolase [Bacillus subtilis]
97
90
192


331
2
395
850
gi|581638
L11 protein [Staphylococcus carnosus]
97
93
456


366
1
39
215
gi|166161
Bacteriophage phi-11 int gene activator [Staphylococcus acteriophage phi
97
95
177







11]


680
3
718
936
gi|426473
nusG gene product [Staphylococcus carnosus]
97
97
219


3578
1
144
4
gi|1339950
large subunit of NADH-dependent glutamate synthase [Plectonema boryanum]
97
79
141


157
1
321
518
gi|1022726
unknown [Staphylococcus haemolyticus]
96
88
198


205
33
16147
15824
gi|1165302
S10 [Bacillus subtilis]
96
91
324


3919
1
48
401
gi|871784
Clp-like ATP-dependent protease binding subunit [Bos taurus]
96
81
354


4133
1
417
4
gi|1022726
unknown [Staphylococcus haemolyticus]
96
84
414


4168
1
355
2
gi|1354211
PET112-like protein [Bacillus subtilis]
96
95
354


4207
1
157
2
gi|602031
similar to trimethylamine DH [Mycoplasma capricolum]pir|S49950|S49950
96
86
156







probable trimethylamine dehydrogenase (EC .5.99.7) - Mycoplasma capricolum







(SGC3) (fragment)


4227
2
152
331
gi|871784
Clp-like ATP-dependent protease binding subunit [Bos taurus]
96
81
180


4416
1
286
2
gi|1022726
unknown [Staphylococcus haemolyticus]
96
84
285


22
1
430
2
gi|511070
UreG [Staphylococcus xylosus]
95
88
429


22
7
4036
3710
gi|581787
urease gamma subunit [Staphylococcus xylosus]
95
79
327


82
6
8794
9114
pir|JG0008|JG00
ribosomal protein S7 - Bacillus stearothermophilus
95
83
321


154
9
7838
6396
gi|1354211
PET112-like protein [Bacillus subtilis]
95
92
1443


186
3
2055
1312
gi|1514656
serine 0-acetyltransferase [Staphylococcus xylosus]
95
87
744


205
5
4014
3622
gi|142462
ribosomal protein S11 [Bacillus subtilis]
95
85
393


205
7
4793
4569
gi|142459
initiation factor 1 [Bacillus subtilis]
95
84
225


205
21
10991
10617
gi|1044974
ribosomal protein L14 [Bacillus subtilis]
95
93
375


259
5
6644
6000
sp|P47995|YSEA
HYPOTHETICAL PROTEIN IN SECA 5′REGION (ORF1) (FRAGMENT).
95
85
645


302
3
795
1097
gi|40186
homologous to E. coli ribosomal protein L27 [Bacillus subtilis] i|143592 L27
95
89
303







ribosomal protein [Bacillus subtilis] ir|C21895|C21895 ribosomal protein







L27 - Bacillus subtilis p|P05657|RL27_BACSU 50S RIBOSOMAL PROTEIN L27







(BL30) (BL24). i|40175 L24 gene prod


310
1
579
1523
gi|1177684
chorismate mutase [Staphylococcus xylosus]
95
92
945


414
1
2
163
pir|C48396|C483
ribosomal protein L34 - Bacillus stearothermophilus
95
90
162


4185
2
125
277
gi|1276841
glutamate synthase (GOGAT) [Porphyra purpurea]
95
86
153


22
2
723
418
gi|511069
UreF [Staphylococcus xylosus]
94
91
306


22
5
3310
1574
gi|410516
urease alpha subunit [Staphylococcus xylosus]
94
85
1737


60
4
815
1372
gi|666116
glucose kinase [Staphylococcus xylosus]
94
87
558


205
18
9536
9060
gi|1044978
ribosomal protein S8 [Bacillus subtilis]
94
78
477


326
4
2542
1706
gi|557492
dihydroxynapthoic acid (DHNA) synthetase [Bacillus subtilis] gi|143186
94
85
837







dihydroxynapthoic acid (DHNA) synthetase [Bacillus subtilis]


414
3
737
955
gi|467386
thiophen and furan oxidation [Bacillus subtilis]
94
77
219


426
3
1823
1386
gi|1263908
putative [Staphylococcus epidermidis]
94
87
438


534
1
2
355
gi|633650
enzyme II(mannitol) [Staphylococcus carnosus]
94
84
354


1017
1
2
229
gi|149435
putative [Lactococcus lactis]
94
73
228


3098
1
184
38
gi|413952
ipa-28d gene product [Bacillus subtilis]
94
50
147


3232
1
316
2
gi|1022725
unknown [Staphylococcus haemolyticus]
94
84
315


42
5
2089
2259
pir|B48396|B483
ribosomal protein L33 - Bacillus stearothermophilus
93
81
171


101
2
1383
1021
gi|155345
arsenic efflux pump protein [Plasmid pSX267]
93
82
363


205
24
11865
11503
sp|P14577|RL16
50S RIBOSOMAL PROTEIN L16.
93
83
363


259
4
5673
3055
gi|499335
secA protein [Staphylococcus carnosus]
93
85
2619


275
1
1114
2
gi|633650
enzyme II(mannitol) [Staphylococcus carnosus]
93
86
1113


444
6
5773
5339
gi|1022726
unknown [Staphylococcus haemolyticus]
93
81
435


491
1
152
622
gi|46912
ribosomal protein L13 [Staphylococcus carnosus]
93
88
471


607
6
1674
2033
gi|1022726
unknown [Staphylococcus haemolyticus]
93
83
360


653
1
488
3
gi|580890
translation initiation factor IF3 (AA 1-172) [Bacillus tearothermophilus]
93
77
486


1864
1
3
194
gi|306553
ribosmal protein small subunit [Homo sapiens]
93
93
192


2997
1
28
300
gi|143390
carbamyl phosphate synthetase [Bacillus subtilis]
93
82
273


3232
2
596
285
gi|1022725
unknown [Staphylococcus haemolyticus]
93
84
312


3761
2
621
448
gi|1022725
unknown [Staphylococcus haemolyticus]
93
88
174


16
1
3
374
gi|142781
putative cytoplasmic protein; putative [Bacillus subtilis]
92
83
372







sp|P37954|UVRB_BACSU EXCINUCLEASE ABC SUBUNIT B (DINA PROTEIN) FRAGMENT).


31
7
5915
6124
gi|1136430
KIAA0185 protein [Homo sapiens]
92
46
210


56
19
26483
27391
gi|467401
unknown [Bacillus subtilis]
92
80
909


69
6
5882
6130
gi|530200
trophoblastin [Ovis aries]
92
53
249


145
3
2038
1508
gi|1022725
unknown [Staphylococcus haemolyticus]
92
80
531


171
3
2362
1964
gi|517475
D-amino acid transaminase [Staphylococcus haemolyticus]
92
86
399


205
12
6962
6429
gi|49189
secY gene product [Staphylococcus carnosus]
92
85
534


205
19
10255
9698
gi|1044976
ribosomal protein L5 [Bacillus subtilis]
92
82
558


219
1
357
4
gi|1303812
YqeV [Bacillus subtilis]
92
88
354


344
3
1575
1805
gi|1405474
CspC protein [Bacillus cereus]
92
85
231


699
1
20
361
gi|413999
ipa-75d gene product [Bacillus subtilis]
92
81
342


1343
1
2
160
pir|A45434|A454
ribosomal protein L19 - Bacillus stearothermophilus
92
84
159


1958
1
264
4
gi|407908
EIIscr [Staphylococcus xylosus]
92
80
261


3578
2
386
54
gi|1339950
large subunit of NADH-dependent glutamate synthase [Plectonema boryanum]
92
78
333


3585
1
324
4
gi|1339950
large subunit of NADH-dependent glutamate synthase [Plectonema boryanum]
92
81
321


3640
1
4
402
gi|1022726
unknown [Staphylococcus haemolyticus]
92
81
399


4362
1
14
178
gi|450688
hsdM gene of EcoprrI gene product [Escherichia coli] pir|S38437|S38437 hsdM
92
78
165







protein - Escherichia coli pir|S09629|S09629 hypothetical protein A -









Escherichia coli
(SUB 40-520)



4446
1
182
6
gi|1022725
unknown [Staphylococcus haemolyticus]
92
82
177


4549
1
232
2
gi|1022726
unknown [Staphylococcus haemolyticus]
92
80
231


4626
1
3
224
gi|1022725
unknown [Staphylococcus haemolyticus]
92
84
222


2
4
3980
4531
gi|535349
Codw [Bacillus subtilis]
91
74
552


28
1
2
1126
gi|1001376
hypothetical protein [Synechocystis sp.]
91
78
1125


60
5
1354
1701
gi|1226043
orf2 downstream of glucose kinase [Staphylococcus xylosus]
91
80
348


101
1
1036
83
gi|150728
arsenic efflux pump protein [Plasmid pI258]
91
80
954


187
2
412
1194
gi|142559
ATP synthase alpha subunit [Bacillus megaterium]
91
79
783


205
22
11298
11017
gi|40149
S17 protein (AA 1-87) [Bacillus subtilis]
91
83
282


206
7
8184
10262
gi|1072418
glcA gene product [Staphylococcus carnosus]
91
83
2079


306
2
2326
767
gi|143012
GMP synthetase [Bacillus subtilis]
91
78
1560


306
3
3826
2333
gi|467399
IMP dehydrogenase [Bacillus subtilis]
91
79
1494


310
3
2194
3207
gi|1177685
ccpA gene product [Staphylococcus xylosus]
91
81
1014


343
4
2974
3150
gi|949974
sucrose repressor [Staphylococcus xylosus]
91
82
177


480
3
1606
3042
gi|433991
ATP synthase subunit beta [Bacillus subtilis]
91
85
1437


536
3
1280
534
gi|143366
adenylosuccinate lyase (PUR-B) [Bacillus subtilis] pir|C29326|WZBSDS
91
79
747







adenylosuccinate lyase (EC 4.3.2.2) - Bacillus subtilis


552
1
615
166
gi|297874
fructose-bisphosphate aldolase [Staphylococcus carnosus] pir|A49943|A49943
91
79
450







fructose-bisphosphate aldolase (EC 4.1.2.13) - Staphylococcus carnosus







(strain TM300)


637
1
1
1536
gi|143597
CTP synthetase [Bacillus subtilis]
91
79
1536


859
1
21
359
gi|385178
unknown [Bacillus subtilis]
91
66
339


1327
1
339
530
gi|496558
orfX [Bacillus subtilis]
91
71
192


2515
1
275
84
gi|511070
UreG [Staphylococcus xylosus]
91
85
192


2594
1
2
202
gi|146824
beta-cystathionase [Escherichia coli]
91
75
201


3764
1
425
3
gi|1022725
unknown [Staphylococcus haemolyticus]
91
78
423


4011
1
127
495
gi|1022726
unknown [Staphylococcus haemolyticus]
91
79
369


4227
1
1
177
gi|296464
ATPase [Lactococcus lactis]
91
66
177


42
3
815
1033
gi|520401
catalase [Haemophilus influenzae]
90
86
219


51
8
3717
4607
gi|580899
OppF gene product [Bacillus subtilis]
90
74
891


129
3
4001
2685
gi|1146206
glutamate dehydrogenase [Bacillus subtilis]
90
76
1317


164
17
16628
16933
sp|P05766|RS15
30S RIBOSOMAL PROTEIN S15 (BS18)
90
74
306


171
5
2819
2655
gi|517475
D-amino acid transaminase [Staphylococcus haemolyticus]
90
78
165


205
4
3550
2603
gi|142463
RNA polymerase alpha-core-subunit [Bacillus subtilis]
90
76
948


205
6
4410
4072
gi|1044989
ribosomal protein S13 [Bacillus subtilis]
90
73
339


205
10
6404
5643
gi|49189
secY gene product [Staphylococcus carnosus]
90
81
762


205
11
6472
6299
gi|49189
secY gene product [Staphylococcus carnosus]
90
78
174


205
27
13345
12998
gi|786157
Ribosomal Protein S19 [Bacillus subtilis]
90
79
348


205
31
15496
15134
gi|1165303
L3 [Bacillus subtilis]
90
79
363


260
5
5773
4523
gi|1161380
IcaA [Staphylococcus epidermidis]
90
78
1251


299
6
3378
3947
gi|467440
‘phosphoribosylpyrophosphate synthetase [Bacillus subtilis] gi|40218 PRPP
90
78
570







synthetase (AA 1-317) [Bacillus subtilis]


320
2
1025
1717
gi|312443
carbamoyl-phosphate synthase (glutamine-hydrolysing) [Bacillus aldolyticus]
90
75
693


330
4
1581
1769
gi|986963
beta-tubulin [Sporidiobolus pararoseus]
90
80
189


369
1
523
92
pir|S34762|S347
L-serine dehydratase beta chain - Clostridium sp.
90
77
432


557
1
3
188
gi|1511589


M. jannaschii
predicted coding region MJ1624 [Methanococcus jannaschii]

90
54
186


663
2
667
1200
gi|143786
tryptophanyl-tRNA synthetase (EC 6.1.1.2) [Bacillus subtilis]
90
73
534







pir|JT0481|YWBS tryptophan-tRNA ligase (EC 6.1.1.2) - Bacillus subtilis


717
1
1
261
gi|143065
hubst [Bacillus stearothermophilus]
90
79
261


745
4
865
671
gi|1205433


H. influenzae
predicted coding region HI1190 [Haemophilus influenzae]

90
81
195


1007
1
386
565
gi|143366
adenylosuccinate lyase (PUR-B) [Bacillus subtilis] pir|C29326|WZBSDS
90
77
180







adenylosuccinate lyase EC 4.3.2.2) - Bacillus subtilis


1054
1
331
83
gi|1033122
ORF_f729 [Escherichia coli]
90
50
249


1156
1
117
707
gi|1477776
ClpP [Bacillus subtilis]
90
80
591


1180
1
205
2
gi|1377831
unknown [Bacillus subtilis]
90
74
204


1253
1
1
462
gi|40046
phosphoglucose isomerase A (AA 1-449) [Bacillus stearothermophilus]
90
75
462







ir|S15936|NUBSSA glucose-6-phosphate isomerase (EC 5.3.1.9) A - Bacillus









stearothermophilus




2951
1
3
269
gi|144816
formyltetrahydrofolate synthetase (FTHFS) (ttg start codon) (EC .3.4.3)
90
76
267







[Moorella thermoacetica]


3140
1
166
5
gi|1070014
protein-dependent [Bacillus subtilis]
90
52
162


4594
1
3
233
gi|871784
Clp-like ATP-dependent protease binding subunit [Bos taurus]
90
76
231


87
1
1028
1750
gi|467327
unknown [Bacillus subtilis]
89
75
723


112
1
2
505
gi|153741
ATP-binding protein [Streptococcus mutans]
89
77
504


118
1
120
398
gi|1303804
YqeQ [Bacillus subtilis]
89
75
279


128
4
3545
3757
gi|460257
triose phosphate isomerase [Bacillus subtilis]
89
84
213


164
12
11667
12755
gi|39954
IF2 (aa 1-741) [Bacillus stearothermophilus]
89
80
1089


205
13
7405
6935
gi|216338
ORF for L15 ribosomal protein [Bacillus subtilis]
89
76
471


205
32
15823
15494
gi|1165303
L3 [Bacillus subtilis]
89
80
330


270
3
2207
2007
pir|C41902|C419
arsenate reductase (EC 1,—,—,—) - Staphylococcus xylosus plasmid pSX267
89
81
201


395
2
157
672
gi|520574
glutamate racemase [Staphylococcus haemolyticus]
89
80
516


494
1
3
839
gi|396259
protease [Staphylococcus epidermidis]
89
77
837


510
1
1
444
gi|40046
phosphoglucose isomerase A (AA 1-449) [Bacillus stearothermophilus]
89
74
444







ir|S15936|NUBSSA glucose-6-phosphate isomerase (EC 5.3.1.9) A - Bacillus









stearothermophilus




615
1
1210
296
gi|1303812
YqeV [Bacillus subtilis]
89
74
915


841
1
18
341
gi|1165303
L3 [Bacillus subtilis]
89
80
324


1111
1
352
813
gi|47146
thermonuclease [Staphylococcus intermedius]
89
70
462


1875
1
2
256
gi|1205108
ATP-dependent protease binding subunit [Haemophilus influenzae]
89
82
255


2963
1
11
367
gi|467458
cell division protein [Bacillus subtilis]
89
83
357


3020
1
90
362
gi|1239988
hypothetical protein [Bacillus subtilis]
89
66
273


3565
1
2
400
gi|1256635
dihydroxy-acid dehydratase [Bacillus subtilis]
89
75
399


3586
1
105
314
gi|580832
ATP synthase subunit gamma [Bacillus subtilis]
89
82
210


3629
1
399
4
gi|1009366
Respiratory nitrate reductase [Bacillus subtilis]
89
78
396


3688
1
2
400
gi|1146206
glutamate dehydrogenase [Bacillus subtilis]
89
75
399


3699
1
399
4
gi|1339950
large subunit of NADH-dependent glutamate synthase [Plectonema boryanum]
89
75
396


4016
1
216
4
gi|1009366
Respiratory nitrate reductase [Bacillus subtilis]
89
71
213


4177
1
301
131
gi|149426
putative [Lactococcus lactis]
89
76
171


4436
1
302
3
gi|1022725
unknown [Staphylococcus haemolyticus]
89
80
300


4635
1
162
4
gi|1022725
unknown [Staphylococcus haemolyticus]
89
73
159


2
2
1330
2676
gi|520754
putative [Bacillus subtilis]
88
76
1347


42
2
468
848
sp|P42321|CATA
CATALASE (EC 1.11.1.6).
88
76
381


53
5
4722
3055
gi|474177
alpha-D-1,4-glucosidase [Staphylococcus xylosus]
88
80
1668


56
16
18018
18617
gi|467411
recombination protein [Bacillus subtilis]
88
77
600


60
3
376
843
gi|666116
glucose kinase [Staphylococcus xylosus]
88
77
468


70
2
1245
907
gi|44095
replication initiator protein [Listeria monocytogenes]
88
74
339


82
8
11514
12719
pir|A60663|A606
translation elongation factor Tu - Bacillus subtilis
88
79
1206


103
7
4179
4391
gi|167181
serine/threonine kinase receptor [Brassica napus]
88
77
213


114
8
7732
8232
gi|1022726
unknown [Staphylococcus haemolyticus]
88
72
501


118
2
308
2011
gi|1303804
YqeQ [Bacillus subtilis]
88
77
1704


141
3
657
1136
gi|1405446
transketolase [Bacillus subtilis]
88
72
480


148
7
5871
6116
gi|1118002
dihydropteroate synthase [Staphylococcus haemolyticus]
88
78
246


165
3
1428
2231
gi|40053
phenylalanyl-tRNA synthetase alpha subunit [Bacillus subtilis]
88
80
804







ir|S11730|YFBSA phenylalanine-tRNA ligase (EC 6.1.1.20) alpha ain -









Bacillus subtilis




205
28
14185
13343
gi|1165306
L2 [Bacillus subtilis]
88
82
843


225
1
898
227
gi|1303840
YqfS [Bacillus subtilis]
88
78
672


235
1
2
1975
gi|452309
valyl-tRNA synthetase [Bacillus subtilis]
88
76
1974


339
3
1566
1072
gi|1118002
dihydropteroate synthase [Staphylococcus haemolyticus]
88
73
495


443
4
2928
1531
gi|558559
pyrimidine nucleoside phosphorylase [Bacillus subtilis]
88
73
1398


532
1
3
419
gi|143797
valyl-tRNA synthetase [Bacillus stearothermophilus]sp|P11931|SYV_BACST
88
78
417







VALYL-TRNA SYNTHETASE (EC 6.1.1.9) VALINE-TRNA LIGASE) (VALRS).


534
3
2504
2968
gi|153049
mannitol-specific enzyme-III [Staphylococcus carnosus]pir|JQ0088|JQ0088
88
82
465







phosphotransferase system enzyme II (EC .7.1.69), mannitol-specific,







factor III - Staphylococcus carnosus sp|P17876|PTMA_STACA PTS SYSTEM,







MANNITOL-SPECIFIC IIA COMPONENT EIIA-MTL) (


705
2
399
214
gi|710018
nitrite reductase (nirB) [Bacillus subtilis]
88
70
186


1000
2
1309
794
gi|1022726
unknown [Staphylococcus haemolyticus]
88
78
516


1299
1
324
61
gi|401786
phosphomannomutase [Mycoplasma pirum]
88
55
264


1341
2
170
400
gi|39963
ribosomal protein L20 (AA 1-119) [Bacillus stearothermophilus]
88
82
231







ir|S05348|R5BS20 ribosomal protein L20 - Bacillus stearothermophilus


1386
1
41
214
pir|B47154|B471
signal recognition particle 54 K chain homolog Ffh - Bacillus subtilis
88
71
174


1386
2
183
533
pir|B47154|B471
signal recognition particle 54 K chain homolog Ffh - Bacillus subtilis
88
73
351


2949
1
399
94
gi|535350
CodX [Bacillus subtilis]
88
73
306


2984
1
5
169
gi|218277
O-acetylserine(thiol) lyase [Spinacia oleracea]
88
70
165


3035
1
1
138
gi|493083
dihydroxyacetone kinase [Citrobacter freundii]
88
67
138


3089
1
3
152
gi|606055
ORF_f746 [Escherichia coli]
88
88
150


3917
1
410
3
gi|143378
pyruvate decarboxylase (E-1) beta subunit [Bacillus subtilis]gi|1377836
88
77
408







pyruvate decarboxylase E-1 beta subunit [Bacillus subtilis]


4199
1
342
4
gi|1405454
aconitase [Bacillus subtilis]
88
82
339


4201
1
369
4
gi|515938
glutamate synthase (ferredoxin) [Synechocystis sp.]pir|S46957|S46957
88
84
366







glutamate synthase (ferredoxin) (EC 1.4.7.1) - ynechocystis sp.


4274
1
1
336
gi|515938
glutamate synthase (ferredoxin) [Synechocystis sp.]pir|S46957|S46957
88
84
336







glutamate synthase (ferredoxin) (EC 1.4.7.1) - ynechocystis sp.


4308
1
399
4
gi|1146206
glutamate dehydrogenase [Bacillus subtilis]
88
71
396


2
5
4570
6000
gi|535350
CodX [Bacillus subtilis]
87
70
1431


52
8
6482
6183
gi|1064791
function umknown [Bacillus subtilis]
87
66
300


73
3
1584
2480
gi|142992
glycerol kinase (glpK) (EC 2.7.1.30) [Bacillus subtilis] pir|B45868|B45868
87
72
897







glycerol kinase (EC 2.7.1.30) - Bacillus subtilis sp|P18157|GLPK_BACSU







GLYCEROL KINASE (EC 2.7.1.30) (ATP: GLYCEROL-PHOSPHOTRANSFERASE)







(GLYCEROKINASE) (GK).


98
12
8813
9100
gi|467433
unknown [Bacillus subtilis]
87
62
288


124
4
2988
1711
gi|556886
serine hydroxymethyltransferase [Bacillus subtilis] pir|S49363|S49363
87
77
1278







serine hydroxymethyltransferase - Bacillus subtilis


124
6
4032
3607
gi|556883
Unknown [Bacillus subtilis]
87
66
426


148
5
3741
4559
gi|467460
unknown [Bacillus subtilis]
87
70
819


164
13
12710
13810
gi|39954
IF2 (aa 1-741) [Bacillus stearothermophilus]
87
72
1101


177
2
1104
2126
gi|467385
unknown [Bacillus subtilis]
87
78
1023


199
1
1158
334
gi|143527
iron-sulfur protein [Bacillus subtilis]
87
77
825


199
2
2933
1149
pir|A27763|A277
succinate dehydrogenase (EC 1.3.99.1) flavoprotein - Bacillus subtilis
87
80
1785


205
23
11543
11304
gi|1044972
ribosomal protein L29 [Bacillus subtilis]
87
78
240


205
25
12607
11939
gi|1165309
S3 [Bacillus subtilis]
87
75
669


222
1
1107
181
gi|1177249
rec233 gene product [Bacillus subtilis]
87
70
927


236
3
1333
1031
gi|1146198
ferredoxin [Bacillus subtilis]
87
80
303


246
5
2292
1999
gi|467373
ribosomal protein S18 [Bacillus subtilis]
87
77
294


260
2
3422
2655
gi|1161382
IcaC [Staphylococcus epidermidis]
87
72
768


320
3
1696
2391
gi|312443
carbamoyl-phosphate synthase (glutamine-hydrolysing) [Bacillus aldolyticus]
87
80
696


380
4
1165
1383
gi|142570
ATP synthase c subunit [Bacillus firmus]
87
80
219


414
4
900
1073
gi|467386
thiophen and furan oxidation [Bacillus subtilis]
87
77
174


425
2
794
585
gi|1046166
pilin repressor [Mycoplasma genitalium]
87
69
210


448
1
722
189
gi|405134
acetate kinase [Bacillus subtilis]
87
75
534


480
1
1
711
gi|142559
ATP synthase alpha subunit [Bacillus megaterium]
87
79
711


481
1
2
352
sp|Q06797|RL1_B
50S RIBOSOMAL PROTEIN L1 (BL1).
87
72
351


677
2
359
955
gi|460911
fructose-bisphosphate aldolase [Bacillus subtilis]
87
78
597


677
3
934
1284
gi|460911
fructose-bisphosphate aldolase [Bacillus subtilis]
87
78
351


876
1
3
452
gi|1146247
asparaginyl-tRNA synthetase [Bacillus subtilis]
87
79
450


1376
1
214
2
gi|1065555
F46H6.4 gene product [Caenorhabditis elegans]
87
75
213


2206
1
3
374
gi|215098
excisionase [Bacteriophage 154a]
87
72
372


2938
1
3
290
gi|508979
GTP-binding protein [Bacillus subtilis]
87
69
288


3081
2
126
308
gi|467399
IMP dehydrogenase [Bacillus subtilis]
87
72
183


3535
1
3
401
gi|1405454
aconitase [Bacillus subtilis]
87
80
399


4238
1
275
3
gi|603769
HutU protein, urocanase [Bacillus subtilis]
87
73
273


4
8
8736
7045
gi|603769
HutU protein, urocanase [Bacillus subtilis]
86
72
1692


22
6
3738
3286
gi|410515
urease beta subunit [Staphylococcus xylosus]
86
73
453


54
2
1572
664
gi|289287
UDP-glucose pyrophosphorylase [Bacillus subtilis]
86
70
909


124
3
1713
1090
gi|556887
uracil phosphoribosyltransferase [Bacillus subtilis] pir|S49364|S49364
86
74
624







uracil phosphoribosyltransferase - Bacillus subtilis


148
3
1349
3448
gi|467458
cell division protein [Bacillus subtilis]
86
75
2100


148
4
3638
3859
gi|467460
unknown [Bacillus subtilis]
86
73
222


152
3
1340
2086
gi|1377835
pyruvate decarboxylase E-1 alpha subunit [Bacillus subtilis]
86
75
747


164
18
17347
19467
gi|1184680
polynucleotide phosphorylase [Bacillus subtilis]
86
72
2121


180
2
554
1159
gi|143467
ribosomal protein S4 [Bacillus subtilis]
86
80
606


205
3
2592
2218
gi|142464
ribosomal protein L17 [Bacillus subtilis]
86
77
375


205
26
12990
12616
gi|40107
ribosomal protein L22 [Bacillus stearothermophilus] ir|S10612|S10612
86
75
375







ribosomal protein L22 - Bacillus stearothermophilus


246
7
3140
2817
gi|467375
ribosomal protein S6 [Bacillus subtilis]
86
70
324


299
3
1196
1540
gi|39656
spoVG gene product [Bacillus megaterium]
86
70
345


299
7
3884
4345
gi|467440
‘phosphoribosylpyrophosphate synthetase [Bacillus subtilis] gi|40218 PRPP
86
78
462







synthetase (AA 1-317) [Bacillus subtilis]


304
5
2170
2523
gi|666983
putative ATP binding subunit [Bacillus subtilis]
86
65
354


310
2
1487
1678
gi|1177684
chorismate mutase [Staphylococcus xylosus]
86
71
192


337
5
2086
3405
gi|487434
isocitrate dehydrogenase [Bacillus subtilis]
86
78
1320


339
2
1109
729
gi|1118003
dihydroneopterin aldolase [Staphylococcus haemolyticus]
86
77
381


358
2
2124
3440
gi|1146219
28.2% of identity to the Escherichia coli GTP-binding protein Era; putative
86
73
1317







[Bacillus subtilis]


404
2
1015
2058
gi|1303817
YqfA [Bacillus subtilis]
86
78
1044


581
2
452
243
gi|40056
phoP gene product [Bacillus subtilis]
86
71
210


642
2
338
1075
gi|1176399
EpiF [Staphylococcus epidermidis]
86
72
738


770
1
347
72
gi|143328
phoP protein (put.); putative [Bacillus subtilis]
86
69
276


865
1
890
3
gi|1146247
asparaginyl-tRNA synthetase [Bacillus subtilis]
86
74
888


868
2
963
1133
gi|1002911
transmembrane protein [Saccharomyces cerevisiae]
86
69
171


904
1
1
162
gi|1303912
YqhW [Bacillus subtilis]
86
72
162


989
1
35
433
gi|1303993
YqkL [Bacillus subtilis]
86
76
399


1212
1
150
4
gi|414014
ipa-90d gene product [Bacillus subtilis]
86
70
147


1323
1
2
148
gi|40041
pyruvate dehydrogenase (lipoamide) [Bacillus stearothermophilus]
86
75
147







ir|S10798|DEBSPF pyruvate dehydrogenase (lipoamide) (EC 1.2.4.1) pha chain -









Bacillus stearothermophilus




3085
2
310
80
gi|1354211
PET112-like protein [Bacillus subtilis]
86
86
231


3847
1
1
228
gi|296464
ATPase [Lactococcus lactis]
86
63
228


4487
1
240
4
gi|1022726
unknown [Staphylococcus haemolyticus]
86
73
237


4583
1
187
2
gi|1022725
unknown [Staphylococcus haemolyticus]
86
79
186


25
5
4287
5039
gi|1502421
3-ketoacyl-acyl carrier protein reductase [Bacillus subtilis]
85
64
753


56
21
29395
28163
gi|1408507
pyrimidine nucleoside transport protein [Bacillus subtilis]
85
69
1233


68
2
332
1192
gi|467376
unknown [Bacillus subtilis]
85
74
861


73
2
880
1707
gi|142992
glycerol kinase (glpK) (EC 2.7.1.30) [Bacillus subtilis] pir|B45868|B45868
85
72
828







glycerol kinase (EC 2.7.1.30) - Bacillus subtilis sp|P18157|GLPK_BACSU







GLYCEROL KINASE (EC 2.7.1.30) (ATP: GLYCEROL-PHOSPHOTRANSFERASE)







(GLYCEROKINASE) (GK).


106
4
1505
3490
gi|143766
(thrSv) (EC 6.1.1.3) [Bacillus subtilis]
85
74
1986


128
2
1153
2202
gi|311924
glycerladehyde-3-phosphate dehydrogenase [Clostridium pasteurianum]
85
75
1050







pir|S34254|S34254 glyceraldehyde-3-phosphate dehydrogenase (EC .2.1.12) -









Clostridium pasteurianum




129
4
5252
4038
gi|1064807
ORTHININE AMINOTRANSFERASE [Bacillus subtilis]
85
73
1215


138
6
3475
5673
gi|1072419
glcB gene product [Staphylococcus carnosus]
85
74
2199


189
1
2
169
gi|467385
unknown [Bacillus subtilis]
85
65
168


205
15
8106
7588
gi|1044981
ribosomal protein S5 [Bacillus subtilis]
85
75
519


205
20
10596
10264
pir|A02819|R5BS
ribosomal protein L24 - Bacillus stearothermophilus
85
72
333


220
6
6101
5712
gi|48980
secA gene product [Bacillus subtilis]
85
66
390


231
4
3159
1441
gi|1002520
MutS [Bacillus subtilis]
85
70
1719


243
9
8013
8783
gi|414011
ipa-87r gene product [Bacillus subtilis]
85
72
771


249
2
3186
478
gi|1405454
aconitase [Bacillus subtilis]
85
73
2709


302
1
140
475
gi|40173
homolog of E. coli ribosomal protein L21 [Bacillus subtilis]
85
72
336







ir|S18439|S18439 Ribosomal protein L21 - Bacillus subtilis







p|P26908|RL21_BACSU 50S RIBOSOMAL PROTEIN L21 [BL20].


333
1
2968
491
gi|442360
ClpC adenosine triphosphatase [Bacillus subtilis]
85
69
2478


364
6
6082
8196
gi|871784
Clp-like ATP-dependent protease binding subunit [Bos taurus]
85
68
2115


448
2
1339
686
gi|405134
acetate kinase [Bacillus subtilis]
85
68
654


747
1
853
455
gi|1373157
orf-X; hypothetical protein; Method: conceptual translation supplied by
85
73
399







author [Bacillus subtilis]


886
2
159
467
gi|541768
hemin permease [Yersinia enterocolitica]
85
55
309


1089
1
606
4
pir|B47154|B471
signal recognition particle 54K chain homolog Ffh - Bacillus subtilis
85
71
603


1163
1
409
2
gi|304155
diaminopimelate decarboxylase [Bacillus methanolicus] sp|P41023|DCDA_BACMT
85
62
408







DIAMINOPIMELATE DECARBOXYLASE (EC 4.1.1.20) DAP DECARBOXYLASE].


1924
1
251
15
gi|215098
excisionase [Bacteriophage 154a]
85
73
237


2932
1
390
4
gi|1041099
Pyruvate Kinase [Bacillus licheniformis]
85
71
387


3030
1
3
275
gi|42370
pyruvate formate-lyase [AA 1-760] [Escherichia coli] ir|S01788|S01788
85
74
273







formate C-acetyltransferase (EC 2.3.1.54) - Escherichia coli


3111
1
299
3
gi|63568
limb deformity protein [Gallus gallus]
85
85
297


3778
1
316
2
gi|391840
beta-subunit of HDT [Pseudomonas fragi]
85
67
315


3835
1
1
387
gi|1204472
type I restriction enzyme ECOR124/3 I M protein [Haemophilus influenzae]
85
56
387


4042
1
3
386
gi|18178
formare acetyltransferase [Chlamydomonas reinhardtii] ir|S24997|S24997
85
70
384







formate C-acetyltransferase (EC 2.3.1.54) - Chlamydomonas reinhardtii


4053
1
35
340
gi|1204472
type I restriction enzyme ECOR124/3 I M protein [Haemophilus influenzae]
85
56
306


4108
1
2
181
gi|1072418
glcA gene product [Staphylococcus carnosus]
85
61
180


4300
1
330
85
gi|151932
fructose enzyme II [Rhodobacter capsulatus]
85
59
246


4392
1
355
83
gi|1022725
unknown [Staphylococcus haemolyticus]
85
74
273


4408
1
2
235
gi|871784
Clp-like ATP-dependent protease binding subunit [Bos taurus]
85
62
234


4430
1
291
4
gi|1009366
Respiratory nitrate reductase [Bacillus subtilis]
85
68
288


4555
1
2
253
gi|450688
hsdM gene of EcoprrI gene product [Escherichia coli] pir|S38437|S38437 hsdM
85
52
252







protein - Escherichia coli pir|S09629|S09629 hypothetical protein A -









Escherichia coli
(SUB 40-520)



4611
1
242
3
gi|1256635
dihydroxy-acid dehydratase [Bacillus subtilis]
85
65
240


4
10
10061
10591
gi|46982
fosB gene product [Staphylococcus epidermidis]
84
68
531


13
2
1172
996
gi|142450
ahrC protein [Bacillus subtilis]
84
56
177


16
4
1803
4652
gi|1277198
DNA repair protein [Deinococcus radiodurans]
84
67
2850


22
3
1128
721
gi|511069
UreF [Staphylococcus xylosus]
84
73
408


23
7
5055
5306
gi|603320
Yer082p [Saccharomyces cerevisiae]
84
61
252


53
11
11145
10693
gi|1303948
YqiW [Bacillus subtilis]
84
68
453


53
12
12770
11481
gi|142613
branched chain alpha-keto acid dehydrogenase E2 [Bacillus subtilis]
84
71
1290







gi|1303944 BfmBB [Bacillus subtilis]


70
1
982
632
gi|46647
ORF (repE) [Staphylococcus aureus]
84
68
351


73
4
2512
4311
gi|142993
glycerol-3-phosphate dehydrogenase (glpD) (EC 1.1.99.5) [Bacillus subtilis]
84
74
1800


98
7
4324
6096
gi|467427
methionyl-tRNA synthetase [Bacillus subtilis]
84
66
1773


100
9
8680
7859
gi|1340128
ORF1 [Staphylococcus aureus]
84
78
822


117
3
1934
3208
gi|1237019
Srb [Bacillus subtilis]
84
68
1275


148
6
4720
5670
gi|467462
cysteine synthetase A [Bacillus subtilis]
84
69
951


152
4
2064
2456
gi|143377
pyruvate decarboxylase (E-1) alpha subunit [Bacillus subtilis]
84
70
393







pir|B36718|DEBSPA pyruvate dehydrogenase (lipoamide) (EC 1.2.4.1) lpha







chain - Bacillus subtilis


169
7
3634
3861
gi|1001342
hypothetical protein [Synechocystis sp.]
84
66
228


171
4
2657
2322
gi|517475
D-amino acid transaminase [Staphylococcus haemolyticus]
84
71
336


186
6
6216
5491
gi|467475
unknown [Bacillus subtilis]
84
70
726


205
9
5692
5123
gi|216340
ORF for adenylate kinase [Bacillus subtilis]
84
71
570


224
2
915
1391
gi|288269
beta-fructofuranosidase [Staphylococcus xylosus]
84
70
477


251
1
92
388
gi|1303790
YqeI [Bacillus subtilis]
84
65
297


282
3
1526
2836
gi|143040
glutamate-1-semialdehyde 2,1-aminotransferase [Bacillus subtilis]
84
75
1311







pir|D42728|D42728 glutamate-1-semialdehyde 2,1-aminomutase (EC.4.3.8) -









Bacillus subtilis




307
5
2959
2780
gi|1070014
protein-dependent [Bacillus subtilis]
84
62
180


320
4
2343
4229
gi|143390
carbamyl phosphate synthetase [Bacillus subtilis]
84
70
1887


372
1
3
296
gi|1022725
unknown [Staphylococcus haemolyticus]
84
70
294


413
2
1341
481
gi|1256146
YbbQ [Bacillus subtilis]
84
65
861


439
1
3
392
gi|1046173
osmotically inducible protein [Mycoplasma genitalium]
84
53
390


461
3
1362
2270
gi|40211
threonine synthase (thrC) (AA 1-352) [Bacillus subtilis] ir|A25364|A25364
84
69
909







threonine synthase (EC 4.2.99.2) - Bacillus subtilis


487
1
3
299
gi|1144531
integrin-like protein alpha Intlp [Candida albicans]
84
46
297


491
2
624
905
pir|S08564|R3BS
ribosomal protein S9 - Bacillus stearothermophilus
84
69
282


491
3
836
1033
pir|S08564|R3BS
ribosomal protein S9 - Bacillus stearothermophilus
84
77
198


548
1
3
341
gi|431231
uracil permease [Bacillus caldolyticus]
84
74
339


728
2
1748
795
gi|912445
DNA polymerase [Bacillus caldotenax]
84
68
954


769
1
3
257
gi|1510953
cobalamin biosynthesis protein N [Methanococcus jannaschii]
84
38
255


954
1
156
4
gi|1405454
aconitase [Bacillus subtilis]
84
57
153


957
1
3
395
gi|143402
recombination protein (ttg start codon) [Bacillus subtilis] gi|1303923 RecN
84
68
393







[Bacillus subtilis]


975
1
3
452
gi|885934
ClpB [Synechococcus sp.]
84
70
450


1585
1
3
257
gi|510140
ligoendopeptidase F [Lactococcus lactis]
84
56
255


2954
1
3
323
gi|603769
HutU protein, urocanase [Bacillus subtilis]
84
73
321


2996
1
348
46
gi|18178
formate acetyltransferase [Chlamydomonas reinhardtii] ir|S24997|S24997
84
65
303







formate C-acetyltransferase (EC 2.3.1.54) - Chlamydomonas reinhardtii


3766
1
375
13
gi|517205
67 kDa Myosin-crossreactive streptococcal antigen [Streptococcus yogenes]
84
72
363


4022
1
2
169
gi|1146206
glutamate dehydrogenase [Bacillus subtilis]
84
54
168


4058
1
312
4
gi|151932
fructose enzyme II [Rhodobacter capsulatus]
84
71
309


4108
2
106
351
gi|1072418
glcA gene product [Staphylococcus carnosus]
84
77
246


4183
1
3
308
gi|603769
HutU protein, urocanase [Bacillus subtilis]
84
72
306


4726
1
55
234
gi|146208
glutamate synthase large subunit (EC 2.6.1.53) [Escherichia coli]
84
73
180







pir|A29617|A29617 glutamate synthase (NADPH) (EC 1.4.1.13) large hain -









Escherichia coli




22
4
1576
1109
gi|393297
urease accessory protein [Bacillus sp.]
83
64
468


53
13
13745
12768
gi|142612
branched chain alpha-keto acid dehydrogenase E1-beta [Bacillus subtilis]
83
68
978


57
16
12872
12387
gi|143132
lactate dehydrogenase (AC 1.1.1.27) [Bacillus caldolyticus]
83
66
486







pir|B29704|B29704 L-lactate dehydrogenase (EC 1.1.1.27) - Bacillus









aldolyticus




66
3
2274
1429
gi|1303894
YqhM [Bacillus subtilis]
83
63
846


66
5
4643
3168
gi|1212730
YqhK [Bacillus subtilis]
83
68
1476


70
3
1523
1182
gi|44095
replication initiator protein [Listeria monocytogenes]
83
73
342


90
1
377
1429
gi|155571
alcohol dehydrogenase I (adhA) (EC 1.1.1.1) [Zymomonas mobilis]
83
70
1053







pir|A35260|A35260 alcohol dehydrogenase (EC 1.1.1.1) I - Zymomonas obilis


95
2
708
2162
gi|506381
phospho-beta-glucosidase [Bacillus subtilis]
83
70
1455


137
1
68
694
gi|467391
initiation protein of replicaton [Bacillus subtilis]
83
77
627


140
4
2742
2275
gi|634107
kdpB [Escherichia coli]
83
65
468


142
3
2989
2510
gi|1212776
lumazine synthase (b-subunit) [Bacillus amyloliquefaciens]
83
69
480


161
12
5749
6696
gi|903307
ORF75 [Bacillus subtilis]
83
64
948


164
9
9880
11070
gi|49316
ORF2 gene product [Bacillus subtilis]
83
66
1191


164
14
14148
14546
gi|580902
ORF6 gene product [Bacillus subtilis]
83
60
399


170
2
2467
1790
gi|520844
orf4 [Bacillus subtilis]
83
64
678


186
2
1370
711
gi|289284
cysteinyl-tRNA synthetase [Bacillus subtilis]
83
72
660


205
14
7607
7392
gi|216337
ORF for L30 ribosomal protein [Bacillus subtilis]
83
74
216


237
6
3683
4540
gi|1510488
imidazoleglycerol-phosphate synthase (cyclase) [Methanococcus jannaschii]
83
60
858


301
1
638
291
gi|467419
unknown [Bacillus subtilis]
83
65
348


302
4
1421
2743
gi|508979
GTP-binding protein [Bacillus subtilis]
83
68
1323


321
4
3571
3209
gi|39844
fumarase (citG) (aa 1-462) [Bacillus subtilis]
83
68
363


367
1
2
352
gi|1039479
ORFU [Lactococcus lactis]
83
54
351


387
1
3
662
gi|806281
DNA polymerase I [Bacillus stearothermophilus]
83
70
660


527
2
916
1566
gi|396259
protease [Staphylococcus epidermidis]
83
67
651


533
1
179
3
gi|142455
alanine dehydrogenase (EC 1.4.1.1) [Bacillus stearothermophilus]
83
66
177







pir|B34261|B34261 alanine dehydrogenase (EC 1.4.1.1) - Bacillus









stearothermophilus




536
4
1438
1259
gi|143366
adenylosuccinate lyase (PUR-B) [Bacillus subtilis] pir|C29326|WZBSDS
83
67
180







adenylosuccinate lyase (EC 4.3.2.2) - Bacillus subtilis


652
1
2
859
gi|520753
DNA topoisomerase I [Bacillus subtilis]
83
72
858


774
2
200
361
gi|1522665


M. jannaschii
predicted coding region MJECL28 [Methanococcus jannaschii]

83
58
162


897
1
120
296
gi|1064807
ORTHININE AMINOTRANSFERASE [Bacillus subtilis]
83
76
177


1213
1
3
491
gi|289288
lexA [Bacillus subtilis]
83
67
489


2529
1
150
4
gi|143786
tryptophanyl-tRNA synthetase (EC 6.1.1.2) [Bacillus subtilis]
83
69
147







pir|JT0481|YWBS tryptophan - tRNA ligase (EC 6.1.1.2) - Bacillus subtilis


2973
1
326
3
gi|1109687
ProZ [Bacillus subtilis]
83
58
324


3009
1
366
4
gi|882532
ORF_o294 [Escherichia coli]
83
65
363


3035
2
45
305
gi|950062
hypothetical yeast protein 1 [Mycoplasma capricolum] pir|S48578|S48578
83
59
261







hypothetical protein - Mycoplasma capricolum SGC3) (fragment)


3906
1
67
309
gi|1353197
thioredoxin reductase [Eubacterium acidaminophilum]
83
61
243


4458
1
271
2
gi|397526
clumping factor [Staphylococcus aureus]
83
78
270


4570
1
223
2
gi|1022726
unknown [Staphylococcus haemolyticus]
83
74
222


4654
1
97
261
gi|1072419
glcB gene product [Staphylococcus carnosus]
83
79
165


16
2
295
1191
gi|153854
uvs402 protein [Streptococcus pneumoniae]
82
67
897


16
3
1193
1798
gi|153854
uvs402 protein [Streptococcus pneumoniae]
82
70
606


38
12
8724
7804
gi|1204400
N-acetylneuraminate lyase [Haemophilus influenzae]
82
58
921


42
4
988
2019
gi|841192
catalase [Bacteroides fragilis]
82
70
1032


51
6
2590
3489
gi|143607
sporulation protein [Bacillus subtilis]
82
69
900


56
11
12270
13925
gi|39431
oligo-1,6-glucosidase [Bacillus cereus]
82
60
1656


56
15
17673
18014
gi|467410
unknown [Bacillus subtilis]
82
66
342


61
2
881
3313
gi|143148
transfer RNA-Leu synthetase [Bacillus subtilis]
82
70
2433


82
7
9162
11318
gi|48240
elongation factor G (AA 1-691) [Thermus aquaticus thermophilus]
82
64
2157







ir|S15928|EFTWG translation elongation factor G - Thermus aquaticus







p|P13551|EFG_THETH ELONGATION FACTOR G (EF-G).


85
2
3260
1050
gi|143369
phosphoribosylformyl glycinamidine synthetase II (PUR-Q) [Bacillus subtilis]
82
66
2211


102
6
3662
5380
gi|1256635
dihydroxy-acid dehydratase [Bacillus subtilis|
82
65
1719


117
4
3242
3493
pir|A47154|A471
orf1 5′ of Ffh - Bacillus subtilis
82
53
252


128
6
4377
5933
gi|460258
phosphoglycerate mutase [Bacillus subtilis]
82
66
1557


129
2
1229
2182
gi|403373
glycerophosphoryl diester phosphodiesterase [Bacillus subtilis]
82
62
954







pir|S37251|S37251 glycerophosphoryl diester phosphodiesterase -Bacillus









subtilis




170
1
2
1441
gi|1377831
unknown [Bacillus subtilis]
82
67
1440


177
1
3
1094
gi|467386
thiophen and furan oxidation [Bacillus subtilis]
82
65
1092


184
4
3572
4039
gi|153566
ORF (19 K protein) [Enterococcus faecalis]
82
59
468


189
8
4225
3995
gi|1001878
CspL protein [Listeria monocytogenes]
82
73
231


206
19
20707
20048
gi|473916
lipopeptide antibiotics iturin A [Bacillus subtilis]sp|P39144|LP14_BACSU
82
50
660







LIPOPEPTIDE ANTIBIOTICS ITURIN A AND SURFACTIN IOSYNTHESIS PROTEIN.


221
2
805
1722
gi|517205
67 kDa Myosin-crossreactive streptococcal antigen [Streptococcus yogenes]
82
63
918


223
4
3651
3436
gi|439619
[Salmonella typhimurium IS200 insertion sequence from SARA17, artial.],
82
69
216







gene product [Salmonella typhimurium]


260
3
4296
3385
gi|1161381
IcaB [Staphylococcus epidermidis]
82
61
912


315
3
2855
846
gi|143397
quinol oxidase [Bacillus subtilis]
82
67
2010


321
10
7945
7370
gi|142981
ORF5; This ORF includes a region (aa23-103) containing a potential ron-
82
62
576







sulphur centre homologous to a region of Rhodospirillum rubrum nd







Chromatium vinosum; putative [Bacillus stearothermophilus]







pir|PQ0299|PQ0299 hypothetical protein 5 (gldA 3′ region) -


331
3
1055
1342
gi|436574
ribosomal protein L1 [Bacillus subtilis]
82
71
288


370
2
262
618
gi|1303793
YqeL [Bacillus subtilis]
82
59
357


404
4
3053
4024
gi|1303821
YqfE [Bacillus subtilis]
82
68
972


405
4
3073
1706
gi|1303913
YqhX [Bacillus subtilis]
82
67
1368


436
3
2864
1632
gi|149521
tryptophan synthase beta subunit [Lactococcus lactis]pir|S35129|S35129
82
67
1233







tryptophan synthase (EC 4.2.1.20) beta chain - Lactococcus lactis subsp.







lactis


441
4
2573
1752
gi|142952
glyceraldehyde-3-phosphate dehydrogenase [Bacillus tearothermophilus]
82
67
822


444
12
10415
11227
gi|1204354
spore germination and vegetative growth protein [Haemophilus influenzae]
82
67
813


446
1
3
191
gi|143387
aspartate transcarbamylase [Bacillus subtilis]
82
66
189


462
3
1007
1210
gi|142521
deoxyribodipyrimidine photolyase [Bacillus subtilis] pir|A37192|A37192 uvrB
82
64
204







protein - Bacillus subtilis sp|P14951|UVRC_BACSU EXCINUCLEASE ABC SUBUNIT C.


537
1
784
8
gi|853767
UDP-N-acetylglucosamine 1-carboxyvinyltransferase [Bacillus subtilis]
82
61
777


680
2
407
700
gi|426472
secE gene product [Staphylococcus carnosus]
82
69
294


724
2
386
207
gi|143373
phosphoribosyl aminoimidazole carboxy formyl ormyltransferase/inosine
82
68
180







monophosphate cyclohydrolase (PUR-H(J)) Bacillus subtilis)


763
1
213
4
gi|467458
cell division protein [Bacillus subtilis]
82
35
210


818
1
283
2
gi|1064787
function unknown [Bacillus subtilis]
82
69
282


858
1
175
1176
gi|143043
uroporphyrinogen decarboxylase [Bacillus subtilis] pir|B47045|B47045
82
71
1002







uroporphyrinogen decarboxylase (EC 4.1.1.37) - Bacillus subtilis


895
1
3
599
gi|1027507
ATP binding protein [Borrelia burgdorferi]
82
72
597


939
1
10
399
gi|143795
transfer RNA-Tyr synthetase [Bacillus subtilis]
82
60
390


961
1
1
306
gi|577647
gamma-hemolysin [Staphylococcus aureus]
82
69
306


1192
1
155
3
gi|146974
NH3-dependent NAD synthetase [Escherichia coli]
82
71
153


1317
1
49
375
gi|407908
EIIscr [Staphylococcus xylosus]
82
72
327


1341
1
1
150
gi|39962
ribosomal protein L35 (AA 1-66) [Bacillus stearothermophilus]
82
68
150







ir|S05347|R5BS35 ribosomal protein L35 - Bacillus earothermophilus


2990
2
349
131
gi|534855
ATPase subunit epsilon [Bacillus stearothermophilus]sp|P42009|ATPE_BACST
82
47
219







ATP SYNTHASE EPSILON CHAIN (EC 3.6.1.34).


3024
1
45
224
gi|467402
unknown [Bacillus subtilis]
82
64
180


3045
1
139
2
gi|467335
ribosomal protein L9 [Bacillus subtilis]
82
60
138


3045
2
400
242
gi|467335
ribosomal protein L9 [Bacillus subtilis]
82
82
159


3091
1
238
2
gi|499335
secA protein [Staphylococcus carnosus]
82
78
237


3107
1
210
4
gi|546918
orfY 3′ of comK [Bacillus subtilis, E26, Peptide Partial, 140 aa]
82
64
207







pir|S43612|S43612 hypothetical protein Y - Bacillus subtilis







sp|P40398|YHXD_BACSU HYPOTHETICAL PROTEIN IN COMK 3′ REGION (ORFY)







FRAGMENT).


4332
1
2
319
gi|42086
nitrate reductase alpha subunit [Escherichia coli] p|P09152|NARG_ECOLI
82
75
318







RESPIRATORY NITRATE REDUCTASE 1 ALPHA CHAIN (EC 7.99.4). (SUB 2-1247)


23
3
2574
1873
gi|1199573
spsB [Sphingomonas sp.]
81
64
702


42
1
321
4
gi|466778
lysine specific permease [Escherichia coli]
81
59
318


48
5
4051
4350
gi|1045937
M. genitalium predicted coding region MG246 [Mycoplasma genitalium]
81
62
300


51
4
1578
2579
pir|S16649|S166
dciAC protein - Bacillus subtilis
81
55
1002


53
2
364
1494
gi|1303961
YqjJ [Bacillus subtilis]
81
67
1131


53
8
7971
6523
gi|146930
6-phosphogluconate dehydrogenase [Escherichia coli]
81
66
1449


54
9
10119
9481
gi|143016
permease [Bacillus subtilis]
81
65
639


54
10
11786
10212
gi|143015
gluconate kinase [Bacillus subtilis]
81
64
1575


57
17
13366
12749
pir|A25805|A258
L-lactate dehydrogenase (EC 1.1.1.27) - Bacillus subtilis
81
74
618


81
2
2217
1726
gi|1222302
NifU-related protein [Haemophilus influenzae]
81
54
492


86
1
374
3
gi|414017
ipa-93d gene product [Bacillus subtilis]
81
70
372


103
6
4861
3284
gi|971342
nitrate reductase beta subunit [Bacillus subtilis] sp|P42176|NARH_BACSU
81
64
1578







NITRATE REDUCTASE BETA CHAIN (EC 1.7.99.4).


120
15
10845
12338
gi|1524392
GbsA [Bacillus subtilis]
81
67
1494


128
5
3676
4413
gi|143319
triose phosphate isomerase [Bacillus megaterium]
81
64
738


131
9
9280
8252
gi|299163
alanine dehydrogenase [Bacillus subtilis]
81
68
1029


143
6
5471
4854
gi|439619
[Salmonella typhimurium IS200 insertion sequence from SARA17, artial.],
81
61
618







gene product [Salmonella typhimurium]


169
1
43
825
gi|897795
30S ribosomal protein [Pediococcus acidilactici] sp|P49668|RS2_PEDAC 30S
81
65
783







RIBOSOMAL PROTEN S2.


230
1
226
2
gi|1125826
short region of weak similarity to tyrosine-protein kinase receptors in a
81
54
225







fibronectin type III-like domain [Caenorhabditis elegans]


233
5
2000
2677
gi|467404
unknown [Bacillus subtilis]
81
63
678


241
2
2149
1217
gi|16510
succinate - CoA ligase (GDP-forming) [Arabidopsis thaliana] ir|S30579|S30579
81
69
933







succinate—CoA ligase (GDP-forming) (EC 6.2.1.4) pha chain - Arabidopsis









thaliana
(fragment)



256
1
1
981
pir|S09411|S094
spoIIIE protein - [Bacillus subtilis]
81
65
981


259
3
2691
1630
sp|P28367|RF2_B
PROBABLE PEPTIDE CHAIN RELEASE FACTOR 2 (RF-2) (FRAGMENT).
81
65
1062


275
2
1728
3581
gi|726480
L-glutamine-n-fructose-6-phosphate amidotransferase [Bacillus subtilis]
81
68
1854


285
1
735
4
gi|1204844


H. influenzae
predicted coding region HI0594 [Haemophilus influenzae]

81
63
732


296
1
99
1406
gi|467328
adenylosuccinate synthetase [Bacillus subtilis]
81
67
1308


302
9
5590
5889
gi|147485
queA [Escherichia coli]
81
64
300


317
2
1137
1376
gi|154961
resolvase [Transposon Tn917]
81
51
240


343
2
1034
1342
gi|405955
yeeD [Escherichia coli]
81
60
309


360
2
1404
2471
gi|1204570
aspartyl-tRNA synthetase [Haemophilus influenzae]
81
67
1068


364
5
5706
5161
gi|1204652
methylated-DNA-protein-cysteine methyltransferase [Haemophilus influenzae]
81
63
546


372
2
1135
563
gi|467416
unknown [Bacillus subtilis]
81
65
573


392
1
43
603
pir|S09411|S094
spoIIIE protein - Bacillus subtilis
81
65
561


404
9
5252
6154
gi|606745
Bex [Bacillus subtilis]
81
65
903


426
2
1119
511
gi|39453
Manganese superoxide dismutase [Bacillus caldotenax] ir|S22053|S22053
81
66
609







superoxide dismutase (EC 1.15.1.1) (Mn) - Bacillus ldotenax


480
7
5653
5889
pir|C37083|C370
hypothetical protein II (ompH 3′ region) - Salmonella typhimurium
81
57
237







[fragment]


625
3
1105
2070
gi|1262360
protein kinase PknB [Mycobacterium leprae]
81
56
966


754
2
504
1064
gi|1303902
YqhU [Bacillus subtilis]
81
71
561


842
1
86
430
gi|1405446
transketolase [Bacillus subtilis]
81
68
345


953
1
400
2
gi|1205429
dipeptide transport ATP-binding protein [Haemophilus influenzae]
81
57
399


961
2
252
401
gi|487686
synergohymenotropic toxin [Staphylococcus intermedius] pir|S44944|S44944
81
72
150







synergohymenotropic toxin - Staphylococcus intermedius


1035
1
1
189
gi|1046138


M. genitalium
predicted coding region MG423 [Mycoplasma genitalium]

81
43
189


1280
1
449
228
gi|559164
helicase [Autographa californica nuclear polyhedrosis virus]
81
43
222







sp|P24307|V143_NPVAC HELICASE.


3371
1
68
241
gi|1322245
mevalonate pyrophosphate decarboxylase [Rattus norvegicus]
81
62
174


3715
1
239
3
gi|537137
ORF_f388 [Escherichia coli]
81
58
237


3908
1
2
325
gi|439619
[Salmonella typhimurium IS200 insertion sequence from SARA17, artial.],
81
68
324







gene product [Salmonella typhimurium]


3940
1
3
401
gi|296464
ATPase [Lactococcus lactis]
81
69
399


3954
1
1
318
gi|1224069
amidase [Moraxella catarrhalis]
81
68
318


4049
1
170
3
gi|603768
HutI protein, imidazolone-5-propionate hydrolase [Bacillus subtilis]
81
68
168







gi|603768 HutI protein, imidazolone-5-propionate hydrolase Bacillus









subtilis
]



4209
1
1
324
gi|403373
glycerophosphoryl diester phosphodiesterase [Bacillus subtilis]
81
58
324







pir|S37251|S37251 glycerophosphoryl diester phosphodiesterase - Bacillus









subtilis




4371
1
322
17
gi|216677
indolepyruvate decarboxylase [Enterobacter cloacae] pir|S16013|S16013
81
72
306







indolepyruvate decarboxylase (EC 4.1.1.—) - Enterobacter cloacae


4387
1
19
228
gi|460689
TVG [Thermoactinomyces vulgaris]
81
59
210


4391
1
306
31
gi|1524193
unknown [Mycobacterium tuberculosis]
81
67
276


4425
1
3
341
gi|143015
gluconate kinase [Bacillus subtilis]
81
66
339


9
1
847
101
gi|1064786
function unknown [Bacillus subtilis]
80
62
747


17
1
311
78
gi|559164
helicase [Autographa californica nuclear polyhedrosis virus]
80
40
234







sp|P24307|V143_NPVAC HELICASE.


45
2
1159
2448
gi|1109684
ProV [Bacillus subtilis]
80
63
1290


45
5
4032
4733
gi|1109687
ProZ [Bacillus subtilis]
80
55
702


54
8
9502
8738
gi|563952
gluconate permease [Bacillus licheniformis]
80
62
765


62
12
7545
6238
gi|854655
Na/H antiporter system [Bacillus alcalophilus]
80
62
1308


62
14
8087
8683
gi|559713
ORF [Homo sapiens]
80
68
597


67
16
13781
14122
gi|305002
ORF_f356 [Escherichia coli]
80
65
342


70
13
10296
9097
gi|1303995
YqkN [Bacillus subtilis]
80
64
1200


98
9
6336
7130
gi|467428
unknown [Bacillus subtilis]
80
68
795


98
10
7294
7833
gi|467430
unknown [Bacillus subtilis]
80
64
540


98
11
7820
8737
gi|467431
high level kasgamycin resistance [Bacillus subtilis]
80
61
918


109
16
14154
14813
gi|580875
ipa-57d gene product [Bacillus subtilis]
80
63
660


112
15
14294
16636
gi|1072361
pyruvate-formate-lyase [Clostridium pasteurianum]
80
65
2343


139
1
726
4
gi|506699
CapC [Staphylococcus aureus]
80
58
723


139
2
1448
717
gi|506698
CapB [Staphylococcus aureus]
80
59
732


174
4
2870
2469
gi|1146242
aspartate 1-decarboxylase [Bacillus subtilis]
80
61
402


177
3
2102
2842
gi|467385
unknown [Bacillus subtilis]
80
70
741


184
6
5912
5700
gi|161953
85-kDa surface antigen [Trypanosoma cruzi]
80
46
213


186
4
3875
2382
gi|289282
glutamyl-tRNA synthetase [Bacillus subtilis]
80
65
1494


205
30
15140
14484
gi|40103
ribosomal protein L4 [Bacillus stearothermophilus]
80
66
657


207
1
140
1315
gi|460259
enolase [Bacillus subtilis]
80
67
1176


211
3
1078
1590
gi|410131
ORFX7 [Bacillus subtilis]
80
61
513


235
2
1962
2255
gi|143797
valyl-tRNA synthetase [Bacillus stearothermophilus] sp|P11931|SYV_BACST
80
55
294







VALYL-TRNA SYNTHETASE (EC 6.1.1.9) VALINE-TRNA LIGASE) (VALRS).


239
1
1
1263
gi|143000
proton glutamate symport protein [Bacillus stearothermophilus]
80
59
1263







pir|S26247|S26247 glutamate/aspartate transport protein - Bacillus









stearothermophilus




272
5
2461
2198
gi|709993
hypothetical protein [Bacillus subtilis]
80
54
264


301
3
1111
776
gi|467418
unknown [Bacillus subtilis]
80
58
336


310
4
4501
3305
gi|1177686
acuC gene product [Staphylococcus xylosus]
80
67
1197


310
6
5258
7006
gi|348053
acetyl-CoA synthetase [Bacillus subtilis]
80
67
1749


310
7
7410
9113
gi|1103865
formyl-tetrahydrofolate synthetase [Streptococcus mutans]
80
67
1704


325
3
1114
1389
gi|310325
outer capsid protein [Rotavirus sp.]
80
40
276


337
1
636
4
gi|537049
ORF_o470 [Escherichia coli]
80
55
633


374
2
929
1228
gi|1405448
YneF [Bacillus subtilis]
80
70
300


375
5
3062
3331
gi|467448
unknown [Bacillus subtilis]
80
68
270


388
1
267
587
gi|1064791
function unknown [Bacillus subtilis]
80
65
321


394
1
9
659
gi|304976
matches PS00017: ATP_GTP_A and PS00301: EFACTOR_GTP; similar to longation
80
65
651







factor G, TetM/Tet0 tetracycline-resistance proteins Escherichia coli]


456
1
625
1263
gi|1146183
putative [Bacillus subtilis]
80
65
639


475
1
1
654
gi|288269
beta-fructofuranosidase [Staphylococcus xylosus]
80
66
654


544
2
1449
2240
gi|529754
speC [Streptococcus pyogenes]
80
50
792


622
4
1623
1871
gi|1483545
unknown [Mycobacterium tuberculosis]
80
65
249


719
1
1
1257
gi|1064791
function unknown [Bacillus subtilis]
80
68
1257


739
1
107
838
gi|666983
putative ATP binding subunit [Bacillus subtilis]
80
61
732


745
2
414
247
gi|1511600
coenzyme PQQ synthesis protein III [Methanococcus jannaschii]
80
61
168


822
1
17
679
gi|410141
ORFX17 [Bacillus subtilis]
80
68
663


827
2
836
681
gi|1205301
leukotoxin secretion ATP-binding protein [Haemophilus influenzae]
80
54
156


1044
1
3
149
gi|60632
vp2 [Marburg virus]
80
55
147


1220
2
413
255
pir|A61072|EPSG
gallidermin precursor - Staphylococcus gallinarum
80
74
159


2519
1
75
275
gi|147556
dpj [Escherichia coli]
80
45
201


2947
1
279
55
gi|1184680
polynucleotide phosphorylase [Bacillus subtilis]
80
62
225


3120
1
2
226
gi|517205
67 kDa Myosin-crossreactive streptococcal antigen [Streptococcus yogenes]
80
65
225


3191
1
148
2
gi|151259
HMG-CoA reductase (EC 1.1.1.88) [Pseudomonas mevalonii] pir|A44756|A44756
80
59
147







hydroxymethylglutaryl-CoA reductase (EC 1.1.1.88) Pseudomonas sp.


3560
2
285
434
gi|217130
photosystem I core protein B [Synechococcus vulcanus]
80
70
150


3655
1
47
346
gi|415855
deoxyribose aldolase [Mycoplasma hominis]
80
56
300


3658
2
324
584
gi|551531
2-nitropropane dioxygenase [Williopsis saturnus]
80
54
261


3769
1
400
2
gi|1339950
large subunit of NADH-dependent glutamate synthase [Plectonema boryanum]
80
68
399


3781
1
348
4
gi|166412
NADH-glutamate synthase [Medicago sativa]
80
62
345


3988
1
48
287
gi|1204696
fructose-permease IIBC component [Haemophilus influenzae]
80
69
240


4030
1
287
3
gi|1009366
Respiratory nitrate reductase [Bacillus subtilis]
80
60
285


4092
1
275
3
gi|1370207
orf6 [Lactobacillus sake]
80
69
273


4103
1
342
4
gi|39956
IIGlc [Bacillus subtilis]
80
65
339


4231
1
348
4
gi|289287
UDP-glucose pyrophosphorylase [Bacillus subtilis]
80
65
345


4265
1
299
3
gi|603768
HutI protein, imidazolone-5-propionate hydrolase [Bacillus subtilis]
80
63
297







gi|603768 HutI protein, imidazolone-5-propionate hydrolase Bacillus









subtilis
]



4504
1
250
2
gi|1339950
large subunit of NADH-dependent glutamate synthase [Plectonema boryanum]
80
68
249


2
6
5998
6798
gi|535351
codY [Bacillus subtilis]
79
63
801


4
7
7051
5807
gi|603768
HutI protein, imidazolone-5-propionate hydrolase [Bacillus subtilis]
79
64
1245







gi|603768 HutI protein, imidazolone-5-propionate hydrolase Bacillus









subtilis
]



25
6
5273
5515
pir|A36728|A367
acyl carrier protein - Rhizobium meliloti
79
65
243


59
2
1173
1424
gi|147923
threonine dehydratase 2 (EC 4.2.1.16) [Escherichia coli]
79
75
252


60
1
1
204
gi|666115
orf1 upstream of glucose kinase [Staphylococcus xylosus]pir|S52351|S52351
79
60
204







hypothetical protein 1 - Staphylococcus xylosus


81
1
1590
178
gi|466882
pps1; B1496_C2_189 [Mycobacterium leprae]
79
64
1413


85
7
6505
5987
gi|143364
phosphoribosyl aminoimidazole carboxylase I (PUR-E) [Bacillus subtilis]
79
60
519


89
6
4554
3448
gi|144906
product homologous to E. coli thioredoxin reductase: J. Biol. Chem. 1988)
79
35
1107







263: 9015-9019, and to F52a protein of alkyl hydroperoxide eductase from









S. typhimurium
: J.Biol.Chem. (1990) 265: 10535-10540; pen reading frame A








[Clostridium pasteurianum]


102
11
7489
8571
gi|143093
ketol-acid reductoisomerase [Bacillus subtilis] sp|P37253|ILVC_BACSU KETOL-
79
64
1083







ACID REDUCTOISOMERASE (EC 1.1.1.86) ACETOHYDROXY-ACID ISOMEROREDUCTASE)







(ALPHA-KETO-BETA-HYDROXYLACIL EDUCTOISOMERASE).


102
14
11190
12563
gi|149428
putative [Lactococcus lactis]
79
65
1374


127
9
7792
9372
gi|458688
PrfC/RF3 [Dichelobacter nodosus]
79
68
1581


139
3
1983
1426
gi|506697
CapA [Staphylococcus aureus]
79
55
558


144
2
1156
668
gi|1498296
peptide methionine sulfoxide reductase [Streptococcus pneumoniae]
79
47
489


148
2
529
1098
gi|467457
hypoxanthine-guanine phosphoribosyltransferase [Bacillus subtilis]
79
59
570







gi|467457 hypoxanthine-guanine phosphoribosyltransferase [Bacillus









subtilis
]



150
1
591
217
gi|755602
unknown [Bacillus subtilis]
79
61
375


176
1
587
135
gi|297874
fructose-bisphosphate aldolase [Staphylococcus carnosus] pir|A49943|A49943
79
65
453







fructose-bisphosphate aldolase (EC 4.1.2.13) - Staphylococcus carnosus







(strain TM300)


186
7
6874
6164
gi|1314298
ORF5; putative Sms protein; similar to Sms proteins from Haemophilus
79
64
711









influenzae
and Escherichia coli [Listeria monocytogenes]



205
16
8498
8109
gi|1044980
ribosomal protein L18 [Bacillus subtilis]
79
70
390


211
1
1
519
gi|1303994
YqkM [Bacillus subtilis]
79
62
519


223
2
2801
1419
gi|488430
alcohol dehydrogenase 2 [Entamoeba histolytica]
79
60
1383


243
8
7896
6877
gi|580883
ipa-88d gene product [Bacillus subtilis]
79
60
1020


279
4
3721
4329
gi|413930
ipa-6d gene product [Bacillus subtilis]
79
59
609


300
1
11
1393
gi|403372
glycerol 3-phosphate permease [Bacillus subtilis]
79
62
1383


307
3
1935
940
gi|950062
hypothetical yeast protein 1 [Mycoplasma capricolum] pir|S48578|S48578
79
60
996







hypothetical protein - Mycoplasma capricolum SGC3) (fragment)


352
6
8886
7666
gi|216854
P47K [Pseudomonas chlororaphis]
79
59
1221


412
1
578
3
gi|143177
putative [Bacillus subtilis]
79
51
576


481
3
621
1124
gi|786163
Ribosomal Protein L10 [Bacillus subtilis]
79
66
504


516
1
352
2
gi|805090
NisF [Lactococcus lactis]
79
48
351


525
2
1426
395
gi|143371
phosphoribosyl aminoimidazole synthetase (PUR-M) [Bacillus subtilis]
79
61
1032







pir|H29326|AJBSCL phosphoribosylformylglycinamidine cyclo-ligase EC







6.3.3.1) - Bacillus subtilis


538
4
2825
2202
gi|1370207
orf6 [Lactobacillus sake]
79
67
624


570
1
2
421
gi|476160
arginine permease substrate-binding subunit [Listeria monocytogenes]
79
61
420


645
8
2663
3241
gi|153898
transport protein [Salmonella typhimurium]
79
62
579


683
1
75
374
gi|1064795
function unknown [Bacillus subtilis]
79
62
300


816
3
3987
3274
gi|1407784
orf-1; novel antigen [Staphylococcus aureus]
79
62
714


2929
1
3
401
gi|1524397
glycine betaine transporter OpuD [Bacillus subtilis]
79
61
399


2937
1
202
47
pir|S52915|S529
nitrate reductase alpha chain - Bacillus subtilis (fragment)
79
58
156


2940
1
385
2
gi|149429
putative [Lactococcus lactis]
79
72
384


2946
1
286
2
gi|143267
2-oxoglutarate dehydrogenase (odhA; EC 1.2.4.2) [Bacillus subtilis]
79
61
285


2999
1
3
212
gi|710020
nitrite reductase (nirB) [Bacillus subtilis]
79
59
210


3022
1
332
150
gi|450686
3-phosphoglycerate kinase [Thermotoga maritima]
79
61
183


3064
1
3
314
gi|1204436
pyruvate formate-lyase [Haemophilus influenzae]
79
60
312


3083
1
2
220
gi|1149662
hypD gene product [Clostridium perfringens]
79
56
219


3126
1
411
121
gi|1339950
large subunit of NADH-dependent glutamate synthase [Plectonema boryanum]
79
55
291


3181
1
326
45
gi|1339950
large subunit of NADH-dependent glutamate synthase [Plectonema boryanum]
79
59
282


3345
1
3
476
gi|871784
Clp-like ATP-dependent protease binding subunit [Bos taurus]
79
63
474


3718
1
270
4
pir|C36889|C368
leuB protein, inactive - Lactococcus lactis subsp. lactis (strain IL1403)
79
71
267


3724
2
159
401
gi|1009366
Respiratory nitrate reductase [Bacillus subtilis]
79
64
243


3836
1
312
16
gi|1524193
unknown [Mycobacterium tuberculosis]
79
65
297


3941
1
2
334
gi|415855
deoxyribose aldolase [Mycoplasma hominis]
79
54
333


4113
1
3
341
gi|143015
gluconate kinase [Bacillus subtilis]
79
63
339


4501
1
209
12
gi|1022726
unknown [Staphylococcus haemolyticus]
79
66
198


4612
1
2
238
gi|460689
TVG [Thermoactinomyces vulgaris]
79
58
237


2
1
2
1213
gi|520753
DNA topoisomerase I [Bacillus subtilis]
78
64
1212


8
2
1220
174
gi|216151
DNA polymerase (gene L; ttg start codon) [Bacteriophage SP02] gi|579197
78
72
1047







SP02 DNA polymerase (aa 1-648) [Bacteriophage SP02] pir|A21498|DJBPS2 DNA-







directed DNA polymerase (EC 2.7.7.7) - phage P02


9
2
1089
838
gi|1064787
function unknown [Bacillus subtilis]
78
57
252


32
8
6803
7702
gi|146974
NH3-dependent NAD synthetase [Escherichia coli]
78
63
900


36
4
2941
3138
gi|290503
glutamate permease [Escherichia coli]
78
53
198


53
15
16221
14758
gi|1303941
YqiV [Bacillus subtilis]
78
58
1464


57
14
10520
12067
gi|1072418
glcA gene product [Staphylococcus carnosus]
78
65
1548


66
7
5812
4826
gi|1212729
YqhJ [Bacillus subtilis]
78
67
987


67
4
4029
4376
gi|466612
nikA [Escherichia coli]
78
71
348


91
9
10058
10942
gi|467380
stage 0 sporultion [Bacillus subtilis]
78
50
885


102
12
8574
10130
gi|149426
putative [Lactococcus lactis]
78
61
1557


112
6
3540
4463
gi|854234
cymG gene product [Klebsiella oxytoca]
78
56
924


124
2
1061
234
gi|405622
unknown [Bacillus subtilis]
78
60
828


130
3
1805
2260
gi|1256636
putative [Bacillus subtilis]
78
71
456


133
1
377
3
gi|168060
lamB [Emericella nidulans]
78
59
375


166
4
6163
5201
gi|451216
Mannosephosphate Isomerase [Streptococcus mutans]
78
63
963


186
1
795
4
gi|289284
cysteinyl-tRNA synthetase [Bacillus subtilis]
78
63
792


195
4
2315
1881
gi|1353874
unknown [Rhodobacter capsulatus]
78
58
435


199
3
3623
2967
gi|143525
succinate dehydrogenase cytochrome b-558 subunit [Bacillus subtilis]
78
57
657







pir|A29843|DEBSSC succinate dehydrogenase (EC 1.3.99.1) cytochrome 558 -









Bacillus subtilis




199
4
5557
3905
gi|142521
deoxyribodipyrimidine photolyase [Bacillus subtilis] pir|A37192|A37192 uvrB
78
62
1653







protein - Bacillus subtilis sp|P14951|UVRC_BACSU EXCINUCLEASE ABC SUBUNIT







C.


223
3
3523
3215
gi|439596
[Escherichia coli IS200 insertion sequence from ECOR63, partial.), ene
78
47
309







product [Escherichia coli]


299
4
1865
2149
gi|467439
temperature sensitive cell division [Bacillus subtilis]
78
62
285


321
9
7315
6896
gi|142979
ORF3 is homologous to an ORF downstream of the spoT gene of E. coli; RF3
78
55
420







[Bacillus stearothermophilus]


352
4
3714
3944
gi|349050
actin 1 [Pneumocystis carinii]
78
42
231


352
5
6093
4594
gi|903587
NADH dehydrogenase subunit 5 [Bacillus subtilis] sp|P39755|NDHF_BACSU NADH
78
58
1500







DEHYDROGENASE SUBUNIT 5 (EC 1.6.5.3) NADH-UBIQUINONE OXIDOREDUCTASE CHAIN







5).


376
1
2
583
gi|551693
dethiobiotin synthase [Bacillus sphaericus]
78
34
582


424
2
1595
1768
gi|1524117
alpha-acetolactate decarboxylase [Lactococcus lactis]
78
68
174


450
1
988
62
gi|1030068
NAD(P)H oxidoreductase, isoflavone reductase homologue [Solanum tuberosum]
78
63
927


558
1
562
362
gi|1511588
bifunctional protein [Methanococcus jannaschii]
78
60
201


670
3
1152
1589
gi|1122759
unknown [Bacillus subtilis]
78
64
438


714
1
64
732
gi|143460
37 kd minor sigma factor (rpoF, sigB; ttg start codon) [Bacillus subtilis]
78
57
669


814
1
3
368
gi|1377833
unknown [Bacillus subtilis]
78
59
366


981
1
692
3
gi|143802
GerC2 [Bacillus subtilis]
78
64
690


995
2
727
476
gi|296947
uridine kinase [Escherichia coli]
78
64
252


1045
1
3
401
gi|1407784
orf-1; novel antigen [Staphylococcus aureus]
78
61
399


1163
2
186
4
gi|410117
diaminopimelate decarboxylase [Bacillus subtilis]
78
54
183


2191
1
399
4
gi|215098
excisionase [Bacteriophage 154a]
78
65
396


2933
1
2
181
gi|1204436
pyruvate formate-lyase [Haemophilus influenzae]
78
73
180


3041
2
129
317
gi|624632
GltL [Escherichia coli]
78
53
189


3581
1
105
401
gi|763186
3-ketoacyl-coA thiolase [Saccharomyces cerevisiae]
78
55
297


3709
1
3
230
gi|460689
TVG [Thermoactinomyces vulgaris]
78
58
228


3974
1
265
2
gi|558839
unknown [Bacillus subtilis]
78
65
264


3980
1
3
401
gi|39956
IIGlc [Bacillus subtilis]
78
62
399


4056
1
354
61
gi|1256635
dihydroxy-acid dehydratase [Bacillus subtilis]
78
55
294


4114
1
316
2
pir|S09372|S093
hypothetical protein - Trypanosoma brucei
78
62
315


4185
1
3
179
gi|1339950
large subunit of NADH-dependent glutamate synthase [Plectonema boryanum]
78
58
177


4235
1
329
3
gi|558839
unknown [Bacillus subtilis]
78
60
327


4352
1
302
63
gi|603768
HutI protein, imidazolone-5-propionate hydrolase [Bacillus subtilis]
78
63
240







gi|603768 HutI protein, imidazolone-5-propionate hydrolase Bacillus







subtilis]


4368
1
307
2
gi|1353678
heavy-metal transporting P-type ATPase [Proteus mirabilis]
78
59
306


4461
1
216
4
gi|1276841
glutamate synthase (GOGAT) [Porphyra purpurea]
78
36
213


4530
1
238
2
gi|39956
IIGlc [Bacillus subtilis]
78
65
237


3
2
2073
1177
gi|1109684
ProV [Bacillus subtilis]
77
56
897


12
2
1965
1504
gi|467335
ribosomal protein L9 [Bacillus subtilis]
77
59
462


27
1
2
388
gi|1212728
YqhI [Bacillus subtilis]
77
63
387


39
2
590
1252
gi|40054
phenylalanyl-tRNA synthetase beta subunit (AA 1-804) [Bacillus subtilis]
77
60
663


42
6
2704
2931
gi|606241
30S ribosomal subunit protein S14 [Escherichia coli] sp|P02370|RS14_ECOLI
77
65
228







30S RIBOSOMAL PROTEIN S14. (SUB 2-101)


46
18
15459
16622
gi|297798
mitochondrial formate dehydrogenase precursor [Solanum tuberosum]
77
55
1164







pir|JQ2272|JQ2272 formate dehydrogenase (EC 1.2.1.2) precursor,







itochondrial - potato


100
4
4002
3442
gi|1340128
ORF1 [Staphylococcus aureus]
77
54
561


102
8
5378
5713
gi|1311482
acetolactate synthase [Thermus aquaticus]
77
57
336


109
7
4742
5383
gi|710637
Unknown [Bacillus subtilis]
77
56
642


117
1
2
1228
gi|1237015
ORF4 [Bacillus subtilis]
77
53
1227


124
10
7688
7053
gi|405819
thymidine kinase [Bacillus subtilis]
77
63
636


147
3
985
824
gi|849027
hypothetical 15.9-kDa protein [Bacillus subtilis]
77
37
162


152
10
7354
7953
gi|1205583
spermidine/putrescine transport ATP-binding protein [Haemophilus
77
55
600









influenzae
]



169
2
1004
1282
gi|473825
‘elongation factor EF-Ts’ [Escherichia coli]
77
58
279


184
2
380
1147
gi|216314
esterase [Bacillus stearothermophilus]
77
60
768


189
7
3296
3868
gi|853809
ORF3 [Clostridium perfringens]
77
48
573


193
1
132
290
gi|1303788
YqeH [Bacillus subtilis]
77
54
159


195
8
8414
8088
gi|1499620


M. jannaschii
predicted coding region MJ0798 [Methanococcus jannaschii]

77
44
327


205
8
5204
4980
gi|216340
ORF for adenylate kinase [Bacillus subtilis]
77
61
225


205
29
14502
14209
gi|786155
Ribosomal Protein L23 [Bacillus subtilis]
77
62
294


211
5
1908
2084
gi|410132
ORFX8 [Bacillus subtilis]
77
47
177


217
5
3478
4416
gi|496254
fibronectin/fibrinogen-binding protein [Streptococcus pyogenes]
77
54
939


232
1
267
998
gi|1407784
orf-1; novel antigen [Staphylococcus aureus]
77
57
732


233
2
1346
873
gi|467408
unknown [Bacillus subtilis]
77
61
474


243
3
2299
1937
gi|516155
unconventional myosin [Sus scrofa]
77
32
363


299
1
68
769
gi|467436
unknown [Bacillus subtilis]
77
54
702


301
4
1283
1098
gi|950071
ATP-bind. pyrimidine kinase [Mycoplasma capricolum] pir|S48605|S48605
77
48
186







hypothetical protein - Mycoplasma capricolum SGC3) (fragment)


302
5
2741
3211
gi|508980
pheB [Bacillus subtilis]
77
57
471


302
7
3835
4863
gi|147783
ruvB protein [Escherichia coli]
77
60
1029


307
9
4797
4192
gi|1070015
protein-dependent [Bacillus subtilis]
77
60
606


312
1
99
1391
gi|143165
malic enzyme (EC 1.1.1.38) [Bacillus stearothermophilus] pir|A33307|DEBSXS
77
62
1293







malate dehydrogenase oxaloacetate-decarboxylating) (EC 1.1.1.38) -









Bacillus tearothermophilus




312
2
1541
2443
gi|1399855
carboxyltransferase beta subunit [Synechococcus PCC7942]
77
58
903


321
5
4596
3526
gi|39844
fumarase (citG) (aa 1-462) [Bacillus subtilis]
77
65
1071


354
1
47
568
gi|1154634
YmaB [Bacillus subtilis]
77
57
522


365
1
2
1021
gi|143374
phosphoribosyl glycinamide synthetase (PUR-D; gtg start codon) Bacillus
77
62
1020









subtilis
]



374
1
1
708
gi|1405446
transketolase [Bacillus subtilis]
77
61
708


385
1
565
2
gi|533099
endonuclease III [Bacillus subtilis]
77
63
564


392
2
594
1940
gi|556014
UDP-N-acetyl muramate-alanine ligase [Bacillus subtilis]
77
65
1347







sp|P40778|MURC_BACSU UDP-N-ACETYLMURAMATE-ALANINE LIGASE (EC .3.2.8)







(UDP-N-ACETYLMURANOYL-L-ALANINE SYNTHETASE) (FRAGMENT).


405
5
3570
3061
gi|1303912
YqhW [Bacillus subtilis]
77
64
510


487
4
1302
1472
gi|432427
ORF1 gene product (Acinetobacter calcoaceticus)
77
48
171


522
1
2
562
pir|A01179|SYBS
tyrosine-tRNA ligase (EC 6.1.1.1) - Bacillus stearothermophilus
77
63
561


523
2
1351
1115
gi|1387979
44% identity over 302 residues with hypothetical protein from Synechocystis
77
48
237







sp, accession D64006_CD; expression induced by environmental stress; some







similarity to glycosyl transferases; two potential membrane-spanning







helices [Bacillus subtil


536
2
612
241
gi|143366
adenylosuccinate lyase (PUR-B) [Bacillus subtilis] pir|C29326|WZBSDS
77
61
372







adenylosuccinate lyase (EC 4.3.2.2) - Bacillus subtilis


548
2
339
872
gi|143387
aspartate transcarbamylase [Bacillus subtilis]
77
56
534


597
1
2
481
gi|904198
hypothetical protein [Bacillus subtilis]
77
33
480


633
2
1313
879
gi|387577
ORF1A [Bacillus subtilis]
77
64
435


642
1
85
360
gi|46971
epiP gene product [Staphylococcus epidermidis]
77
61
276


659
1
125
1219
gi|1072381
glutamyl-aminopeptidase [Lactococcus lactis]
77
62
1095


670
4
1587
1820
gi|1122760
unknown [Bacillus subtilis]
77
58
234


789
1
2
391
gi|1377823
aminopeptidase [Bacillus subtilis]
77
65
390


815
1
10
573
gi|1303861
YqgN [Bacillus subtilis]
77
49
564


899
1
1
225
gi|1204844


H. influenzae
predicted coding region HI0594 [Haemophilus influenzae]

77
55
225


1083
1
3
188
gi|460828
B969 [Saccharomyces cerevisiae]
77
66
186


1942
1
209
3
gi|160047
p101/acidic basic repeat antigen [Plasmodium falciparum] pir|A29232|A29232
77
38
207







101 K malaria antigen precursor - Plasmodium alciparum (strain Camp)


2559
1
1
171
gi|1499034


M. jannaschii
predicted coding region MJ0255 [Methanococcus jannaschii]

77
61
171


2933
2
243
401
gi|42370
pyruvate formate-lyase (AA 1-760) [Escherichia coli] ir|S01788|S01788
77
72
159







formate C-acetyltransferase (EC 2.3.1.54) - Echerichia coli


2966
1
56
292
gi|1524397
glycine betaine transporter OpuD [Bacillus subtilis]
77
45
237


2976
1
309
4
gi|40003
oxoglutarate dehydrogenase (NADP+) [Bacillus subtilis] p|P23129|ODO1_BACSU
77
60
306







2-OXOGLUTARATE DEHYDROGENASE E1 COMPONENT (EC 2.4.2) (ALPHA-KETOGLUTARATE







DEHYDROGENASE).


2979
2
400
122
gi|1204354
spore germination and vegetative growth protein [Haemophilus influenzae]
77
61
279


2988
1
377
153
gi|438465
Probable operon with orfF. Possible alternative initiation codon, ases
77
55
225







2151-2153. Homology with acetyltransferases.; putative Bacillus subtilis]


2990
1
167
3
gi|142562
ATP synthase epsilon subunit [Bacillus megaterium] pir|B28599|PWBSEM H+−
77
63
165







transporting ATP synthase (EC 3.6.1.34) psilon chain - Bacillus megaterium


3032
1
3
389
gi|488430
alcohol dehydrogenase 2 [Entamoeba histolytica]
77
56
387


3057
1
1
195
gi|468764
mocR gene product (Rhizobium meliloti)
77
50
195


4008
1
400
74
gi|603768
HutI protein, imidazolone-5-propionate hydrolase [Bacillus subtilis]
77
52
327







gi|603768 HutI protein, imidazolone-5-propionate hydrolase Bacillus









subtilis
]



4048
1
386
69
gi|216278
gramicidin S synthetase 1 [Bacillus brevis]
77
55
318


4110
1
3
368
pir|S52915|S529
nitrate reductase alpha chain - Bacillus subtilis (fragment)
77
61
366


4115
1
1
348
gi|517205
67 kDa Myosin-crossreactive streptococcal antigen [Streptococcus yogenes]
77
65
348


4225
1
297
4
gi|1322245
mevalonate pyrophosphate decarboxylase [Rattus norvegicus]
77
60
294


4611
2
327
160
gi|508979
GTP-binding protein [Bacillus subtilis]
77
57
168


4668
1
182
3
pir|S52915|S529
nitrate reductase alpha chain - Bacillus subtilis (fragment)
77
61
180


25
1
2
1627
gi|1150620
MmsA [Streptococcus pneumoniae]
76
58
1626


38
5
1488
2537
pir|A43577|A435
regulatory protein pfoR - Clostridium perfringens
76
57
1050


52
5
2962
4041
gi|1161061
dioxygenase [Methylobacterium extorquens]
76
62
1080


56
20
27389
27955
gi|467402
unknown [Bacillus subtilis]
76
56
567


57
15
12046
12219
gi|1206040
weak similarity to keratin [Caenorhabditis elegans]
76
40
174


91
2
1062
2261
gi|475715
acetyl coenzyme A acetyltransferase (thiolase) [Clostridium cetobutylicum]
76
57
1200


98
2
818
1624
gi|467422
unknown [Bacillus subtilis]
76
62
807


98
5
2965
3228
gi|897793
y98 gene product [Pediococcus acidilactici]
76
52
264


98
8
5922
6326
gi|467427
methionyl-tRNA synthetase [Bacillus subtilis]
76
53
405


104
3
1322
1885
gi|216151
DNA polymerase (gene L; ttg start codon) [Bacteriophage SPO2] gi|579197
76
63
564







SPO2 DNA polymerase (aa 1-648) [Bacteriophage SPO2) pir|A21498|DJBPS2 DNA-







directed DNA polymerase (EC 2.7.7.7) - phage PO2


124
9
7055
5976
gi|853776
peptide chain release factor 1 [Bacillus subtilis] pir|S55437|S55437
76
58
1080







peptide chain release factor 1 - Bacillus subtilis


164
5
2832
3311
gi|1204976
prolyl-tRNA synthetase [Haemophilus influenzae]
76
53
480


168
2
1841
1065
gi|1177253
putative ATP-binding protein of ABC-type [Bacillus subtilis]
76
58
777


189
2
163
888
gi|467384
unknown [Bacillus subtilis]
76
63
726


235
3
2253
3518
gi|142936
folyl-polyglutamate synthetase [Bacillus subtilis] pir|B40646|B40646 folC -
76
53
1266









Bacillus subtilis




236
1
335
925
gi|1146197
putative [Bacillus subtilis]
76
54
591


237
8
5323
5541
gi|1279261
F13G3.6 [Caenorhabditis elegans]
76
47
219


263
5
4585
3680
gi|1510348
dihydrodipicolinate synthase [Methanococcus jannaschii]
76
49
906


304
3
1051
1794
gi|666982
putative membrane spanning subunit [Bacillus subtilis]pir|S52382|S52382
76
60
744







probable membrane spanning protein - Bacillus subtilis


312
4
3611
4624
gi|143312
6-phospho-1-fructokinase (gtg start codon; EC 2.7.1.11) [Bacillus
76
56
1014







tearothermophilus)


343
1
2
1036
gi|405956
yeeE [Escherichia coli]
76
59
1035


347
1
409
1701
gi|396304
acetylornithine deacetylase [Escherichia coli]
76
72
1293


358
1
672
1907
gi|1146215
39.0% identity to the Escherichia coli S1 ribosomal protein; putative
76
58
1236







[Bacillus subtilis]


371
1
1
222
gi|537084
alternate gene name mgt; CG Site No. 497 [Escherichia coli]
76
61
222







pir|S56468|S56468 mgtA protein - Escherichia coli


379
4
4331
4858
gi|143268
dihydrolipoamide transsuccinylase (odhB; EC 2.3.1.61) [Bacillus subtilis]
76
61
528


404
5
4022
4492
gi|1303823
YqfG [Bacillus subtilis]
76
60
471


411
1
2
307
gi|486025
ORF YKL027w [Saccharomyces cerevisiae]
76
55
306


472
3
2854
1352
gi|1405464
AlsT [Bacillus subtilis]
76
57
1503


546
1
273
995
gi|153821
streptococcal pyrogenic exotoxin type C (speC) precursor Streptococcus
76
36
723







pyogenes]


588
1
557
60
gi|1002520
MutS [Bacillus subtilis]
76
61
498


591
1
16
735
gi|885934
ClpB [Synechococcus sp.]
76
44
720


602
2
175
798
gi|1486422
OppD homologue [Rhizobium sp.]
76
52
624


619
2
290
33
gi|330613
major capsid protein [Human cytomegalovirus]
76
47
258


660
4
2568
3302
gi|904199
hypothetical protein [Bacillus subtilis]
76
55
735


677
1
228
4
gi|40177
spoOF gene product [Bacillus subtilis]
76
58
225


962
1
24
206
gi|142443
adenylosuccinate synthetase [Bacillus subtilis]sp|P29726|PURA_BACSU
76
67
183







ADENYLOSUCCINATE SYNTHETASE (EC 6.3.4.4) IMP —ASPARTATE LIGASE).


978
1
580
2
gi|1511333


M. jannaschii
predicted coding region MJ1322 [Methanococcus jannaschii]

76
56
579


997
1
244
2
gi|467154
No definition line found [Mycobacterium leprae]
76
38
243


1563
1
266
3
gi|1303984
YqkG [Bacillus subtilis]
76
52
264


2184
1
182
3
gi|506706
CapJ [Staphylococcus aureus]
76
38
180


2572
1
1
387
gi|153898
transport protein [Salmonella typhimurium]
76
65
387


2942
1
29
400
gi|710020
nitrite reductase (nirB) [Bacillus subtilis]
76
59
372


2957
1
216
55
gi|1511251
hypothetical protein (SP: P42404) [Methanococcus janneschii]
76
47
162


2980
1
279
4
gi|1405464
AlsT [Bacillus subtilis]
76
53
276


3015
1
326
3
gi|408115
ornithine acetyltransferase [Bacillus subtilis]
76
61
324


3124
1
13
174
gi|882705
ORF_o401 (Escherichia coli)
76
65
162


3179
1
3
161
gi|168477
ferredoxin-dependent glutamate synthase [Zea mays]pir|A38596|A38596
76
53
159







glutamate synthase (ferredoxin) (EC 1.4.7.1)- maize


3789
1
2
379
gi|39956
IIGlc [Bacillus subtilis)
76
55
378


3892
1
3
314
gi|1510398
ferripyochelin binding protein [Methanococcus jannaschii]
76
52
312


3928
1
400
2
gi|143016
permease [Bacillus subtilis]
76
59
399


4159
1
386
15
sp|P80544|MRSP
METHICILLIN-RESISTANT SURFACE PROTEIN (FRAGMENTS)
76
66
372


4204
1
17
331
gi|29646
ATPase [Lactococcus lactis]
76
56
315


4398
1
249
4
gi|987255
Menkes disease gene [Homo sapiens]
76
48
246


4506
1
2
313
gi|216746
(D-lactate dehydrogenase [Lactobacillus plantarum]
76
47
312


4546
1
247
17
gi|1339950
large subunit of NADH-dependent glutamate synthase [Plectonema boryanum]
76
61
231


4596
1
191
3
gi|560027
cellulose synthase [Acetobacter xylinum]
76
70
189


4
5
4337
3417
gi|882532
ORF_o294 [Escherichia coli]
75
59
921


6
1
164
952
gi|40960
OTCase [Escherichia coli]
75
56
789


12
3
3944
1953
gi|467336
unknown [Bacillus subtilis]
75
57
1992


23
18
17310
16348
gi|1296433
0-acetylserine sulfhydrylase B [Alcaligenes eutrophus]
75
55
963


25
3
2356
3393
gi|1502419
PlsX [Bacillus subtilis]
75
56
1038


36
8
5765
6037
gi|1256517
unknown [Schizosaccharomyces pombe]
75
45
273


46
13
11186
12058
gi|48972
nitrate transporter [Synechococcus sp.]
75
46
873


51
7
3474
3677
gi|143607
sporulation protein [Bacillus subtilis]
75
61
204


53
16
16590
16330
gi|143402
(recombination protein (ttg start codon) [Bacillus subtilis] gi|1303923 RecN
75
51
261







[Bacillus subtilis]


74
3
2568
1564
gi|1204847
ornithine carbamoyltransferase [Haemophilus influenzae]
75
61
1005


85
3
3930
3232
gi|143368
phosphoribosylformyl glycinamidine synthetase I (PUR-L; gtg start odon)
75
63
699







[Bacillus subtilis]


85
5
4878
4168
gi|143367
phosphoribosyl aminoidazole succinocarboxamide synthetase (PUR-C; tg start
75
55
711







codon) [Bacillus subtilis]


85
8
6625
7530
gi|1303916
YqiA [Bacillus subtilis]
75
53
906


87
3
2340
3590
gi|1064813
homologous to sp: PHOR_BACSU [Bacillus subtilis]
75
56
1251


87
6
6084
6896
gi|1064810
function unknown [Bacillus subtilis]
75
61
813


108
2
1503
1162
gi|1001824
hypothetical protein [Synechocystis sp.]
75
51
342


110
3
1748
3727
gi|1147593
putative ppGpp synthetase [Streptomyces coelicolor]
75
55
1980


110
7
4353
5252
gi|1177251
clwD gene product [Bacillus subtilis]
75
75
900


120
14
10649
10032
gi|1524394
ORF-2 upstream of gbsAB operon [Bacillus subtilis]
75
55
618


121
5
2050
4221
gi|1154632
NrdE [Bacillus subtilis]
75
54
2172


124
1
143
3
gi|405622
unknown [Bacillus subtilis]
75
56
141


128
1
81
1139
gi|143316
(gap) gene products [Bacillus megaterium]
75
48
1059


130
8
5760
5903
gi|1256654
54.8% identity with Neisseria gonorrhoeae regulatory protein PilB; putative
75
62
144







[Bacillus subtilis]


136
2
3185
1890
gi|467403
seryl-tRNA synthetase [Bacillus subtilis]
75
54
1296


161
10
5439
5798
gi|1001195
hypothetical protein [Synechocystis sp.]
75
55
360


172
4
2995
2171
gi|755153
ATP-binding protein [Bacillus subtilis]
75
52
825


179
1
1107
190
gi|143037
porphobilinogen deaminase [Bacillus subtilis]
75
58
918


195
10
9374
9219
sp|P25745|YCFB
HYPOTHETICAL PROTEIN IN PURB 5′ REGION (ORF-15) (FRAGMENT)
75
60
156


200
4
2605
4596
gi|142440
ATP-dependent nuclease [Bacillus subtilis]
75
56
1992


206
3
5620
4340
gi|1256135
YbbF [Bacillus subtilis]
75
53
1281


216
2
159
389
gi|1052800
unknown [Schizosaccharomyces pombe]
75
58
231


229
1
29
847
gi|1205958
branched chain aa transport system II carrier protein [Haemophilus
75
49
819









influenzae
]



230
2
518
1714
gi|971337
nitrite extrusion protein [Bacillus subtilis]
75
53
1197


231
1
1122
4
gi|1002521
MutL [Bacillus subtilis]
75
54
1119


233
3
1314
1859
gi|467405
unknown [Bacillus subtilis]
75
59
546


269
1
164
3
gi|1511246
methyl coenzyme M reductase system, component A2 [Methanococcus jannaschii]
75
50
162


292
1
772
155
gi|1511604


M. jannaschii
predicted coding region MJ1651 [Methanococcus jannaschii]

75
46
618


304
4
1773
2261
gi|1205328
surfactin [Haemophilus influenzae]
75
55
489


312
3
2437
3387
gi|285621
undefined open reading frame [Bacillus stearothermophilus]
75
62
951


312
5
4622
6403
gi|1041097
Pyruvate Kinase [Bacillus psychrophilus]
75
57
1782


319
1
353
877
gi|1212728
YqhI [Bacillus subtilis]
75
54
525


320
5
4321
5031
gi|1070361
OMP decarboxylase [Lactococcus lactis]
75
56
711


320
6
5010
5642
gi|143394
OMP-PRPP transferase [Bacillus subtilis]
75
60
633


337
4
1519
2088
gi|487433
citrate synthase II [Bacillus subtilis]
75
58
570


394
2
669
1271
gi|304976
matches PS00017: ATP_GTP_A and PS00301: EFACTOR_GTP; similar to longation
75
51
603







factor G, TetM/TetO tetracycline-resistance proteins Escherichia coli]


423
1
127
570
gi|1183839
unknown [Pseudomonas aeruginosa]
75
59
444


433
2
1603
1929
gi|149211
acetolactate synthase [Klebsiella pneumoniae]
75
63
327


446
2
176
1540
gi|312441
dihydroorotase [Bacillus caldolyticus]
75
62
1365


486
1
249
4
gi|1149682
potF gene product [Clostridium perfringens]
75
55
246


496
1
3
794
gi|143582
spoIIIEA protein [Bacillus subtilis]
75
59
792


498
2
824
1504
gi|143328
phoP protein (put.); putative [Bacillus subtilis]
75
47
681


499
2
1061
1624
gi|1387979
44% identity over 302 residues with hypothetical protein from Synechocystis
75
51
564







sp, accession D64006_CD; expression induced by environmental stress; some







similarity to glycosyl transferases; two potential membrane-spanning







helices [Bacillus subtil


568
1
453
265
pir|JC4110|JC41
triacylglycerol lipase (EC 3.1.1.3) 2 - Mycoplasma mycoides subsp. mycoides
75
50
189







(SGC3)


613
2
233
36
gi|330993
tegument protein [Saimiriine herpesvirus 2]
75
75
198


621
1
1
525
gi|529754
speC [Streptococcus pyogenes]
75
43
525


642
5
1809
2474
gi|1176401
EpiG [Staphylococcus epidermidis]
75
51
666


646
2
454
657
gi|172442
ribonuclease P [Saccharomyces cerevisiae]
75
37
204


657
1
3
347
gi|882541
ORF_o236 [Escherichia coli]
75
47
345


750
1
832
2
gi|46971
epiP gene product [Staphylococcus epidermidis]
75
57
831


754
1
2
481
gi|1303901
YqhT [Bacillus subtilis]
75
57
480


763
2
393
223
gi|1205145
multidrug resistance protein [Haemophilus influenzae]
75
51
171


775
1
482
3
pir|B36889|B368
leuA protein, inactive - Lactococcus lactis subsp. lactis (strain IL1403)
75
63
480


793
1
1
180
gi|143316
[gap] gene products [Bacillus megaterium]
75
57
180


800
1
160
2
gi|509411
NFRA protein [Azorhizobium caulinodans]
75
34
159


811
1
560
3
gi|143434
Rho Factor [Bacillus subtilis]
75
60
558


940
1
329
165
gi|1276985
arginase [Bacillus caldovelox]
75
50
165


971
2
37
252
gi|1001373
hypothetical protein [Synechocystis sp.]
75
58
216


1059
1
232
80
gi|726480
L-glutamine-D-fructose-6-phosphate amidotransferase [Bacillus subtilis]
75
67
153


1109
2
219
374
gi|143331
alkaline phosphatase regulatory protein [Bacillus subtilis]
75
53
156







pir|A27650|A27650 regulatory protein phoR - Bacillus subtilis







sp|P23545|PHOR_BACSU ALKALINE PHOSPHATASE SYNTHESIS SENSOR PROTEIN HOR (EC







2.7.3.—).


1268
1
137
3
gi|304135
ornithine acetyltransferase [Bacillus stearothermophilus]
75
63
135







sp|Q07908|ARGJ_BACST GLUTAMATE N-ACETYLTRANSFERASE (EC 2.3.1.35) ORNITHINE







ACETYLTRANSFERASE) (ORNITHINE TRANSACETYLASE) (OATASE)/MINO-ACID







ACETYLTRANSFERASE (EC 2.3.1.1) (N-ACETYLGLUTAMATE YNTHA


1500
1
163
2
gi|1205488
excinuclease ABC subunit B [Haemophilus influenzae]
75
57
162


1529
1
400
2
gi|1002521
MutL [Bacillus subtilis]
75
54
399


3010
1
387
4
gi|1204435
pyruvate formate-lyase activating enzyme [Haemophilus influenzae]
75
54
384


3105
1
1
180
gi|1041097
Pyruvate Kinase [Bacillus psychrophilus]
75
57
180


3117
1
45
212
gi|899317
peptide synthetase module [Microcystis aeruginosa]pir|S49111|S49111
75
42
168







probable amino acid activating domain - Microcystis aeruginosa (fragment)







(SUB 144-528)


3139
2
139
345
gi|145294
adenine phosphoribosyl-transferase [Escherichia coli]
75
66
207


3880
1
310
2
gi|1009366
Respiratory nitrate reductase [Bacillus subtilis]
75
58
309


3911
1
48
401
gi|433991
ATP synthase subunit beta [Bacillus subtilis]
75
68
354


3957
1
2
379
pir|D36889|D368
3-isopropylmalate dehydratase (EC 4.2.1.33) chain leuC - Lactococcus lactis
75
65
378







subsp. lactis (strain IL1403)


4005
1
5
259
gi|216746
D-lactate dehydrogenase [Lactobacillus plantarum]
75
48
255


4080
1
73
333
gi|415855
deoxyribose aldolase [Mycoplasma hominis]
75
59
261


4111
1
1
339
gi|149435
putative [Lactococcus lactis]
75
57
339


4136
1
303
4
gi|450688
hsdM gene of EcoprrI gene product [Escherichia coli] pir|S38437|S38437 hsdM
75
56
300







protein - Escherichia coli pir|S09629|S09629 hypothetical protein A -









Escherichia coli
(SUB 40-520)



4144
1
336
4
gi|48972
nitrate transporter [Synechococcus sp.]
75
49
333


4237
1
374
84
gi|1339950
large subunit of NADH-dependent glutamate synthase [Plectonema boryanum]
75
55
291


4306
2
73
318
gi|294260
major surface glycoprotein [Pneumocystis carinii]
75
68
246


4343
1
359
3
gi|1204652
methylated-DNA-protein-cysteine methyltransferase [Haemophilus influenzae]
75
52
357


4552
1
312
4
gi|296464
ATPase [Lactococcus lactis]
75
55
309


38
9
5776
6126
gi|443793
NupC [Escherichia coli]
74
50
351


50
8
6221
5532
gi|1239988
hypothetical protein [Bacillus subtilis]
74
55
690


56
9
10770
12221
gi|1000451
TreP [Bacillus subtilis]
74
57
1452


64
2
1622
978
gi|41015
aspartate-tRNA ligase [Escherichia coli]
74
57
645


66
6
4848
4633
gi|1212729
YqhJ [Bacillus subtilis]
74
47
216


67
18
14334
14897
gi|1510631
endoglucanase [Methanococcus jannaschii]
74
52
564


102
15
12561
13136
gi|149429
putative [Lactococcus lactis]
74
67
576


102
16
13121
14419
gi|149435
putative [Lactococcus lactis]
74
57
1299


108
4
3902
2931
gi|39478
ATP binding protein of transport ATPases [Bacillus firmus] ir|S15486|S15486
74
59
972







ATP-binding protein - Bacillus firmus p|P26946|YATR_BACFI HYPOTHETICAL







ATP-BINDING TRANSPORT PROTEIN.


116
5
7093
5612
gi|1205430
dipeptide transport system permease protein [Haemophilus influenzae
74
49
1482


120
7
4342
4803
gi|146970
ribonucleoside triphosphate reductase [Escherichia coli] pir|A47331|A47331
74
58
462







anaerobic ribonucleotide reductase - Escherichia coli


121
7
5961
6581
gi|1107528
ttg start [Campylobacter coli]
74
51
621


128
3
2320
3531
gi|143318
phosphoglycerate kinase [Bacillus megaterium]
74
57
1212


130
7
5237
5791
gi|1256653
DNA-binding protein [Bacillus subtilis]
74
60
555


136
3
5150
3555
gi|143076
histidase [Bacillus subtilis]
74
58
1596


145
2
664
1368
gi|407773
devA gene product [Anabaena sp.]
74
45
705


152
1
277
2
gi|1377833
unknown [Bacillus subtilis]
74
54
276


164
10
11064
11375
gi|580900
ORF3 gene product [Bacillus subtilis]
74
52
312


175
2
2624
2139
gi|642656
unknown [Rhizobium meliloti]
74
34
486


175
9
5612
5160
gi|854656
Na/H antiporter system ORF2 [Bacillus alcalophilus]
74
46
453


195
11
10339
9332
gi|1204430
hypothetical protein (SP: P25745) [Haemophilus influenzae]
74
55
1008


205
17
9059
8499
gi|1044979
ribosomal protein L6 [Bacillus subtilis]
74
64
561


236
7
5574
6710
gi|1146207
putative [Bacillus subtilis]
74
63
1137


241
3
3334
2147
gi|694121
malate thiokinase [Methylobacterium extorquens]
74
52
1188


246
6
2799
2293
gi|467374
single strand DNA binding protein [Bacillus subtilis]
74
64
507


249
4
5313
4075
gi|1524397
glycine betaine transporter OpuD [Bacillus subtilis]
74
55
1239


261
7
4081
3773
gi|809542
CbrB protein [Erwinia chrysanthemi]
74
42
309


278
6
4665
3616
gi|1204872
ATP-binding protein [Haemophilus influenzae]
74
54
1050


309
1
666
112
gi|1205579
hypothetical protein (GB: U14003_302) [Haemophilus influenzae]
74
53
555


315
2
862
251
gi|143398
quinol oxidase [Bacillus subtilis]
74
57
612


320
1
1
1065
gi|143389
glutaminase of carbamyl phosphate synthetase [Bacillus subtilis]
74
60
1065







pir|E39845|E39845 carbamoyl-phosphate synthase glutamine-hydrolyzing) (EC







6.3.5.5), pyrimidine-repressible, small hain - Bacillus subtilis


380
2
382
1128
gi|534857
ATPase subunit a [Bacillus stearothermophilus]
74
56
747


405
2
1311
880
gi|1303915
YqhZ [Bacillus subtilis]
74
65
432


433
5
2503
3270
gi|473902
alpha-acetolactate synthase [Lactococcus lactis]
74
56
768


452
1
1
942
gi|413982
ipa-58r gene product [Bacillus subtilis]
74
52
942


461
1
3
1193
gi|558494
homoserine dehydrogenase [Bacillus subtilis]
74
51
1191


461
2
1174
1407
gi|40211
threonine synthase (thrC) (AA 1-352) [Bacillus subtilis] ir|A25364|A25364
74
56
234







threonine synthase (EC 4.2.99.2) - Bacillus subtilis


462
2
402
734
gi|142520
thioredoxin [Bacillus subtilis]
74
62
333


478
1
320
66
gi|1499005
glycyl-tRNA synthetase [Methanococcus jannaschii]
74
52
255


501
2
739
1740
gi|217040
acid glycoprotein [Streptococcus pyogenes]
74
58
1002


551
2
2791
1499
gi|143040
glutamate-1-semialdehyde 2,1-aminotransferase [Bacillus subtilis]
74
51
1293







pir|D42728|D42728 glutamate-1-semialdehyde 2,1-aminomutase (EC .4.3.8) -









Bacillus subtilis




573
1
1
477
gi|1006605
hypothetical protein [Synechocystis sp.]
74
45
477


596
2
1298
816
gi|1303853
YqgF [Bacillus subtilis]
74
55
483


618
2
1758
592
gi|1146237
21.4% of identity to trans-acting transcription factor of Sacharomyces
74
55
1167







cerevisiae; 25% of identity to sucrose synthase of Zee mays; putative







[Bacillus subtilis]


659
2
1269
1595
gi|1072380
ORF3 [Lactococcus lactis]
74
62
327


724
1
188
3
gi|143374
phosphoribosyl glycinamide synthetase (PUR-D; gtg start codon) Bacillus
74
58
186









subtilis
]



743
2
604
1209
gi|153833
ORF1; putative [Streptococcus parasanguis]
74
50
606


836
1
2
259
gi|143458
ORF V [Bacillus subtilis]
74
47
258


989
2
443
724
gi|1303994
YqkM [Bacillus subtilis]
74
46
282


1106
1
1
492
gi|46970
epiD gene product [Staphylococcus epidermidis]
74
54
492


1135
2
373
528
gi|413948
ipa-24d gene product [Bacillus subtilis]
74
48
156


1234
1
452
87
gi|495245
recJ gene product [Erwinia chrysanthemi]
74
36
366


2586
1
2
238
gi|1149701
sbcC gene product [Clostridium perfringens]
74
62
237


2959
1
400
2
gi|1405454
aconitase [Bacillus subtilis]
74
60
399


2962
1
363
76
gi|450686
3-phosphoglycerate kinase [Thermotoga maritima]
74
58
288


2983
1
3
191
gi|1303893
YqhL [Bacillus subtilis]
74
56
189


3018
1
2
223
gi|143040
glutamate-1-semialdehyde 2,1-aminotransferase [Bacillus subtilis]
74
56
222







pir|D42728|D42728 glutamate-1-semialdehyde 2,1-aminomutase (EC .4.3.8) -







Bacillus' subtilis


3038
1
256
2
pir|S52915|S529
nitrate reductase alpha chain - Bacillus subtilis (fragment)
74
57
255


3062
1
189
4
gi|1107528
ttg start [Campylobacter coli]
74
51
186


4035
1
184
360
gi|1022725
unknown [Staphylococcus haemolyticus]
74
64
177


4045
1
305
3
gi|1510977
M. jannaachii predicted coding region MJ0938 [Methanococcus jannaschii]
74
41
303


4283
1
304
137
gi|520844
orf4 [Bacillus subtilis]
74
58
168


4449
1
3
221
gi|580910
peptide-synthetase ORF1 [Bacillus subtilis]
74
54
219


4587
1
231
4
gi|1370207
orf6 [Lactobacillus sake]
74
59
228


4603
1
29
214
gi|146208
glutamate synthase large subunit (EC 2.6.1.53) [Escherichia coli]
74
60
186







pir|A29617|A29617 glutamate synthase (NADPH) (EC 1.4.1.13) large hain-









Escherichia coli




4670
1
184
2
gi|1256135
YbbF [Bacillus subtilis]
74
61
183


5
10
7162
6371
gi|143727
putative [Bacillus subtilis]
73
42
792


11
2
1372
290
gi|166338
dihydroorotate dehydrogenase [Agrocybe aegerita]
73
55
1083


14
1
1020
16
gi|143373
phosphoribosyl aminoimidazole carboxy formyl ormyltransferase/inosine
73
54
1005







monophosphate cyclohydrolase (PUR-H(J)) Bacillus subtilis]


23
5
4635
3844
gi|1468939
meso-2,3-butanediol dehydrogenase (D-acetoin forming) [Klebsiella
73
58
792







pneumoniae]


23
17
16360
15341
gi|297060
ornithine cyclodeaminase [Rhizobium meliloti]
73
37
1020


29
2
692
1273
gi|467442
stage V sporulation [Bacillus subtilis]
73
54
582


31
5
4914
3361
gi|414000
ipa-76d gene product [Bacillus subtilis]
73
55
1554


37
8
7402
6146
gi|1429259
pepT gene product [Bacillus subtilis]
73
59
1257


37
9
7562
7386
gi|168367
alpha-isopropylmalate isomerase (put.); putative [Rhizomucor ircinelloides]
73
52
177


38
7
3931
4896
gi|405885
yeiN [Escherichia coli]
73
58
966


44
6
4238
3435
gi|580895
unknown [Bacillus subtilis]
73
53
804


44
11
7767
8306
gi|42009
moaB gene product [Eacherichia coli]
73
50
540


45
3
2439
3080
gi|1109685
ProW [Bacillus subtilis]
73
47
642


54
13
13794
13552
gi|413931
ipa-7d gene product [Bacillus subtilis]
73
61
243


59
4
1430
2248
gi|147923
threonine dehydratase 2 (EC 4.2.1.16) [Escherichia coli]
73
53
819


65
1
730
2
gi|677944
AppF [Bacillus subtilis]
73
56
729


80
2
860
345
gi|580932
murD gene product [Bacillus subtilis]
73
53
516


102
13
10124
11179
gi|580891
3-isopropylmalate dehydrogenase (AA 1-365) [Bacillus subtilis]
73
55
1056







pir|A26522|A26522 3-isopropylmalate dehydrogenase (EC 1.1.1.85) - Bacillus









subtilis




109
2
2600
1707
gi|1510849


M. jannaschii
predicted coding region MJ0775 [Methanococcus jannaschii]

73
40
894


120
8
4782
5756
gi|146970
ribonucleoside triphosphate reductase [Escherichia coli] pir|A47331|A47331
73
56
975







anaerobic ribonucleotide reductase - Escherichia coli


120
9
5726
6223
gi|1204333
anaerobic ribonucleoside-triphosphate reductase [Haemophilus influenzae]
73
62
498


132
5
4151
4363
gi|871048
HPSR2 - heavy chain potential motor protein [Giardia inrestinalis]
73
43
213


140
6
4324
2696
gi|634107
kdpB [Eacherichia coli]
73
59
1629


142
6
5939
4918
gi|410125
ribG gene product [Bacillus subtilis]
73
57
1122


149
4
1717
1568
gi|460892
heparin binding protein-44, HBP-44 [mice, Peptide, 360 aa]
73
53
150







pir|JX0281|JX0281 heparin-binding protein-44 precursor - mouse gi|220434







ORF [Mus musculus] (SUB 2-360)


158
1
1
1431
gi|882504
ORF_f560 [Eacherichia coli]
73
57
1431


174
6
4525
3698
gi|1146240
ketopantoate hydroxymethyltransferase [Bacillus subtilis]
73
55
828


175
8
5178
4819
gi|854657
Na/H antiporter system ORF3 [Bacillus alcalophilus)
73
56
360


186
5
5493
4393
gi|467477
unknown [Bacillus subtilis]
73
48
1101


249
6
5729
5175
gi|1524397
glycine betaine transporter OpuD [Bacillus subtilis]
73
56
555


265
4
1873
2280
gi|39848
U3 [Bacillus subtilis]
73
41
408


270
1
328
582
gi|780461
220 kDa polyprotein [African swine fever virus]
73
53
255


278
4
3618
2953
gi|1208965
hypothetical 23.3 kd protein [Eacherichia coli]
73
49
666


279
3
3593
2202
gi|1185288
isochorismate synthase [Bacillus subtilis]
73
58
1392


291
4
1207
1575
gi|1511440
glutamine - fructose-6-phosphate transaminase (Methanococcus jannaschii)
73
63
369


299
2
735
1166
gi|467437
unknown [Bacillus subtilis]
73
58
432


299
5
2050
3234
gi|467439
temperature sensitive cell division [Bacillus subtilis]
73
53
1185


334
1
728
219
gi|536655
ORF YBR244w [Saccharomyces cerevisise]
73
43
510


336
2
1036
245
gi|790943
urea amidolyase [Bacillus subtilis]
73
51
792


374
3
1389
1874
gi|1405451
YneJ [Bacillus subtilis]
73
55
486


433
4
1916
2554
gi|473902
alpha-aceholactate synthase [Lactococcus lactis]
73
54
639


509
2
1028
261
gi|467483
unknown [Bacillus subtilis]
73
56
768


513
1
918
127
gi|1146220
NAD+ dependent glycerol-3-phosphate dehydrogenase [Bacillus subtilis]
73
56
792


533
2
239
733
gi|1510605
hypothetical protein (SP: P42297) [Methanococcus jannaschii]
73
44
495


546
2
1148
2815
gi|41748
hsdM protein (AA 1-520) [Eacherichia coli]
73
52
1668


549
1
382
2
gi|1314847
CinA [Bacillus subtilis]
73
57
381


567
1
675
4
gi|410137
ORFX13 [Bacillus subtilis]
73
58
672


716
2
654
1112
gi|1256623
exodeoxyribonuclease [Bacillus subtilis]
73
56
459


772
1
3
677
gi|142010
Shows 70.2% similarity and 48.6% identity to the EnvM protein of almonella
73
57
675







typhimurium [Anabaena sp.]


774
1
3
209
gi|409286
bmrU [Bacillus subtilis]
73
52
207


782
1
1
402
gi|143320
[gap] gene products [Bacillus megaterium]
73
56
402


789
2
451
762
gi|1063246
low homology to P14 protein of Heamophilus influenzar and 14.2 kDa protein
73
56
312







of Escherichia coli [Bacillus subtilis]


796
1
3
911
gi|853754
ABC transporter [Bacillus subtilis]
73
58
909


806
3
949
689
gi|143786
tryptophanyl-tRNA synthetase (EC 6.1.1.2) [Bacillus subtilis]
73
51
261







pir|JT0481|YWBS tryptophan-tRNA ligase (EC 6.1.1.2) - Bacillus subtilis


816
2
3097
1355
gi|41748
hsdM protein (AA 1-520) [Escherichia coli]
73
52
1743


839
1
400
2
gi|886906
argininosuccinate synthetase [Streptomyces clavuligerus] pir|S57659|S57659
73
59
399







argininosuccinate synthase (EC 6.3.4.5) - treptomyces clavuligerus


857
1
3
290
gi|348052
acetoin utilization protein [Bacillus subtilis]
73
50
288


1008
1
398
6
gi|40100
rodC (tag3) polypeptide (AA 1-746) [Bacillus subtilis] ir|S06049|S06049
73
41
393







rodC protein - Bacillus subtilis p|P13485|TAGF_BACSU TECHOIC ACID







BIOSYNTHESIS PROTEIN F.


1018
1
1
213
gi|529357
No definition line found [Caenorhabditis elegans] sp|P46975|STT3_CAEEL
73
53
213







OLIGOSACCHARYL TRANSFERASE STT3 SUBUNIT OMOLOG.


1033
1
3
491
gi|142706
comG1 gene product [Bacillus subtilis]
73
51
489


1174
1
204
13
gi|1149513
alpha3a subunit of laminin 5 [Homo sapiens]
73
60
192


1175
1
329
3
gi|473817
‘ORF’ [Escherichia coli]
73
57
327


1187
1
3
209
gi|580870
ipa-37d qoxA gene product [Bacillus subtilis]
73
52
207


1206
1
72
245
gi|144816
formyltetrahydrofolate synthetase (FTHFS) (ttg start codon) (EC .3.4.3)
73
43
174







[Moorella thermoacetica]


1454
1
241
59
gi|1213253
unknown [Schizosaccharomyces pombe]
73
53
183


1469
1
260
3
gi|1303787
YqeG [Bacillus subtilis]
73
55
258


1761
1
189
4
gi|9135
Mst26Aa gene product [Drosophila simulans]
73
34
186


1849
1
243
19
gi|162307
DNA topoisomerase II [Trypanosoma cruzi]
73
60
225


2055
1
2
400
gi|559381
P47K protein [Rhodococcus erythropolis]
73
34
399


2556
1
2
244
gi|145925
fecB [Escherichia coli]
73
62
243


2947
2
400
251
gi|1184680
polynucleotide phosphorylase [Bacillus subtilis]
73
51
150


2956
1
375
4
gi|143397
quinol oxidase [Bacillus subtilis]
73
58
372


3037
1
329
3
gi|143091
acetolactate synthase [Bacillus subtilis]
73
55
327


3115
1
194
3
gi|323866
overlapping out-of-phase protein [Eggplant mosaic virus]
73
53
192







sp|P20129|V70K_EPMV 70 KD PROTEIN.


3603
2
527
354
gi|1439521
glutaryl-CoA dehydrogenase precursor [Mus musculus]
73
48
174


3743
1
400
2
gi|450688
hsdM gene of EcoprrI gene product [Escherichia coli]pir|S38437|S38437 hsdM
73
54
399







protein - Escherichia coli pir|S09629|S09629 hypothetical protein A -









Escherichia coli
(SUB 40-520)



3752
1
359
78
gi|1524193
unknown (Mycobacterium tuberculosis]
73
59
282


3852
1
2
181
gi|216746
D-lactate dehydrogenase [Lactobacillus plantarum]
73
68
180


3914
1
239
3
pir|S13490|S134
Hydroxymethylglutaryl-CoA synthase (EC 4.1.3.5) - Chicken (fragment)
73
53
237


3914
2
343
116
gi|528991
unknown [Bacillus subtilis]
73
38
228


4069
1
2
316
gi|40003
oxoglutarate dehydrogenase (NADP+) [Bacillus subtilis] p|P23129|OD01_BACSU
73
55
315







2-OXOGLUTARATE DEHYDROGENASE E1 COMPONENT (EC 2.4.2) (ALPHA-KETOGLUTARATE







DEHYDROGENASE).


4165
1
365
15
gi|1439521
glutaryl-CoA dehydrogenase precursor [Mus musculus]
73
48
351


4196
1
1
177
gi|809660
deoxyribose-phosphate aldolase [Bacillus subtilis] pir|S49455|S49455
73
60
177







deoxyribose-phosphate aldolase (EC 4.1.2.4) - Bacillus subtilis


4202
1
378
184
gi|528991
unknown [Bacillus subtilis)
73
38
195


4314
1
2
193
gi|436797
N-acyl-L-amino acid amidohydrolase [Bacillus stearothermophilus]
73
47
192







sp|P37112|AMA_BACST N-ACYL-L-AMINO ACID AMIDOHYDROLASE (EC .5.1.14)







(AMINOACYLASE).


4393
1
3
263
gi|216267
ORF2 [Bacillus megaterium)
73
47
261


35
2
903
1973
gi|1146196
phosphoglycerate dehydrogenase [Bacillus subtilis]
72
53
1071


38
22
17877
16660
gi|602031
similar to trimethylamine DH [Mycoplasma capricolum] pir|S49950|S49950
72
54
1218







probable trimethylamine dehydrogenase (EC .5.99.7) - Mycoplasma capricolum







(SGC3) (fragment)


38
23
18134
19162
gi|413968
ipa-44d gene product [Bacillus subtilis]
72
54
1029


44
19
11895
12953
gi|516272
unknown [Bacillus subtilis]
72
49
1059


48
7
6248
7117
gi|43499
pyruvate synthase [Halobacterium halobium)
72
49
870


50
7
5691
4819
gi|1205399
proton glutamate symport protein [Haemophilus influenzae]
72
53
873


53
9
9259
7997
gi|1303956
YqjE [Bacillus subtilis]
72
52
1263


56
23
29549
29995
gi|467471
unknown [Bacillus subtilis]
72
47
447


69
4
4123
2948
gi|1354775
pfoS/R [Treponema pallidum]
72
46
1176


69
5
4377
4982
gi|904198
hypothetical protein [Bacillus subtilis]
72
43
606


73
1
2
856
gi|142997
glycerol uptake facilitator [Bacillus subtilis]
72
59
855


98
13
9371
10258
gi|467435
unknown [Bacillus subtilis]
72
50
888


127
1
1
1593
gi|217144
alanine carrier protein [thermophilic bacterium PS3] pir|A45111|A45111
72
56
1593







alanine transport protein - thermophilic acterium PS-3


131
1
2600
3
gi|153952
polymerase III polymerase subunit (dnaE) [Salmonella typhimurium]
72
53
2598







pir|A45915|A45915 DNA-directed DNA polymerase (EC 2.7.7.7) III lpha chain -









Salmonella typhimurium




141
4
1040
1978
gi|1405446
transketolase [Bacillus subtilis]
72
54
939


149
8
2535
2251
gi|606234
secY [Escherichia coli]
72
44
285


149
17
5245
5018
gi|1304472
DNA polymerase [Unidentified phycodnavirus clone OTU4]
72
55
228


154
1
1
210
gi|1205620
ferritin like protein [Haemophilus influenzae]
72
40
210


155
1
1320
433
gi|391610
farnesyl diphosphate synthase [Bacillus stearothermophilus]
72
57
888







pir|JX0257|JX0257 geranyltranstransferase (EC 2.5.1.10) - Bacillus









stearothermophilus




180
1
2
328
gi|433630
A180 [Saccharomyces cerevisiae]
72
62
327


184
3
1145
3553
gi|1205110
virulence associated protein homolog [Haemophilus influenzae]
72
49
2409


195
2
1279
635
gi|1001730
hypothetical protein [Synechocystis sp.]
72
45
645


206
13
14646
15869
gi|1064807
ORTHININE AMINOTRANSFERASE [Bacillus subtilis]
72
50
1224


209
2
462
932
gi|1204666
hypothetical protein (GB: X73124_53) [Haemophilus influenzae]
72
60
471


215
2
522
280
gi|881513
insulin receptor homolog [Drosophila melanogaster] pir|S57245|S57245
72
63
243







insulin receptor homolog - fruit fly (Drosophila elanogaster) (SUB 46-







2146)


224
1
2
790
gi|949974
sucrose repressor [Staphylococcus xylosus]
72
54
789


233
1
765
4
gi|1408493
homologous to SwissProt: YIDA_ECOLI hypothetical protein [Bacillus subtilis]
72
52
762


240
1
220
1485
gi|537049
ORF_o470 [Escherichia coli]
72
52
1266


245
1
3
1340
gi|1204578
hypothetical protein (GB: U06949_1) [Haemophilus influenzae]
72
46
1338


259
2
1245
382
gi|1340128
ORF1 [Staphylococcus aureus]
72
59
864


304
2
285
1094
gi|1205330
glutamine-binding periplasmic protein [Haemophilus influenzae]
72
52
810


307
10
5039
4752
gi|1070015
protein-dependent [Bacillus subtilis]
72
53
288


315
1
260
3
gi|143399
quinol oxidase [Bacillus subtilis]
72
55
258


316
11
9308
8994
gi|1204445
hypothetical protein (SP: P27857) [Haemophilus influenzae]
72
52
315


337
3
926
1609
gi|487433
citrate synthase II [Bacillus subtilis]
72
55
684


364
7
10493
8448
gi|1510643
ferrous iron transport protein B [Methanococcus jannaschii]
72
53
2046


409
2
340
1263
gi|1402944
orfRM1 gene product [Bacillus subtilis]
72
49
924


441
3
1590
1003
gi|312379
highly conserved among eubacteria [Clostridium acetobutylicum]
72
48
588







pir|S34312|S34312 hypothetical protein V - Clostridium cetobutylicum


453
6
2505
2356
pir|S00601|BXSA
antibacterial protein 3 - Staphylococcus haemolyticus
72
70
150


460
1
2
625
gi|1016162
ABC transporter subunit [Cyanophora paradoxa]
72
51
624


463
1
1628
3
gi|666014
The polymorphysm (RFLP) of this gene is associated with usceptibility to
72
60
1626







essential hypertension. The SA gene product has light homology to acetyl-







CoA synthetase [Homo sapiens]


480
4
3047
3466
gi|433992
ATP synthase subunit epsilon [Bacillus subtilis]
72
53
420


502
1
586
86
gi|310859
ORF2 [synechococcus sp.]
72
50
501


519
1
81
1184
gi|1303704
YrkE [Bacillus subtilis]
72
54
1104


559
1
3
746
gi|1107530
ceuD gene product [Campylobacter coli]
72
56
744


575
1
573
4
gi|1303866
Yqgs [Bacillus subtilis]
72
56
570


671
1
2
592
gi|1204497
protein-export membrane protein [Haemophilus influenzae]
72
44
591


679
2
295
1251
gi|563258
virulence-associated protein E [Dichelobacter nodosus]
72
52
957


687
2
295
957
gi|1146214
44% identical amino acids with the Escherichia coli smba supress; putative
72
49
663







[Bacillus subtilis]


837
1
1
435
gi|1146183
putative [Bacillus subtilis]
72
54
435


868
1
150
788
gi|1377842
unknown [Bacillus subtilis]
72
55
639


922
1
130
432
gi|1088269
unknown protein [Azotobacter vinelandii]
72
58
303


941
1
2
238
gi|153929
NADPH-sulfite reducatase flavoprotein component [Salmonella yphimurium]
72
49
237


980
1
421
2
gi|853767
UDP-N-acetylglucosamine 1-carboxyvinyltransferase [Bacillus subtilis]
72
59
420


1209
1
213
43
gi|144735
neurotoxin type B [Clostridium botulinum]
72
44
171


1469
2
474
277
gi|1205458
hypothetical protein (GB: D26562_47) [Haemophilus influenzae]
72
63
198


1956
1
365
3
gi|154409
hexosephosphate transport protein [Salmonella typhimurium]
72
44
363







pir|B41853|B41853 hexose phosphate transport system regulatory rotein uhpB -







salmonella typhimurium


2101
1
3
401
gi|1303950
YqiY [Bacillus subtilis]
72
50
399


2503
1
399
229
gi|149713
formate dehydrogenase [Methanobacterium formicicum] pir|A42712|A42712
72
56
171







formate dehydrogenase (EC 1.2.1.2) - Methanobacterium formicicum


2967
1
3
155
gi|1212729
YqhJ [Bacillus subtilis]
72
46
153


3004
1
185
3
gi|665999
hypothetical protein [Bacillus subtilis]
72
55
183


3109
1
141
4
gi|413968
ipa-44d gene product [Bacillus subtilis]
72
45
138


3171
1
3
287
gi|515938
glutamate synthase (ferredoxin) [Synechocystis sp.] pir|S46957|S46957
72
52
285







glutamate synthase (ferredoxin) (EC 1.4.7.1) - Synechocystis sp.


3771
1
26
367
gi|1408501
homologous to N-acyl-L-amino acid amidohydrolase of Bacillus
72
63
342









stearothermophilus
[Bacillus subtilis]



3951
1
1
222
gi|1500409


M. jannaschii
predicted coding region MJ1519 [Methanococcus jannaschii]

72
38
222


4190
1
362
3
gi|39956
IIGlc [Bacillus subtilis]
72
57
360


4444
1
3
347
gi|1009366
Respiratory nitrate reductase [Bacillus subtilis]
72
55
345


6
2
931
1200
gi|537095
ornithine carbamoyltransferase [Escherichia coli]
71
55
270


11
15
10859
10368
gi|532309
25 kDa protein [Escherichia coli]
71
47
492


19
2
1248
2435
gi|1244574
D-alanine; D-alanine ligase [Enterococcus hirae]
71
52
1188


21
2
898
1488
gi|149629
anthranilate synthase component 2 [Leptospira biflexa] pir|C32840|C32840
71
45
591







anthranilate synthase (EC 4.1.3.27) component II Leptospira biflexa


34
1
1
567
gi|1303983
YqkF [Bacillus subtilis]
71
59
567


37
3
2806
2420
gi|1209681
glutamate-rich protein [Bacillus firmus]
71
50
387


38
18
12250
12462
gi|927645
arginyl endopeptidase [Porphyromonas gingivalis]
71
50
213


39
3
1246
4431
pir|S09411|S094
spoIIIE protein - Bacillus subtilis
71
49
3186


53
14
14760
13750
gi|142611
branched chain alpha-keto acid dehydrogenase E1-alpha [Bacillus subtilis]
71
58
1011


54
11
12625
11789
gi|143014
gnt repressor [Bacillus subtilis]
71
46
837


57
7
5860
4568
gi|508175
EIIC domain of PTS-dependent Gat transport and phosphorylation Escherichia
71
48
1293







coli]


57
18
13897
14334
gi|1063247
high homology to flavohemoprotein (Haemoglobin-like protein) of Alcaligenes
71
56
438







eutrophus and Saccharomyces cerevisiae [Bacillus subtilis]


62
16
9831
10955
gi|1303926
YgiG [Bacillus subtilis]
71
54
1125


70
12
8505
8966
gi|147198
phnE protein [Escherichia coli]
71
38
462


86
5
2089
1784
gi|904205
hypothetical protein [Bacillus subtilis]
71
51
306


96
7
7601
8269
gi|709991
hypothetical protein [Bacillus subtilis]
71
49
669


100
6
4822
5931
gi|1060848
Opine dehydrogenase [Arthrobacter sp.]
71
45
1110


103
1
532
2
gi|143089
iep protein [Bacillus subtilis]
71
41
531


109
18
15312
15695
gi|413985
ipa-61d gene product [Bacillus subtilis]
71
57
384


113
1
316
2
gi|663254
probable protein kinase [Saccharomyces cerevisiae]
71
57
315


114
5
5603
4608
gi|143156
membrane bound protein [Bacillus subtilis]
71
40
996


133
2
1723
359
gi|1303913
YqhX [Bacillus subtilis]
71
53
1365


149
19
5895
5455
gi|529650
G40P [Bacteriophage SPP1]
71
51
441


154
5
3087
2539
gi|425488
repressor protein [Streptococcus sobrinus]
71
47
549


164
11
11354
11689
gi|49318
ORF4 gene product [Bacillus subtilis]
71
52
336


169
5
1936
2745
gi|1403403
unknown [Mycobacterium tuberculosis]
71
56
810


193
2
272
1234
gi|1303788
YqeH [Bacillus subtilis]
71
49
963


205
1
895
47
gi|1215694
GlnQ [Mycoplasma pneumoniae]
71
46
849


233
4
1849
2022
gi|633732
ORF1 [Campylobacter jejuni]
71
50
174


237
7
4501
5169
gi|149384
HisIE [Lactococcus lactis]
71
54
669


272
4
2273
1698
gi|709993
hypothetical protein [Bacillus subtilis]
71
48
576


274
2
618
1496
gi|143035
NAD(P)H: glutamyl-transfer RNA reductase [Bacillus subtilis]
71
53
879







pir|A35252|A35252 5-aminolevulinate synthase (EC 2.3.1.37) - Bacillus









subtilis




276
5
2720
2091
gi|303562
ORF210 [Escherichia coli]
71
50
630


287
1
136
660
gi|310634
20 kDa protein [Streptococcus gordonii]
71
53
525


288
6
2771
2220
gi|1256625
putative [Bacillus subtilis]
71
47
552


301
6
2461
1430
gi|467417
similar to lysine decarboxylase [Bacillus subtilis]
71
57
1032


306
4
5222
3837
gi|1256618
transport protein [Bacillus subtilis]
71
56
1386


307
2
925
314
gi|602683
orfC [Mycoplasma capricolum]
71
45
612


310
5
5146
4499
gi|348052
acetoin utilization protein [Bacillus subtilis]
71
51
648


322
1
2
1303
gi|1001819
hypothetical protein [Synechocystis sp.]
71
46
1302


333
4
3995
3819
gi|467473
unknown [Bacillus subtilis]
71
57
177


350
2
548
922
gi|551879
ORF 1 [Lactococcus lactis]
71
55
375


375
4
1860
3071
gi|467447
unknown [Bacillus subtilis]
71
57
1212


380
5
1560
2102
gi|142557
ATP synthase b subunit [Bacillus megaterium]
71
43
543


414
2
251
637
gi|580904
homologous to E. coli rnpA [Bacillus subtilis]
71
49
387


424
1
335
1354
gi|581305
L-lactate dehydrogenase [Lactobacillus plantarum]
71
57
1020


436
4
3270
2839
pir|PN0501|PN05
phosphoribosylanthranilate isomerase (EC 5.3.1.24) - Bacillus subtilis
71
66
432







[fragment]


482
1
3
1280
gi|410142
ORFX18 [Bacillus subtilis]
71
49
1278


525
3
1844
1416
gi|143370
Phosphoribosylpyrophosphate amidotransferase [PUR-F; EC 2.4.2.14] Bacillus
71
56
429









subtilis
]



529
4
2047
1355
gi|606150
ORF_f309 [Escherichia coli]
71
43
693


563
1
22
969
gi|1237015
ORF4 [Bacillus subtilis]
71
53
948


581
1
255
4
gi|1301730
T25G3.2 [Caenorhabditis elegans]
71
47
252


612
2
913
758
gi|153968
fimbriae Z [Salmonella typhimurium]
71
55
156


613
1
1
654
gi|466778
lysine specific permease [Escherichia coli]
71
50
654


618
1
623
3
gi|1146238
poly(A) polymerase [Bacillus subtilis]
71
52
621


630
1
586
2
gi|1486243
unknown [Bacillus subtilis]
71
53
585


691
1
641
156
gi|289260
comE ORF1 [Bacillus subtilis]
71
51
486


694
2
149
427
gi|12971
NADH dehydrogenase subunit V (AA 1-605) [Gallus gallus] ir|s10197|S10197
71
47
279







NADH dehydrogenase (ubiquinone) (EC 1.6.5.3) chain - chicken mitochondrion







(SGC1)


715
2
169
777
gi|1303830
YqfL [Bacillus subtilis]
71
53
609


746
2
970
467
gi|1377843
unknown [Bacillus subtilis]
71
52
504


748
1
802
167
gi|1405459
YneS [Bacillus subtilis]
71
49
636


753
1
524
30
gi|1510389


M. jannaschii
predicted coding region MJ0296 [Methanococcus jannaschii]

71
53
495


761
1
3
215
gi|475972
pentafunctional enzyme [Pneumocystis carinii]
71
47
213


783
1
703
203
gi|536655
ORF YBR244w [Saccharomyces cerevisiae]
71
52
501


800
3
987
682
gi|1204326
tRNA delta (2)-isopentenylpyrophosphate transferase [Haemophilus influenzae]
71
48
306


806
1
116
286
gi|1419075
cbiM gene product [Methanobacterium thermoautotrophicum]
71
50
171


931
1
488
3
gi|893358
PgsA [Bacillus subtilis]
71
56
486


1041
1
2
262
gi|1408507
pyrimidine nucleoside transport protein [Bacillus subtilis]
71
45
261


1070
1
2
172
gi|709993
hypothetical protein [Bacillus subtilis]
71
46
171


1176
1
57
365
gi|151259
HMG-CoA reductase (EC 1.1.1.88) [Pseudomonas mevalonii] pir|A44756|A44756
71
49
309







hydroxymethylglutaryl-CoA reductase (EC 1.1.1.88) Pseudomonas sp.


1181
1
184
2
gi|46971
epiP gene product [Staphylococcus epidermidis]
71
50
183


1281
1
3
290
gi|153016
ORF 419 protein [Staphylococcus aureus]
71
50
288


1348
1
229
2
gi|602683
orfc [Mycoplasma capricolum]
71
48
228


2002
1
379
2
gi|1008177
ORF YJL046w [Saccharomyces cerevisiae]
71
48
378


2119
1
2
217
gi|1046088
arginyl-tRNA synthetase [Mycoplasma genitalium]
71
50
216


2418
1
3
320
gi|1499771


M. jannaschii
predicted coding region MJ0936 [Methanococcus jannaschii]

71
57
318


2961
1
2
187
gi|312443
carbamoyl-phosphate synthase (glutamine-hydrolysing) [Bacillus aldolyticus]
71
57
186


2999
2
67
306
gi|710020
nitrite reductase (nirB) [Bacillus subtilis]
71
43
240


3033
1
2
184
gi|1262335
YmaA [Bacillus subtilis]
71
57
183


3584
1
3
338
gi|401716
beta-isopropylmalate dehydrogenase [Neurospora crassa]
71
55
336


3715
2
399
55
gi|563952
gluconate permease [Bacillus licheniformis]
71
59
345


3785
1
387
4
gi|47382
acyl-CoA-dehydrogenase [Streptomyces purpurascens]
71
57
384


3875
1
272
3
gi|1001541
hypothetical protein [Synechocystis sp.]
71
38
270


4135
1
320
3
gi|142695
S-adenosyl-L-methionine: uroporphyrinogen III methyltransferase Bacillus
71
52
318







megaterium]


4249
1
63
239
gi|1205363
deoxyribose aldolase [Haemophilus influenzae]
71
63
177


4508
1
267
4
gi|1197667
vitellogenin [Anolis pulchellus]
71
46
264


1976
1
237
22
gi|9806
lysine-rich aspartic acid-rich protein [Plasmodium chabaudi]
56
33
216







r|S22183|S22183 lysine/aspartic acid-rich protein - Plasmodiom baudi


2161
1
2
400
gi|1237015
ORF4 [Bacillus subtilis]
56
27
399


2958
1
183
4
gi|466685
No definition line found [Escherichia coli]
56
26
180


2979
1
212
3
gi|1204354
spore germination and vegetative growth protein [Haemophilus infiuenzae]
56
40
210


2994
2
326
126
gi|836646
phosphoribosylformimino-praic ketoisomerase [Rhodobacter phaeroides]
56
29
201


3026
1
179
328
gi|143306
penicllin V amidase [Bacillus sphaericus]
56
30
150


3189
1
146
3
gi|1166604
Similar to aldehyde dehydrogenase [Caenorhabditis elegans]
56
37
144


3770
1
63
401
gi|1129145
acetyl-CoA C-acyltransferase [Mangifera indica]
56
43
339


4054
2
361
2
gi|1205355
Na+/H+ antiporter [Haemophilus influenzae]
56
31
360


4145
1
1
324
gi|726095
long-chain acyl-CoA dehydrogenase [Mus musculus]
56
36
324


4200
1
254
3
gi|155588
glucose-fructose oxidoreductase [Zymomonas mobilis|pir|A42289|A42289
56
40
252







glucose-fructose oxidoreductase (EC 1.1.—.—) recursor - Zymomonas mobilis


4273
1
355
35
gi|308861
GTG start codon [Lactococcus lactis]
56
33
321


1
3
3436
2777
gi|5341
Putative orF YCLX8c, len: 192 [Saccharomyces cerevisiae] r|S53591|S53591
55
25
660







hypothetical protein - yeast (Saccharomyces evisiae)


11
12
8505
7633
gi|216773
haloacetate dehalogenase H-1 [Moraxella sp.]
55
32
873


12
4
4534
3935
gi|467337
unknown [Bacillus subtilis]
55
26
600


19
5
5404
5844
gi|1001719
hypothetical protein [Synechocystis sp.]
55
25
441


23
13
12339
10591
gi|474190
iucA gene product [Escherichia coli]
55
30
1749


32
7
5368
6888
gi|1340096
unknown [Mycobacterium tuberculosis]
55
37
1521


34
3
1808
1047
gi|1303968
YqjQ [Bacillus subtilis]
55
39
762


34
5
3412
2864
gi|1303962
Yqjk [Bacillus subtilis]
55
33
549


36
1
647
3
gi|606045
ORF_o118 [Escherichia coli]
55
27
645


36
6
5243
4266
gi|1001341
hypothetical protein [Synechocystis sp.]
55
31
978


47
3
3054
3821
gi|1001819
hypothetical protein [Synechocystis sp.]
55
21
768


49
1
1127
189
gi|403373
glycerophosphoryl diester phosphodiesterase [Bacillus subtilis]
55
36
939







pir|S37251|S37251 glycerophosphoryl diester phosphodiesterase - Bacillus









subtilis




67
11
8966
9565
gi|153053
norA1199 protein [Staphylococcus aureus]
55
23
600


75
3
881
1273
gi|41698
L-histidinol: NAD+ oxidoreductase (EC 1.1.1.23) (aa 1-434) Escherichia coli)
55
33
393


82
9
14194
13001
gi|1136221
carboxypeptidase [Sulfolobus solfataricus]
55
35
1194


87
4
3517
4917
gi|1064812
function unknown [Bacillus subtilis]
55
26
1401


88
2
1172
1636
gi|882463
protein-N(pi)-phosphohistldine-sugar phosphotransferase [Escherichia coli]
55
35
465


92
1
127
516
gi|1377832
unknown [Bacillus subtilis]
55
36
390


100
2
836
2035
gi|1370274
zeaxanthin epoxidase [Nicotiana plumbaginifolia]
55
36
1200


100
5
4658
4179
gi|396660
unknown open reading frame [Buchnera aphidicola]
55
29
480


108
3
2986
1706
gi|1499866


M. jannaschii
predicted coding region MJ1024 [Methanococcus jannaschli]

55
31
1281


114
3
1834
1052
gi|1511367
formate dehydrogenase, alpha subunit [Methanococcus jannaschii]
55
29
783


144
3
1476
1147
gi|1100787
unkown [Saccharomyces cerevisiae]
55
35
330


165
5
5508
4804
gi|1045884
M. genitalium predicted coding region MG199 [Hycoplasma genitalium]
55
27
705


189
5
2205
2576
gi|142569
ATP synthase a subunit [Bacillus firmus]
55
35
372


191
6
6857
4578
gi|559411
B0272.3 [Caenorhabditis elegans]
55
39
2280


194
2
364
636
gi|1145768
K7 kinesin-like protein [Dictyostelium discoideum]
55
34
273


209
4
1335
1676
gi|473357
thi4 gene product [Schizosaccharomyces pombe]
55
35
342


211
2
1145
597
gi|410130
ORFX6 [Bacillus subtilis]
55
37
549


213
2
644
1372
gi|633692
TrsA [Yersinia enterocolitica]
55
28
729


214
7
4144
5481
gi|1001793
hypothetical protein [Synechocystis sp.]
55
30
1338


221
7
9197
6921
gi|466520
pocR [Salmonella typhimurium]
55
32
2277


233
8
4817
3726
gi|1237063
unknown [Mycobacterium tuberculosis]
55
38
1092


236
4
1375
2340
gi|1146199
putative [Bacillus subtilis]
55
32
966


243
2
380
1885
gi|459907
mercuric reductase (Plasmid pI258]
55
29
1506


258
1
394
2
gi|455006
orf6 [Rhodococcus fascians]
55
36
393


281
1
126
938
gi|1408493
homologous to SwissProt: YIDA_ECOLI hypothetical protein [Bacillus subtilis]
55
35
813


316
3
1323
2102
gi|1486447
LuxA homologue [Rhizobium sp.]
55
30
780


326
5
2744
2520
gi|1296824
proline iminopeptidase [Lactobacillus helveticus]
55
36
225


351
2
1429
536
gi|1204820
hydrogen peroxide-inducible activator [Haemophilus influenzae]
55
28
894


353
4
2197
2412
gi|1272475
chitin synthase [Emericella nidulans]
55
50
216


380
1
14
379
gi|142554
ATP synthase i subunit [Bacillus megaterium]
55
37
366


383
1
232
2
gi|289272
ferrichrome-binding protein [Bacillus subtilis]
55
36
231


386
1
3
938
gi|1510251
DNA helicase, putative [Methanococcus jannaschii]
55
30
936


410
2
1208
1891
gi|1205144
multidrug resistance protein [Haemophilus influenzae]
55
27
684


483
2
411
833
gi|413934
ipa-10r gene product [Bacillus subtilis]
55
26
423


529
3
1433
1089
gi|606150
ORF_f309 [Escherichia coli]
55
33
345


555
1
585
82
gi|143407
para-aminobenzoic acid synthase, component I (pab) [Bacillus subtilis]
55
28
504


565
1
202
2
gi|1223961
CDP-tyvelose epimerase [Yersinia pseudotuberculosis]
55
41
201


582
1
452
153
gi|1256643
20.2% identity with NADH dehydrogenase of the Leishmania major
55
36
300







mitochondrion; putative [Bacillus subtilis]


645
5
2057
1854
gi|210824
fusion protein F [Bovine respiratory syncytial virus] pir|JQ1481|VGNZBA
55
25
204







fusion glycoprotein precursor - bovine espiratory syncytial virus (strain







A51908)


672
2
957
2216
gi|1511333


M. jannaschii
predicted coding region MJ1322 [Methanococcus jannaschii]

55
36
1260


730
1
479
3
gi|537007
ORF_f379 [Escherichia coli]
55
30
477


737
1
945
31
gi|536963
CG Site No. 18166 [Escherichia coli]
55
30
915


742
2
228
572
gi|304160
product unknown [Bacillus subtilis]
55
38
345


817
2
903
595
gi|1136289
histidine kinase A [Dictyostelium discoideum]
55
29
309


819
1
355
128
gi|558073
polymorphic antigen [Plasmodium falciparum]
55
22
228


832
2
724
296
gi|40367
ORFC [Clostridium acetobutylicum]
55
32
429


840
1
386
3
gi|1205875
pseudouridylate synthase I [Haemophilus influenzae]
55
39
384


1021
1
23
529
gi|48563
beta-lactamase [Yersinia enterocolitica]
55
38
507


1026
1
60
335
gi|47804
Opp C (AA1-301) [Salmonella typhimurium]
55
26
276


1525
1
1
282
gi|1477533
sarA [Staphylococcus aureus]
55
29
282


1814
2
224
985
gi|1046078
M. genitalium predicted coding region MG369 [Mycoplasma genitalium]
55
38
762


3254
1
254
81
gi|413968
ipa-44d gene product [Bacillus subtilis]
55
30
174


3695
1
345
4
gi|216773
haloacetate dehalogenase H-1 [Moraxella sp.]
55
32
342


3721
1
1
312
gi|42029
ORF1 gene product [Escherichia coli]
55
31
312


3799
1
3
272
gi|42029
ORF1 gene product [Escherichia coli]
55
38
270


3889
1
22
423
gi|1129145
acetyl-CoA C-acyltransferase [Mangifera indica]
55
45
402


3916
1
2
385
gi|529754
speC [Streptococcus pyogenes]
55
38
384


3945
1
4
198
gi|476252
phase 1 flagellin [Salmonella enterica]
55
36
195


4074
1
246
4
gi|42029
ORF1 gene product [Escherichia coli]
55
38
243


4184
1
2
343
gi|1524267
unknown [Hycobacterium tuberculosis]
55
28
342


4284
1
14
208
gi|1100774
ferredoxin-dependent glutamate synthase [Synechocystis sp.]
55
36
195


4457
2
378
112
gi|180189
cerebellar-degeneration-related antigen (CDR34) [Homo sapiens] gi|182737
55
38
267







cerebellar degeneration-associated protein [Homo sapiens]







pir|A29770|A29770 cerebellar degeneration-related protein - human


4514
1
2
244
gi|216773
haloacetate dehalogenase H-1 [Moraxella sp.]
55
32
243


4599
1
217
2
gi|1129145
acetyl-CoA C-acyltransferase [Mangifera indica]
55
42
216


4606
1
210
4
gi|386120
myosin alpha heavy chain (S2 subfragment) [rabbits, masseter, eptide
55
27
207







Partial, 234 aa]


5
8
4932
4516
gi|536069
ORF YBL047c [Saccharomyces cerevisiae]
54
27
417


12
7
6165
5164
gi|1205504
homoserine acetyltransferase [Haemophilus influenzae]
54
30
1002


23
16
15326
13566
gi|474192
iucC gene product [Escherichia coli]
54
31
1761


35
1
2
979
gi|48054
small subunit of soluble hydrogenase (AA 1-384) [Synechococcus sp.]
54
36
978







ir|S06919|HQYCSS soluble hydrogenase (EC 1.12.—.—) small chain -







nechococcus sp. (PCC 6716)


37
11
8667
7897
gi|537207
ORF_f277 [Escherichia coli]
54
38
771


37
12
8165
8332
gi|1160967
palmitoyl-protein thioesterase [Homo sapiens]
54
37
168


46
15
13025
13804
gi|438473
protein is hydrophobic, with homology to E. coli ProW; putative Bacillus
54
28
780









subtilis
]



56
2
203
736
gi|1256139
YbbJ [Bacillus subtilis]
54
34
534


57
13
10179
9241
gi|1151248
inosine-uridine preferring nucleoside hydrolase [Crithidia fasciculata]
54
32
939


66
2
516
1133
gi|1335781
Cap [Drosophila melanogaster]
54
29
618


70
10
8116
8646
gi|1399823
PhoE [Rhizobium meliloti]
54
31
531


70
15
11801
11046
sp|P02983|TCR_S
TETRACYCLINE RESISTANCE PROTEIN.
54
29
756


87
5
4915
5706
gi|1064811
function unknown [Bacillus subtilis]
54
33
792


92
4
2289
1573
gi|1205366
oligopeptide transport ATP-binding protein [Haemophilus influenzae]
54
33
717


103
2
1556
516
gi|710495
protein kinase [Bacillus brevis]
54
33
1041


105
2
2095
605
gi|143727
putative [Bacillus subtilis]
54
30
1491


112
4
2337
2732
gi|153724
MalC [Streptococcus pneumoniae]
54
41
396


127
2
1720
2493
gi|144297
acetyl esterase (XynC) [Caldocellum saccharolyticum] pir|B37202|B37202
54
34
774







acetylesterase (EC 3.1.1.6) (XynC) - Caldocellum accharolyticum


138
5
1600
3306
gi|42473
pyruvate oxidase [Escherichia coli]
54
36
1707


152
2
525
1172
gi|1377834
unknown [Bacillus subtilis]
54
23
648


161
9
4831
5469
gi|903305
ORF73 [Bacillus subtilis]
54
28
639


161
13
6694
7251
gi|1511039
phosphate transport system regulatory protein [Methanococcus jannaschii]
54
32
558


164
6
3263
4543
gi|1204976
prolyl-tRNA synthetase [Haemophilus influenzae]
54
34
1281


164
20
21602
22243
gi|143582
spoIIIEA protein [Bacillus subtilis]
54
32
642


171
6
4250
2817
gi|436965
[malA] gene products [Bacillus stearothermophilus] pir|S43914|S43914
54
37
1434







hypothetical protein 1 - Bacillus stearothermophilus


206
18
19208
19720
gi|1240016
R09E10.3 [Caenorhabditis elegans]
54
38
513


218
2
1090
1905
gi|467378
unknown [Bacillus subtilis]
54
26
816


220
1
663
4
gi|1353761
myosin II heavy chain [Naegleria fowleri]
54
22
660


220
13
12655
13059
pir|S00485|S004
gene 11-1 protein precursor - Plasmodium falciparum (fragments)
54
35
405


221
3
2030
3709
gi|1303813
YqeW [Bacillus subtilis]
54
34
1680


272
7
4219
3383
gi|62964
arylamine N-acetyltransferase (AA 1-290) [Gallus gallus] ir|S06652|XYCHY3
54
33
837







arylamine N-acetyltransferase (EC 2.3.1.5) (clone NAT-3) - chicken


316
7
4141
4701
gi|682769
mccE gene product [Escherichia coli]
54
31
561


316
10
6994
8742
gi|413951
ipa-27d gene product [Bacillus subtilis]
54
28
1749


338
3
2214
1051
gi|490328
LORF F [unidentified]
54
28
1164


341
4
3201
3614
gi|171959
myosin-like protein [Saccharomyces cerevisiae]
54
25
414


346
1
912
4
gi|396400
similar to eukaryotic Na+/H+ exchangers [Escherichia coli]
54
34
909







sp|P32703|YJCE_ECOLI HYPOTHETICAL 60.5 KD PROTEIN IN SOXR-ACS NTERGENIC







REGION (0549).


348
2
623
1351
gi|537109
ORF_f343a [Escherichia coli]
54
34
729


378
2
1007
1942
sp|P02983|TCR_S
TETRACYCLINE RESISTANCE PROTEIN
54
31
936


408
6
4351
5301
gi|474190
iucA gene product [Escherichia coli]
54
29
951


444
9
7934
8854
gi|216267
ORF2 [Bacillus megaterium]
54
32
921


463
2
2229
1741
gi|304160
product unknown [Bacillus subtilis]
54
50
489


502
2
1133
570
gi|1205015
hypothetical protein (SP: P10120) [Haemophilus influenzae]
54
38
564


505
6
5357
4452
gi|1500558
2-hydroxyhepta-2,4-diene-1,7-dioate isomerase [Methanococcus jannaschii]
54
41
906


550
1
1522
308
gi|40100
rodC (tag3) polypeptide (AA 1-746) [Bacillus subtilis] ir|S06049|S06049
54
35
1215







rodC protein - Bacillus subtilis p|P13485|TAGF_BACSU TECHOIC ACID







BIOSYNTHESIS PROTEIN F.


551
5
3305
4279
gi|950197
unknown [Corynebacterium glutamicum]
54
34
975


558
2
958
560
gi|485090
No definition line found [Caenorhabditis elegans]
54
32
399


580
1
91
936
gi|331906
fused envelope glycoprotein precursor [Friend spleen focus-forming irus]
54
45
846


603
3
554
757
gi|1323423
ORF YGR234w [Saccharomyces cerevisiae]
54
36
204


617
1
25
249
gi|219959
ornithine transcarbamylase [Homo sapiens]
54
40
225


622
3
1097
1480
gi|1303873
YqgZ [Bacillus subtilis]
54
25
384


623
1
3
404
gi|1063250
low homology to P20 protein of Bacillus lichiniformis and bleomycin
54
45
402







acetyltransferase of Streptomyces verticillus [Bacillus subtilis]


689
1
1011
475
gi|552446
NADH dehydrogenase subunit 4 [Apis mellifera ligustica]pir|S52968|S52968
54
30
537







NADH dehydrogenase chain 4 - honeybee itochondrion (SGC4)


725
2
686
1441
gi|987096
sensory protein kinase [Streptomyces hygroscopicus]
54
26
756


956
1
1
249
pir|S30782|S307
integrin homolog - yeast [Saccharomyces cerevisiae]
54
24
249


978
2
859
581
gi|1301994
ORF YNL091w [Saccharomyces cerevisiae]
54
33
279


1314
1
3
281
gi|1001108
hypothetical protein [Synechocystis sp.]
54
33
279


2450
1
1
228
gi|1045057
ch-TOG [Homo sapiens]
54
32
228


2934
1
1
387
gi|580870
ipa-37d qoxA gene product [Bacillus subtilis]
54
36
387


2970
1
251
3
sp|P37348|YECE
HYPOTHETICAL PROTEIN IN ASPS 5′REGION (FRAGMENT).
54
42
249


3002
1
1
309
gi|44027
Tma protein [Lactococcus lactis]
54
33
309


3561
1
9
464
gi|151259
HMG-CoA reductase (EC 1.1.1.88) [Pseudomonas mevalonii] pir|A44756|A44756
54
35
456







hydroxymethylglutaryl-CoA reductase (EC 1.1.1.88) Pseudomonas sp.


3572
1
72
401
gi|450688
hsdM gene of EcoprrI gene product [Escherichia coli] pir|S38437|S38437 hsdM
54
36
330







protein - Escherichia coli pir|S09629|S09629 hypothetical protein A -









Escherichia coli
(SUB 40-520)



3829
1
400
2
gi|1322245
mevalonate pyrophosphate decarboxylase [Rattus norvegicus]
54
29
399


3909
1
1
273
gi|29865
CENP-E [Homo sapiens]
54
30
273


3921
1
3
209
pir|S24325|S243
glucan 1,4-beta-glucosidase (EC 3.2.1.74) - Pseudomonas fluorescens subsp.
54
34
207







cellulosa


4438
1
285
4
gi|1196657
unknown protein [Mycoplasma pneumoniae]
54
30
282


4459
1
3
272
gi|1046081
hypothetical protein (GB: D26185_10) [Mycoplasma genitalium]
54
38
270


4564
1
3
221
gi|216267
ORF2 [Bacillus megaterium]
54
38
219


23
12
10685
8832
gi|474192
iucC gene product [Escherichia coli]
53
35
1854


23
14
13579
12317
gi|42029
ORF1 gene product [Escherichia coli]
53
32
1263


24
3
3940
3440
gi|1369947
c2 gene product [Bacteriophage B1]
53
36
501


26
4
3818
4618
gi|1486247
unknown [Bacillus subtilis]
53
37
801


38
6
2856
3998
gi|405880
yeil [Escherichia coli]
53
40
1143


38
10
7806
6232
gi|1399954
thyroid sodium/iodide symporter NIS [Rattus norvegicus]
53
29
1575


56
10
12100
11876
pir|A54592|A545
110k actin filament-associated protein - chicken
53
32
225


57
6
4583
4119
pir|A00341|DEZP
alcohol dehydrogenase (EC 1.1.1.1) - fission yeast [Schizosaccharomyces
53
39
465









pombe
]



57
12
8932
7349
gi|1480429
putative transcriptional regulator [Bacillus stearothermophilus]
53
30
1584


67
12
9496
10218
gi|1511555
quinolone resistance norA protein protein [Methanococcus jannaschii]
53
31
723


69
3
2382
1639
gi|1087017
arabinogalactan-protein, AGP [Nicotiana alata, cell-suspension culture
53
30
744







filtrate, Peptide, 461 aa]


79
1
3
1031
gi|1523802
glucanase [Anabaena variabilis]
53
32
1029


80
1
338
3
gi|452428
ATPase 3 [Plasmodium falciparum]
53
36
336


88
4
1910
2524
gi|537034
ORF_o488 [Escherichia coli]
53
25
615


88
5
2467
3282
gi|537034
ORF_o488 [Escherichia coli]
53
29
816


92
8
5505
5140
gi|399598
amphotropic murine retrovirus receptor [Rattus norvegicus]
53
33
366


94
5
3239
2061
gi|173038
tropomyosin (TPM1) [Saccharomyces cerevisiae]
53
25
1179


99
5
4207
5433
sp|P28246|BCR_E
BICYCLOMYCIN RESISTANCE PROTEIN (SULFONAMIDE RESISTANCE PROTEIN)
53
30
1227


120
3
1639
2262
gi|576655
ORF1 [Vibrio anguillarum]
53
35
624


120
11
7257
8897
gi|1524397
glycine betaine transporter OpuD [Bacillus subtilis]
53
33
1641


127
6
5685
4477
gi|1256630
putative [Bacillus subtilis]
53
32
1209


147
2
255
557
gi|581648
epiB gene product [Staphylococcus epidermidis]
53
34
303


158
4
4256
3807
gi|151004
mucoidy regulatory protein AlgR [Pseudomonas aeruginosa] pir|A32802|A32802
53
32
450







regulatory protein algR —Pseudomonas aeruginosa sp|P26275|ALGR_PSEAE







POSITIVE ALGINATE BIOSYNTHESIS REGULATORY ROTEIN.


171
7
5421
5125
gi|1510669
hypothetical protein (GP: D64044_18) [Methanococcus jannaschii]
53
34
297


191
9
11483
9879
gi|298085
acetoacetate decarboxylase [Clostridium acetobutylicum] pir|B49346|B49346
53
31
1605







butyrate—acetoacetate CoA-transferase (EC .8.3.9) small chain -







Clostridium acetobutylicum sp|P33752|CTFA_CLOAB BUTYRATE-ACETOACETATE COA-







TRANSFERASE SUBUNIT (EC 2.8.3.9) (COAT A)


203
5
3763
4326
gi|143456
rpoE protein (ttg start codon) [Bacillus subtilis]
53
29
564


206
17
18204
18971
gi|304136
acetylglutamate kinase [Bacillus stearothermophilus] sp|Q07905|ARGB_BACST
53
36
768







ACETYLGLUTAMATE KINASE (EC 2.7.2.8) (NAG INASE) (AGK) (N-ACETYL-L-







GLUTAMATE 5-PHOSPHOTRANSFERASE).


212
10
4021
4221
gi|9878
protein kinase [Plasmodium falciparum]
53
28
201


231
2
1350
1120
gi|537506
paramyosin [Dirofilaria immitis]
53
34
231


272
6
2719
3249
pir|A33141|A331
hypothetical protein (gtfD 3′ region) - Streptococcus mutans
53
34
531


308
3
927
2576
gi|606292
ORF_o696 [Escherichia coli]
53
33
1650


320
7
5645
5884
gi|160596
RNA polymerase III largest subunit [Plasmodium falciparum]
53
33
240







sp|P27625|RPC1_PLAFA DNA-DIRECTED RNA POLYMERASE III LARGEST UBUNIT (EC







2.7.7.6).


327
1
218
901
gi|854601
unknown [Schizosaccharomyces pombe]
53
31
684


341
2
212
2500
gi|633732
ORF1 [Campylobacter jejuni]
53
31
2289


351
1
383
3
sp|P31675|YABM
HYPOTHETICAL 42.7 KD PROTEIN IN TBPA-LEUD INTERGENIC REGION (ORF104).
53
32
381


433
7
4731
4375
gi|1001961
MHC class II analog [Staphylococcus aureus]
53
30
357


454
2
980
720
pir|A60328|A603
40K cell wall protein precursor (sr 5′ region) - Streptococcus mutans
53
27
261







(strain OMZ175, serotype f)


470
4
1123
1761
gi|516826
rat GCP360 [Rattus rattus]
53
30
639


483
1
217
2
gi|1480429
putative transcriptional regulator [Bacillus stearothermophilus]
53
33
216


544
1
516
1259
gi|46587
ORF 1 (AA 1-121) (1 is 2nd base in codon) [Staphylococcus aureus]
53
38
744







ir|S15765|S15765 hypothetical protein 1 (hlb 5′ region) - Staphylococcus







aureus (fragment)


558
10
3754
3551
gi|15140
res gene [Bacteriophage P1]
53
32
204


603
2
339
620
gi|507738
Hmp [Vibrio parahaemolyticus]
53
26
282


693
1
941
213
gi|153123
toxic shock syndrome toxin-1 precursor [Staphylococcus aureus]
53
38
729







pir|A24606|XCSAS1 toxic shock syndrome toxin-1 precursor - Staphylococcus









aureus




766
1
2
673
gi|687600
orfA2; orfA2 forms an operon with orfA1 [Listeria monocytogenes]
53
43
672


781
1
335
3
gi|1204551
pilin biogenesis protein [Haemophilus influenzae]
53
26
333


801
1
3
545
gi|1279400
SapA protein [Escherichia coli]
53
25
543


803
1
2
910
gi|695278
lipase-like enzyme [Alcaligenes eutrophus]
53
30
909


872
1
590
3
gi|298032
EF [Streptococcus suis]
53
30
588


910
1
2
184
gi|1044936
unknown [Schizosaccharomyces pombe]
53
29
183


943
1
399
4
gi|290508
similar to unidentified ORF near 47 minutes [Escherichia coli]
53
30
396







sp|P31436|YICK_ECOLI HYPOTHETICAL 43.5 KD PROTEIN IN SELC-NLPA NTERGENIC







REGION.


988
1
504
4
gi|142441
ORF 3; putative [Bacillus subtilis]
53
28
501


1064
1
3
434
gi|305080
myosin heavy chain [Entamoeba histolytica]
53
26
432


1366
1
3
452
gi|308852
transmembrane protein [Lactococcus lactis]
53
33
450


1758
1
397
2
gi|1001774
hypothetical protein [Synechocystis sp.]
53
30
396


1897
1
1
447
gi|1303949
YqiX [Bacillus subtilis]
53
27
447


2381
1
400
2
gi|1146243
22.4% identity with Escherichia coli DNA-damage inducible protein ...;
53
37
399







putative [Bacillus subtilis]


3537
1
1
327
gi|450688
hsdM gene of EcoprrI gene product [Escherichia coli] pir|S38437|S38437 hsdM
53
35
327







protein - Escherichia coli pir|S09629|S09629 hypothetical protein A -









Escherichia coli
[SUB 40-520]



3747
2
137
397
gi|1477486
transposase [Burkholderia cepacia]
53
53
261


11
5
3049
3441
gi|868224
No definition line found [Caenorhabditis elegans]
52
33
393


15
5
2205
2369
gi|215966
G41 protein (gtg start codon) [Bacteriophage T4]
52
34
165


19
3
2429
3808
gi|1205379
UDP-murnac-pentapeptide synthetase [Haemophilus influenzae]
52
31
1380


24
1
3462
4
gi|579124
predicted 86.4 kd protein; 52 Kd observed [Mycobacteriophage 15]
52
32
3459







pir|S30971|S30971 gene 26 protein - Mycobacterium phage L5







sp|Q05233|VG26_BPML5 MINOR TAIL PROTEIN GP26. (SUB 2-837)


37
5
3015
3935
gi|1500543
P115 protein [Methanococcus jannaschii]
52
25
921


38
13
8795
9703
gi|46851
glucose kinase [Streptomyces coelicolor]
52
29
909


44
16
10617
11066
gi|42012
moaE gene product [Escherichia coli]
52
36
450


46
1
3
521
gi|1040957
NADH dehydrogenase subunit 6 [Anopheles trinkae]
52
25
519


51
10
5531
6280
gi|388269
traC [Plasmid pAD1]
52
32
750


56
5
2826
1684
gi|181949
endothelial differentiation protein (edg-1) [Homo sapiens]
52
23
1143







pir|A35300|A35300 G protein-coupled receptor edg-1 - human







sp|P21453|EDG1_HUMAN PROBABLE G PROTEIN-COUPLED RECEPTOR EDG-1.


57
5
4173
3496
gi|304153
sorbitol dehydrogenase [Bacillus subtilis]
52
27
678


62
5
2870
2376
gi|1072399
phaE gene product [Rhizobium meliloti]
52
25
495


62
6
3651
2857
gi|46485
NADH dehydrogenase [Synechococcus PCC7942]
52
27
795


67
14
11355
12962
gi|1511365
glutamate synthase (NADPH), subunit alpha [Methanococcus jannaschii]
52
30
1608


67
21
16935
18158
gi|1204393
hypothetical protein (SP: P31122) [Haemophilus influenzae]
52
25
1224


70
4
1997
1809
gi|7227
cytoplasmic dynein heavy chain [Dictyostelium discoldeum]r|A44357|A44357
52
36
189







dynein heavy chain, cytosolic - slime mold Dictyostelium discoideum)


96
10
10005
10664
gi|1408485
B65G gene product [Bacillus subtilis]
52
26
660


103
5
3351
2716
gi|1009368
Respiratory nitrate reductase [Bacillus subtilis]
52
42
636


109
3
3350
2598
gi|699274
lmbE gene product [Mycobacterium leprae]
52
39
753


109
19
15732
17300
gi|1526981
amino acid permease YeeF like protein [Salmonella typhimurium]
52
30
1569


121
3
981
550
gi|732931
unknown [Saccharomyces cerevisiae]
52
32
432


125
3
865
1680
gi|1296975
puT gene product [Porphyromonas gingivalis]
52
38
816


130
2
659
1807
gi|1256634
25.8% identity over 120 aa with the Synenococcus sp. MpeV protein; putative
52
36
1149







[Bacillus subtilis]


149
1
583
2
gi|1225943
PBSX terminase [Bacillus subtilis]
52
33
582


149
14
4415
4143
gi|1510368


M. jannaschii
predicted coding region MJ0272 [Methanococcus jannaschii]

52
35
273


167
1
216
1001
gi|146025
cell division protein [Escherichia coli]
52
43
786


188
1
120
1256
gi|474915
orf 337; translated orf similarity to SW: BCR_ECOLI bicyclomycin esistance
52
26
1137







protein of Escherichia coli [Coxiella burnetii] pir|S44207|S44207







hypothetical protein 337 - Coxiella burnetii (SUB -338)


195
9
8760
8359
gi|3028
mitochondrial outer membrane 72K protein [Neurospora crassa]
52
25
402







r|A36682|A36682 72K mitochondrial outer membrane protein - Neurospora crassa


200
3
2065
2607
gi|142439
ATP-dependent nuclease [Bacillus subtilis]
52
35
543


203
4
2776
3684
gi|303698
BltD [Bacillus subtilis]
52
25
909


227
8
5250
5651
gi|305080
myosin heavy chain [Entamoeba histolytica]
52
24
402


242
1
21
1424
gi|1060877
EmrY [Escherichia coli]
52
32
1404


249
5
4526
4753
pir|C37222|C372
cytochrome P450 1A1, hepatic - dog (fragment)
52
23
228


255
1
1055
3
gi|143290
penicillin-binding protein [Bacillus subtills]
52
28
1053


276
7
3664
3365
gi|1001610
hypothetical protein [Synechocystis sp.]
52
30
300


276
8
4055
3654
gi|416235
orf L3 [Mycoplasma capricolum]
52
26
402


289
2
1449
1042
gi|150900
GTP phosphohydrolase [Proteus vulgaris]
52
34
408


325
1
1
279
gi|1204874
polypeptide deformylase (formylmethionine deformylase) [Haemophilus
52
33
279









influenzae
]



340
1
1010
3
gi|1215695
peptide transport system protein SapF homolog; SapF homolog [Mycoplasma
52
33
1008









pneumoniae
]



375
3
340
1878
gi|467446
similar to SpoVB [Bacillus subtilis]
52
28
1539


424
4
3262
2420
gi|1478239
unknown [Mycobacterium tuberculosis]
52
34
843


430
1
3
575
pir|A42606|A426
orfA 5′ to orf405 - Saccharopolyspora erythraea (fragment)
52
28
573


444
4
3712
2696
gi|1408494
homologous to penicillin acylase [Bacillus subtilis]
52
31
1017


465
1
903
4
gi|143331
alkaline phosphatase regulatory protein [Bacillus subtilis]
52
36
900







pir|A27650|A27650 regulatory protein phoR - Bacillus subtilis







sp|P23545|PHOR_BACSU ALKALINE PHOSPHATASE SYNTHESIS SENSOR PROTEIN HOR (EC







2.7.3.—)


469
5
4169
3633
gi|755152
highly hydrophobic integral membrane protein [Bacillus subtilis]
52
32
537







sp|P42953|TAGG_BACSU TEICHOIC ACID TRANSLOCATION PERMEASE PROTEIN AGG.


495
1
633
4
gi|1204607
transcription activator [Haemophilus influenzae]
52
25
630


505
7
5762
5520
gi|142440
ATP-dependent nuclease [Bacillus subtilis]
52
28
243


517
2
1162
1614
gi|166162
Bacteriophage phi-11 int gene activator [Staphylococcus acteriophage phi
52
35
453







11]


543
2
444
1295
gi|1215693
putative orf; GT9_orf434 [Mycoplasma pneumoniae]
52
25
852


586
1
1
336
gi|581648
epiB gene product [Staphylococcus epidermidis]
52
36
336


773
1
426
4
gi|1279769
FdhC [Methanobacterium thermofomicicum]
52
30
423


1120
2
100
330
gi|142439
ATP-dependent nuclease [Bacillus subtilis]
52
35
231


1614
1
347
3
gi|289262
comE ORF3 [Bacillus subtilis]
52
28
345


2495
1
1
324
gi|216151
DNA polymerase (gene L; ttg start codon) [Bacteriophage SP02] gi|579197
52
34
324







SP02 DNA polymerase (aa 1-648) [Bacteriophage SPO2] pir|A21498|DJBPS2 DNA-







directed DNA polymerase (EC 2.7.7.7) - phage PO2


2931
1
285
4
gi|1256136
YbbG [Bacillus subtilis]
52
30
282


2943
1
320
63
gi|41713
hisA ORF (AA 1-245) [Escherichia coli]
52
35
258


2993
1
295
2
gi|298032
EF [Streptococcus suis]
52
34
294


3667
1
307
2
gi|849025
hypothetical 64.7-kDa protein [Bacillus subtilis]
52
36
306


3944
1
260
42
gi|1218040
BAA [Bacillus licheniformis]
52
36
219


3954
2
347
81
gi|854064
U87 [Human herpesvirus 6]
52
50
267


3986
1
90
401
gi|1205919
Na+ and Cl− dependent gamma-aminobutryic acid transporter [Haemophilus
52
33
312









influenzae
]



4002
1
3
389
gi|40003
oxoglutarate dehydrogenase (NADP+) [Bacillus subtilis] p|P23129|ODO1_BACSU
52
42
387







2-OXOGLUTARATE DEHYDROGENASE E1 COMPONENT (EC 2.4.2) (ALPHA-KETOGLUTARATE







DEHYDROGENASE).


4020
1
1
249
gi|159388
ornithine decarboxylase [Leishmania donovani]
52
47
249


4098
1
220
2
gi|409795
No definition line found [Escherichia coli]
52
32
219


4248
1
3
212
gi|965077
Adr6p [Seccharomyces cerevisiae]
52
40
210


7
1
3
575
gi|895747
putative cel operon regulator [Bacillus subtilis]
51
28
573


21
4
2479
3276
gi|1510962
indole-3-glycerol phosphate synthase [Methanococcus jannaschii]
51
32
798


22
9
5301
5966
gi|1303933
YqiN [Bacillus subtilis]
51
25
666


43
3
1283
1050
gi|1519460
Srp1 [Schizosaccharomyces pombe]
51
31
234


44
17
11042
11305
gi|42011
moaD gene product [Escherichia coli]
51
35
264


51
11
6453
6731
gi|495471
vacuolating toxin [Helicobacter pylori]
51
37
279


52
4
2537
2995
gi|1256652
25% identity to the E. coli regulatory protein MprA; putative [Bacillus
51
32
459







subtilis]


57
10
6843
6355
gi|508173
EIIA domain of PTS-dependent Gat transport and phosphorylation Escherichia
51
32
489







coli]


59
1
29
1111
gi|299163
alanine dehydrogenase [Bacillus subtilis]
51
33
1083


67
20
15791
16576
gi|1510977


M. jannaschii
predicted coding region MJ0938 [Methanococcus jannaschii]

51
24
786


69
2
1218
877
gi|467359
unknown [Bacillus subtilis]
51
34
342


71
1
3
1196
gi|298032
EF [Streptococcus suis]
51
32
1194


78
2
176
3
gi|1161242
proliferating cell nuclear antigen [Styela clava]
51
28
174


99
4
3357
4040
gi|642795
TFIID subunit TAFII55 [Homo sapiens]
51
25
684


109
1
1428
4
gi|580920
rodD (gtaA) polypeptide (AA 1-673) [Bacillus subtilis] pir|S06048|S06048
51
27
1425







probable rodD protein - Bacillus subtilis sp|P13484|TAGE_BACSU PROBABLE







POLY (GLYCEROL-PHOSPHATE) LPHA-GLUCOSYLTRANSFERASE (EC 2.4.1.52) (TECHOIC







ACID BIOSYNTHESIS ROTEIN E)


109
9
6007
6693
gi|1204815
hypothetical protein (SP: P32662) [Haemophilus influenzae]
51
23
687


112
3
1066
2352
pir|S05330|S053
maltose-binding protein precursor - Enterobacter aerogenes
51
42
1287


112
13
12855
11278
gi|405857
yehU [Escherichia coli]
51
29
1578


114
9
8967
8209
gi|435098
orf1 [Mycoplasma capricolum]
51
30
759


115
1
1
912
gi|1431110
ORF YDL085w [Saccharomyces cerevisiae]
51
25
912


127
10
9647
10477
gi|1204314


H. influenzae
predicted coding region HI0056 [Haemophilus influenzae]

51
37
831


152
9
6814
7356
gi|431929
MunI regulatory protein [Mycoplasma sp.]
51
38
543


154
2
575
1153
gi|1237044
unknown [Mycobacterium tuberculosis]
51
36
579


154
7
5634
4681
gi|409286
bmrU [Bacillus subtilis]
51
27
954


171
8
6236
5529
gi|1205484
hypothetical protein (SP: P33918) [Haemophilus influenzae]
51
32
708


184
1
1
291
gi|466886
B1496_C3_206 [Mycobacterium leprae]
51
33
291


212
5
1501
2139
pir|A45605|A456
mature-parasite-infected erythrocyte surface antigen MESA - Plasmodium
51
23
639









falciparum




228
2
707
1378
gi|8204
nuclear protein [Drosophila melanogaster]
51
27
672


236
8
7481
6825
gi|49272
Asparaginase [Bacillus licheniformis]
51
31
657


243
4
3546
2455
gi|1511102
melvalonate kinase [Methanococcus jannaschii]
51
29
1092


257
4
3373
3206
gi|1204579


H. influenzae
predicted coding region HI0326 [Haemophilus influenzae]

51
22
168


258
3
1609
821
gi|160299
glutamic acid-rich protein [Plasmodium falciparum] pir|A54514|A54514
51
34
789







glutamic acid-rich protein precursor - Plasmodium falciparum


265
5
2419
3591
gi|580841
F1 [Bacillus subtilis]
51
32
1173


298
2
518
748
gi|1336162
SCPB [Streptococcus agalactiae|
51
34
231


316
9
5817
7049
gi|413953
ipa-29d gene product [Bacillus subtilis]
51
39
1233


332
2
2057
339
gi|1209012
mutS [Thermus aquaticus thermophilus]
51
26
1719


364
4
3816
4991
gi|528991
unknown [Bacillus subtilis]
51
32
1176


440
2
448
684
gi|2819
transferase (GAL10) (AA 1-687) [Kluyveromyces lactis] r|S01407|XUVKG
51
32
237







UDPglucose 4-epimerase (EC 5.1.3.2) - yeast uyveromyces marxianus var.







lactis)


495
2
1177
1001
gi|297861
protease G [Erwinia chrysanthemi]
51
41
177


495
3
1718
1149
gi|1513317
serine rich protein [Entamoeba histolytica]
51
25
570


506
1
421
2
gi|455320
cII protein [Bacteriophage P4]
51
33
420


600
1
983
492
gi|587532
orf, len: 201, CAI: 0.16 [Saccharomyces cerevisiae] pir|S48818|S48818
51
30
492







hypothetical protein - yeast (Saccharomyces erevisiae)


607
3
479
934
gi|1511524
hypothetical protein (SP: P37002) [Methanococcus jannaschii]
51
40
456


686
2
127
600
gi|493017
endocarditis specific antigen [Enterococcus faecalis]
51
30
474


726
1
33
230
gi|1353851
unknown [Prochlorococcus marinus]
51
45
198


861
1
176
652
gi|410145
dehydroquinate dehydratase [Bacillus subtilis]
51
34
477


869
1
393
4
gi|40100
rodC (tag3) polypeptide (AA 1-746) [Bacillus subtilis] ir|S06049|S06049
51
23
390







rodC protein - Bacillus subtilis p|P13485|TAGF_BACSU TECHOIC ACID







BIOSYNTHESIS PROTEIN F.


1003
1
322
2
gi|1279707
hypothetical phosphoglycerate mutase [Saccharomyces cerevisiae]
51
39
321


1046
2
624
382
gi|510257
glycosyltransferase [Escherichia coli]
51
29
243


1467
1
352
2
gi|1511175


M. jannaschii
predicted coding region MJ1177 [Methanococcus jannaschii]

51
32
351


2558
1
230
3
sp|P10582|DPOM
DNA POLYMERASE (EC 2.7.7.7) (S-1 DNA ORF 3).
51
26
228


3003
1
399
19
gi|809543
CbrC protein [Erwinia chrysanthemi]
51
27
381


3604
1
1
399
pir|JC4210|JC42
3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35) - mouse
51
37
399


3732
1
2
316
gi|145906
acyl-CoA synthetase [Escherichia coli]
51
33
315


3791
1
2
274
gi|1061351
semaphorin III family homolog [Homo sapiens]
51
37
273


3995
1
46
336
gi|216346
surfactin synthetase [Bacillus subtilis]
51
38
291


4193
1
307
2
gi|42749
ribosomal protein L12 (AA 1-179) [Escherichia coli] ir|S04776|XXECPL
51
25
306







peptide N-acetyltransferase rimL (EC 2.3.1.—) - Echerichia coli


4539
1
185
3
gi|1408494
homologous to penicillin acylase [Bacillus subtilis]
51
40
183


4562
1
239
36
gi|1458280
coded for by C. elegans cDNA cm01e7; Similar to hydroxymethylglutaryl-CoA
51
35
204







synthase [Caenorhabditis elegans]


1
4
3576
4859
gi|559160
GRAIL score: null; cap site and late promoter motifs present pstream;
50
44
1284







putative [Autographa californica nuclear polyhedrosis irus]


11
7
4044
5165
gi|1146207
putative [Bacillus subtilis]
50
35
1122


11
13
9496
8483
gi|1208451
hypothetical protein [Synechocystis sp.]
50
39
1014


19
1
1018
2
gi|413966
ipa-42d gene product [Bacillus subtilis]
50
29
1017


20
11
8407
8228
gi|1323159
ORF YGR103w [Saccharomyces cerevisiae]
50
28
180


24
5
4824
4240
gi|496280
structural protein [Bacteriophage Tuc2009]
50
29
585


34
4
1926
2759
gi|1303966
Yqj0 [Bacillus subtilis]
50
36
834


38
30
22865
23440
gi|1072179
Similar to dihydroflavonol-4-reductase (maize, petunia, tomato)
50
32
576







[Caenorhabditis elegans]


47
2
1705
2976
gi|153015
FemA protein [Staphylococcus aureus]
50
29
1272


56
13
15290
15841
gi|606096
ORF_f167; end overlaps end of o100 by 14 bases; start overlaps f174, ther
50
30
552







starts possible [Escherichia coli]


57
1
1077
19
gi|640922
xylitol dehydrogenase (unidentified hemiascomycete)
50
29
1059


58
2
628
1761
gi|143725
putative [Bacillus subtilis]
50
29
1134


88
6
3884
3375
gi|1072179
Similar to dihydroflavonol-4-reductase (maize, petunia, tomato)
50
32
510







[Caenorhabditis elegans]


89
5
3356
3012
gi|1276658
ORF174 gene product [Porphyra purpurea]
50
25
345


141
1
3
239
gi|476024
carbamoyl phosphate synthetase II [Plasmodium falciparum]
50
33
237


151
1
186
626
gi|1403441
unknown [Mycobacterium tuberculosis]
50
35
441


166
7
9623
8181
gi|895747
putative cel operon regulator [Bacillus subtilis]
50
32
1443


201
6
5096
4908
gi|160229
circumsporozoite protein [Plasmodium reichenowi]
50
42
189


206
22
29555
28326
gi|1052754
LmrP integral membrane protein [Lactococcus lactis]
50
24
1230


211
4
1523
1927
gi|410131
ORFX7 [Bacillus subtilis]
50
29
405


214
4
2411
3295
sp|P37348|YECE
HYPOTHETICAL PROTEIN IN ASPS 5′ REGION (FRAGMENT)
50
37
885


228
7
4406
3744
gi|313580
envelope protein [Human immunodeficiency virus type 1] pir|S35835|S35835
50
35
663







envelope protein - human immunodeficiency virus type 1 (fragment) (SUB 1-







77)


272
2
1723
398
gi|1408485
B65G gene product [Bacillus subtilis]
50
22
1326


273
2
984
352
gi|984186
phosphoglycerate mutase [Saccharomyces cerevisiae]
50
28
633


328
2
1605
703
gi|148896
lipoprotein [Haemophilus influenzae]
50
26
903


332
4
3802
2135
gi|1526547
DNA polymerase family X [Thermus aquaticus]
50
27
1668


342
5
3473
3931
gi|456562
G-box binding factor [Dictyostelium discoideum]
50
35
459


352
1
741
4
gi|288301
ORF2 gene product [Bacillus megaterium]
50
29
738


408
7
5299
5523
gi|11665
ORF2136 [Marchantia polymorpha]
50
27
225


420
3
650
1825
gi|757842
UDP-sugar hydrolase [Escherichia coli]
50
30
1176


464
1
1
591
gi|487282
Na+ -ATPase subunit J [Enterococcus hirae]
50
29
591


472
2
864
310
gi|551875
Bg1R [Lactococcus lactis]
50
23
555


520
1
23
541
gi|567036
CapE [Staphylococcus aureus]
50
27
519


529
1
6
410
gi|1256652
25% identity to the E. coli regulatory protein MprA; putative [Bacillus
50
34
405









subtilis
]



534
5
6059
4392
gi|295671
selected as a weak suppressor of a mutant of the subunit AC40 of DNA
50
18
1668







ependant RNA polymerase I and III [Saccharomyces cerevisiae]


647
1
1497
4
gi|405568
TraI protein shares sequence similarity with a family of opoisomerases
50
31
1494







[Plasmid pSK41]


664
3
711
289
gi|410007
leukocidin F component [Staphylococcus aureus, MRSA No. 4, Peptide, 23 aa]
50
32
423


678
1
1
627
gi|298032
EF [Streptococcus suis]
50
29
627


755
3
947
1171
gi|150572
cytochrome c1 precursor (EC 1.10.2.2) [Paracoccus denitrificans] gi|45465
50
37
225







cytochrome c1 (AA 1-450) [Paracoccus denitrificans] pir|C29413|C29413







ubiquinol - cytochrome-c reductase (EC 1.10.2.2) ytochrome c1 precursor -







Paracoccus denitrificans sp|P13627|CY1


827
1
683
3
gi|142020
heterocyst differentiation protein [Anabaena sp.]
50
21
681


892
1
3
752
gi|1408485
B65G gene product [Bacillus subtilis]
50
27
750


910
2
438
887
gi|1204727
tyrosine-specific transport protein [Haemophilus influenzae]
50
25
450


933
1
524
760
gi|1205451
cell division inhibitor [Haemophilus influenzae]
50
32
237


973
1
236
48
gi|886947
orf3 gene product [Saccharomyces cerevisiae]
50
40
189


1009
1
429
205
gi|153727
M protein [group G streptococcus]
50
28
225


1027
1
257
3
gi|413934
ipa-10r gene product [Bacillus subtilis]
50
25
255


1153
2
326
96
gi|773676
nccA [Alcaligenes xylosoxydans]
50
36
231


1222
1
400
2
gi|1408485
B65G gene product [Bacillus subtilis]
50
21
399


1350
1
399
106
gi|289272
ferrichrome-binding protein [Bacillus subtilis]
50
32
294


2945
1
184
2
gi|171704
hexaprenyl pyrophosphate synthetase (COQ1) [Saccharomyces erevisiae]
50
34
183


2968
2
804
4
gi|397526
clumping factor [Staphylococcus aureus]
50
33
801


2998
2
394
131
gi|495696
F54E7.3 gene product [Caenorhabditis elegans]
50
40
264


3046
2
306
106
pir|S13819|S138
acyl carrier protein - Anabaena variabilis (fragment)
50
32
201


3063
1
275
3
gi|474190
iucA gene product [Escherichia coli]
50
29
273


3174
1
3
146
gi|151900
alcohol dehydrogenase [Rhodobacter sphaeroides]
50
31
144


3792
1
314
3
gi|1001423
hypothetical protein [Synechocystis sp.]
50
35
312


3800
1
2
262
gi|144733
NAD-dependent beta-hydroxybutyryl coenzyme A dehydrogenase Clostridium
50
28
261







acetobutylicum]


3946
1
188
3
gi|576765
cytochrome b [Myrmecia pilosula]
50
38
186


3984
1
291
4
sp|P37348|YECE
HYPOTHETICAL PROTEIN IN ASPS 5′ REGION (FRAGMENT).
50
37
288


37
10
7885
7520
gi|1204367
hypothetical protein (GB: U14003_278) [Haemophilus influenzae]
49
30
366


46
16
13802
14848
gi|466860
acd: B1308_F1_34 [Mycobacterium leprae]
49
24
1047


59
5
2267
3601
gi|606304
ORF_o462 [Escherichia coli]
49
27
1335


112
18
17884
18615
gi|559502
ND4 protein (AA 1-409) [Caenorhabditis elegans]
49
25
732


138
9
6973
7902
gi|303953
esterase [Acinetobacter calcoaceticus]
49
29
930


217
6
4401
5138
gi|496254
fibronectin/fibrinogen-blnding protein [Streptococcus pyogenes]
49
31
738


220
12
11803
12657
gi|397526
clumping factor [Staphylococcus aureus]
49
31
855


228
4
1842
2492
pir|S23692|S236
hypothetical protein 9 - Plasmodium falciparum
49
24
651


268
1
2614
212
gi|143047
ORFB [Bacillus subtilis]
49
26
2403


271
2
1164
1373
gi|1001257
hypothetical protein [Synechocystis sp.]
49
38
210


300
3
3180
2020
gi|1510796
hypothetical protein (GP: X91006_2) [Methanococcus jannaschii]
49
26
1161


381
1
1142
3
gi|396301
matches PS00041: Bacterial regulatory proteins, araC family ignature
49
29
1140







[Escherichia coli]


466
1
3
947
gi|1303863
YqgP [Bacillus subtilis]
49
26
945


666
1
191
3
gi|633112
ORF1 [Streptococcus sobrinus]
49
29
189


670
2
403
1014
gi|1122758
unknown [Bacillus subtilis]
49
32
612


709
1
795
157
gi|143830
xpaC [Bacillus subtilis]
49
29
639


831
1
473
3
gi|401786
phosphomannomutase [Mycoplasma pirum]
49
29
471


1052
1
213
4
gi|1303799
YqeN [Bacillus subtilis]
49
21
210


1800
1
172
2
gi|216300
peptidoglycan synthesis enzyme [Bacillus subtilis] sp|P37585|MURG_BACSU
49
28
171







MURG PROTEIN UPD-N-ACETYLGLUCOSAMINE—N-ACETYLMURAMYL-







PENTAPEPTIDE) PYROPHOSPHORYL-UNDECAPRENOL N-ACETYLGLUCOSAMINE RANSFERASE).


2430
1
2
376
sp|P27434|YFGA
HYPOTHETICAL 36.2 KD PROTEIN IN NDK-GCPE INTERGENIC REGION.
49
26
375


3096
1
273
4
gi|516360
surfactin synthetase [Bacillus subtilis]
49
25
270


32
4
3100
2429
gi|1217963
hepatocyte nuclear factor 4 gamma (HNF4gamma) [Homo sapiens]
48
36
672


38
1
1
609
gi|1205790


H. influenzae
predicted coding region HI1555 [Haemophilus influenzae]

48
28
609


45
6
5021
6427
gi|1524267
unknown [Mycobacterium tuberculosis]
48
20
1407


59
14
16346
31096
gi|1197336
Lmp3 protein [Mycoplasma hominis]
48
28
14751


61
1
3
608
gi|1511555
quinolone resistance norA protein protein [Methanococcus jannaschii]
48
30
606


61
3
3311
3646
gi|1303893
YqhL [Bacillus subtilis]
48
29
336


114
1
98
415
gi|671708
su(s) homolog; similar to Drosophila melanogaster suppressor of able
48
25
318







(su(s)) protein, Swiss-Prot Accession Number P22293 Drosophila virilis)


121
1
610
89
gi|1314584
unknown [Sphingomonas S88]
48
29
522


136
1
1280
546
gi|1205968


H. influenzae
predicted coding region HI1738 [Haemophilus influenzae]

48
23
735


171
10
8220
9557
gi|1208454
hypothetical protein [Synechocystis sp.]
48
34
1338


175
1
1814
3
gi|396400
similar to eukaryotic Na+/H+ exchangers [Escherichia coli]
48
29
1812







sp|P32703|YJCE_ECOLI HYPOTHETICAL 60.5 KD PROTEIN IN SOXR-ACS NTERGENIC







REGION (O549).


194
1
2
385
gi|1510493


M. jannaschii
predicted coding region MJ0419 [Methanococcus jannaschii]

48
25
384


197
1
452
3
gi|1045714
spermidine/putrescine transport ATP-binding protein [Mycoplasma genitalium]
48
25
450


203
1
1
396
gi|940288
protein localized in the nucleoli of pea nuclei; ORF; putative Pisum
48
29
396







sativum]


204
1
698
33
gi|529202
No definition line found [Caenorhabditis elegans]
48
25
666


206
20
27760
20705
gi|511490
gramicidin S synthetase 2 [Bacillus brevis]
48
27
7056


212
1
2
166
gi|295899
nucleolin [Xenopus laevis]
48
34
165


220
10
11426
10200
gi|44073
SecY protein [Lactococcus lactis]
48
23
1227


243
6
5491
4532
gi|1184118
mevalonate kinase [Methanobacterium thermoautotrophicum]
48
30
960


264
4
3308
1182
gi|1015903
ORF YJR151c [Saccharomyces cerevisiae]
48
26
2127


441
1
768
4
gi|142863
replication initiation protein [Bacillus subtilis] pir|B26580|B26580
48
23
765







replication initiation protein - Bacillus subtilis


444
5
3898
5298
gi|145836
putative [Escherichia coli]
48
24
1401


484
2
388
1110
gi|146551
transmembrane protein (kdpD) [Escherichia coli]
48
18
723


542
3
1425
2000
pir|S28969|S289
N-carbamoylsarcosine amidohydrolase (EC 3.5.1.59) - Arthrobacter sp.
48
27
576


566
1
3
1019
gi|153490
tetracenomycin C resistance and export protein [Streptomyces laucescens]
48
24
1017


611
1
2
730
gi|1103507
unknown [Schizosaccharomyces pombe]
48
38
729


624
1
665
75
gi|144859
ORF B [Clostridium perfringens]
48
26
591


846
1
508
2
gi|537506
paramyosin [Dirofilaria immitis]
48
27
507


1020
1
66
950
gi|1499876
magnesium and cobalt transport protein [Methanococcus jannaschii]
48
30
885


1227
1
1
174
gi|493730
lipoxygenase [Pisum sativum]
48
35
174


1266
1
1
405
gi|882452
ORF_f211; alternate name yggA; orf5 of X14436 [Escherichia coli] gi|41425
48
24
405







ORF5 (AA 1-197) [Escherichia coli] (SUB 15-211)


2071
1
381
55
gi|1408486
HS74A gene product [Bacillus subtilis]
48
25
327


2398
1
233
3
gi|1500401
reverse gyrase [Methanococcus jannaschii]
48
40
231


2425
1
246
16
pir|H48563|H485
G1 protein - fowlpox virus (strain HP444) (fragment)
48
40
231


2432
1
225
4
gi|1353703
Trio [Homo sapiens]
48
33
222


2453
1
399
4
gi|142850
division initiation protein [Bacillus subtilis]
48
29
396


2998
1
236
3
gi|577569
PepV [Lactobacillus delbrueckii]
48
31
234


3042
1
14
280
gi|945219
mucin [Homo sapiens]
48
35
267


3686
1
1
405
gi|145836
putative [Escherichia coli]
48
25
405


4027
2
301
110
pir|S51177|S511
trans-activator protein - Equine infectious anemia virus
48
32
192


4
2
2232
823
gi|1303989
YqkI [Bacillus subtilis]
47
24
1410


24
2
599
1084
gi|540083
PC4-1 gene product [Bradysia hygida]
47
28
486


36
10
6925
6326
gi|1209223
esterase [Acinetobacter lwoffii]
47
26
600


43
2
196
1884
gi|1403455
unknown [Mycobacterium tuberculosis]
47
27
1689


44
22
15108
14098
gi|1511555
quinolone resistance norA protein protein [Methanococcus jannaschii]
47
31
1011


69
7
6710
6279
gi|438466
Possible operon with orfG. Hydrophilic, no homologue in the atabase;
47
29
432







putative [Bacillus subtilis]


81
4
4279
3536
gi|466882
ppsl; B1496_C2_189 [Mycobacterium leprae]
47
24
744


120
12
8863
8591
gi|927340
D9509.27p; CAI: 0.12 [Saccharomyces cerevisiae]
47
38
273


142
1
1174
326
gi|486143
ORF YKL094w [Saccharomyces cerevisiae]
47
32
849


168
1
1093
8
gi|1177254
hypothetical EcsB protein [Bacillus subtilis]
47
29
1086


263
1
943
2
gi|142822
D-alanine racemase cds [Bacillus subtilis]
47
34
942


279
1
561
13
gi|516608
2 predicted membrane helices, homology with B. subtilis men Orf3 Rowland
47
31
549







et. al. unpublished Accession number M74183), approximately 1 minutes on







updated Rudd map; putative [Escherichia coli] sp|P37355|YFBB_ECOLI







HYPOTHETICAL 26.7 KD PROTEIN IN MEND-MENB


345
2
1676
732
gi|1204835
hippuricase [Haemophilus influenzae]
47
28
945


389
2
152
400
gi|456562
G-box binding factor [Dictyostelium discoideum]
47
32
249


391
1
1
831
gi|1420856
myo-inositol transporter [Schizosaccharomyces pombe]
47
19
831


404
3
2072
2773
gi|1255425
C33G8.2 gene product [Caenorhabditis elegans]
47
17
702


529
5
2145
3107
gi|1303973
YqjV [Bacillus subtilis]
47
29
963


565
2
1257
193
gi|142824
processing protease [Bacillus subtilis]
47
28
1065


654
1
483
4
gi|243353
ORF 5′ of ECRF3 [herpesvirus saimiri HVS, host-squirrel monkey, eptide, 407
47
23
480







aa]


692
1
115
633
gi|150756
40 kDa protein [Plasmid pJM1]
47
25
519


765
1
819
4
gi|1256621
26.7% of identity in 165 aa to a Thermophilic bacterium hypothetical
47
28
816







protein 6; putative [Bacillus subtilis]


825
2
211
1023
gi|397526
clumping factor [Staphylococcus aureus]
47
32
813


914
1
1
615
gi|558073
polymorphic antigen [Plasmodium falciparum]
47
29
615


1076
1
1
753
gi|1147557
Aspartate aminotransferase [Bacillus circulans]
47
33
753


1351
1
398
3
gi|755153
ATP-binding protein [Bacillus subtilis]
47
20
396


4192
1
3
293
gi|145836
putative [Escherichia coli]
47
24
291


5
6
4361
4014
gi|305080
myosin heavy chain [Entamoeba histolytica]
46
30
348


11
4
2777
3058
gi|603639
Ye1040p [Saccharomyces cerevisiae]
46
28
282


46
11
10300
10082
gi|1246901
ATP-dependent DNA ligase [Candida albicans]
46
28
219


61
4
3941
7930
gi|298032
EF [Streptococcus suis]
46
35
3990


132
4
4093
3158
gi|1511057
hypothetical protein SP: P45869 [Methanococcus jannaschii]
46
25
936


170
4
3652
2585
pir|S51910|S519
G4 protein - sauroleishmania tarentolae
46
26
1068


191
7
8284
7025
gi|1041334
F54D5.7 [Caenorhabditis elegans]
46
25
1260


253
1
1
396
gi|1204449
dihydrolipoamide acetyltransferase [Haemophilus influenzae]
46
35
396


264
3
437
973
gi|180189
cerebellar-degeneration-related antigen (CDR34) [Homo sapiens] gi|182737
46
29
537







cerebellar degeneration-associated protein [Homo sapiens]







pir|A29770|A29770 cerebellar degeneration-related protein - human


273
1
285
85
gi|607573
envelope glycoprotein C2V3 region [Human immunodeficiency virus type]
46
35
201


350
1
3
563
gi|537052
ORF_E286 [Escherichia coli]
46
35
561


384
1
2
862
gi|1221884
(urea?) amidolyase [Haemophilus influenzae]
46
31
861


410
4
1876
2490
gi|1110518
proton antiporter efflux pump [Mycobacterium smegmatis]
46
24
615


432
1
1455
247
gi|1197634
orf4; putative transporter; Method: conceptual translation supplied by
46
27
1209







author [Mycobacterium smegmatis]


458
1
1211
3
gi|15470
portal protein [Bacteriophage SPP1]
46
30
1209


517
5
2477
4192
gi|1523812
orf5 [Bacteriophage A2]
46
23
1716


540
3
1285
1058
gi|215635
pacA [Bacteriophage P1]
46
30
228


587
2
649
1242
gi|537148
ORF_f181 [Escherichia coli]
46
29
594


1218
1
391
35
gi|1205456
single-stranded-DNA-specific exonuclease [Haemophilus influenzae]
46
30
357


3685
1
1
402
gi|450688
hsdM gene of EcoprrI gene product [Escherichia coli] pir|S38437|S38437 hsdM
46
33
402







protein - Escherichia coli pir|S09629|S09629 hypothetical protein A -









Escherichia coli
(SUB 40-520)



4176
1
338
3
gi|951460
FIM-C.1 gene product [Xenopus laevis]
46
31
336


37
7
4813
5922
gi|606064
ORF_f408 [Escherichia coli]
45
24
1110


38
16
11699
12004
gi|452192
protein tyrosine phosphatase (PTP-BAS, type 2) [Homo sapiens]
45
24
306


87
2
1748
2407
gi|1064813
homologous to sp: PHOR_BACSU [Bacillus subtilis]
45
23
660


103
12
13385
12588
gi|1001307
hypothetical protein [Synechocystis sp.]
45
22
798


112
14
13811
12831
gi|1204389


H. influenzae
predicted coding region HI0131 [Haemophilus influenzae]

45
23
981


145
4
3461
2439
gi|220578
open reading frame [Mus musculus]
45
20
1023


170
6
4965
3601
gi|238657
AppC = cytochrome d oxidase, subunit I homolog [Escherichia coli, K12,
45
27
1365







eptide, 514 aa]


206
2
4346
3462
gi|1222056
aminotransferase [Haemophilus influenzae]
45
27
885


228
1
60
716
gi|160299
glutamic acid-rich protein [Plasmodium falciparum] pir|A54514|A54514
45
23
657







glutamic acid-rich protein precursor - Plasmodium alciparum


288
1
2
1015
gi|1255425
C33G8.2 gene product [Caenorhabditis elegans]
45
23
1014


313
3
3128
1917
gi|581140
NADH dehydrogenase [Escherichia coli]
45
30
1212


332
1
459
4
gi|870966
F47A4.2 [Caenorhabditis elegans]
45
20
456


344
1
3
221
gi|171225
kinesin-related protein [Saccharomyces cerevisiae]
45
26
219


441
2
1073
645
gi|142863
replication initiation protein [Bacillus subtilis] pir|B26580|B26580
45
27
429







replication initiation protein - Bacillus subtilis


672
1
2
982
gi|1511334


M. jannaschii
predicted coding region MJ1323 [Methanococcus jannaschii]

45
22
981


763
3
851
357
gi|606180
ORF_f310 [Escherichia coli]
45
24
495


886
3
379
846
gi|726426
similar to protein kinases and C. elegans proteins F37C12.8 and 37C12.5
45
30
468







[Caenorhabditis elegans]


948
1
3
473
gi|156400
myosin heavy chain (isozyme unc-54) [Caenorhabditis elegans]
45
25
471







pir|A93958|MWKW myosin heavy chain B - Caenorhabditis elegans







sp|P02566|MYSB_CAEEL MYOSIN HEAVY CHAIN B (MHC B).


1158
1
2
376
gi|441155
ransmission-blocking target antigen [Plasmodium falciparum]
45
35
375


2551
1
4
285
gi|1276705
ORF287 gene product [Porphyra purpurea]
45
28
282


3967
1
42
374
gi|976025
MrsA [Escherichia coli]
45
28
333


52
7
5846
4761
gi|467378
unknown [Bacillus subtilis]
44
22
1086


138
8
6475
6849
gi|173028
thioredoxin II [Saccharomyces cerevisiae]
44
28
375


221
5
5617
4202
gi|153490
tetracenomycin C resistance and export protein [Streptomyces laucescens]
44
21
1416


252
2
1122
913
gi|1204989
hypothetical protein (GB: U00022_9) [Haemophilus influenzae]
44
30
210


263
2
2093
921
gi|1136221
carboxypeptidase [Sulfolobus solfataricus]
44
26
1173


365
4
3524
2085
gi|1296822
orf1 gene product [Lactobacillus helveticus]
44
31
1440


543
3
1315
1833
gi|1063250
low homology to P20 protein of Bacillus lichiniformis and bleomycin
44
24
519







acetyltransferase of Streptomyces verticillus [Bacillus subtilis]


544
4
3942
4892
gi|951460
FIM-C.1 gene product [Xenopus laevis]
44
32
951


792
1
613
2
gi|205680
high molecular weight neurofilament [Rattus norveglcus]
44
28
612


44
18
11303
11911
gi|1511614
molybdopterin-guanine dinucleotide biosynthesis protein A [Methanococcus
43
27
609









jannaschii
]



59
8
3665
5128
gi|153490
tetracenomycin C resistance and export protein [Streptomyces laucescens]
43
21
1464


59
10
5536
7527
gi|153022
lipase Staphylococcus epidermidis]
43
22
1992


99
1
681
16
gi|1419051
unknown [Mycobacterium tuberculosis]
43
21
666


310
8
9402
12134
gi|397526
clumping factor [Staphylococcus aureus]
43
21
2733


432
3
2303
1824
pir|A60540|A605
sporozoite surface protein 2 - Plasmodium yoelii (fragment)
43
29
480


519
3
2547
3122
sp|Q06530|DHSU
SULFIDE DEHYDROGENASE (FLAVOCYTOCHROME C) FLAVOPROTEIN CHAIN PRECURSOR (EC
43
23
576







1.8.2.—) (FC) (FCSD).


4
13
12053
13321
gi|295671
selected as a weak suppressor of a mutant of the subunit AC40 of DNA
42
18
1269







ependant RNA polymerase I and III [Saccharomyces cerevisiae]


94
2
1091
414
gi|501027
ORF2 [Trypanosoma brucei]
42
31
678


127
4
4550
3309
gi|42029
ORF1 gene product [Escherichia coli]
42
21
1242


297
3
1036
557
gi|142790
ORF1; putative [Bacillus firmus]
42
25
480


344
6
3525
2953
gi|40320
ORF 2 (AA 1-203) [Bacillus thuringiensis]
42
30
573


512
1
1115
63
gi|405957
yeeF [Escherichia coli]
42
23
1053


631
1
1223
12
gi|580920
rodD (gtaA) polypeptide (AA 1-673) [Bacillus subtilis] pir|S06048|S06048
42
24
1212







probable rodD protein - Bacillus subtilis sp|P13484|TAGE_BACSU PROBABLE







POLY(GLYCEROL-PHOSPHATE) LPHA-GLUCOSYLTRANSFERASE (EC 2.4.1.52) (TECHOIC







ACID BIOSYNTHESIS ROTEIN E).


685
3
1739
1119
gi|1303784
YqeD [Bacillus subtilis]
42
19
621


4132
1
395
3
gi|1022910
protein tyrosine phosphatase [Dictyostelium discoideum]
42
25
393


86
2
884
393
gi|309506
spermidine/spermine N1-acetyltransferase [Mus saxicola] pir|S43430|S43430
41
30
492







spermidine/spermine N1-acetyltransferase - spiny ouse (Mus saxicola)


191
12
14075
13353
gi|1124957
orf4 gene product [Methanosarcina barkeri]
41
22
723


212
6
2150
3127
gi|15873
observed 35.2 Kd protein [Mycobacteriophage 15]
41
26
978


213
3
1263
2000
gi|633692
TrsA [Yersinia enterocolitica]
41
18
738


408
4
2625
3386
gi|1197634
orf4; putative transporter; Method: conceptual translation supplied by
41
24
762







author [Mycobacterium smegmatis]


542
1
3
1103
gi|457146
rhoptry protein [Plasmodium, yoelii]
41
21
1101


924
1
2
475
pir|JH0148|JH01
nucleolin - rat
41
30
474


1562
1
1
402
gi|552184
asparagine-rich antigen Pfa35-2 [Plasmodium falciparum] pir|S27826|S27826
40
20
402







asparagine-rich antigen Pfa35-2 - Plasmodium alciparum (fragment)


2395
1
261
4
pir|S42251|S422
hypothetical protein 5 - fowlpox virus
40
18
258


4077
1
3
305
gi|1055055
coded for by C. elegans cDNA yk37g1.5; coded for by C. elegans cDNA
39
21
303







yk5c9.5; coded for by C. elegans cDNA yk1a9.5; alternatively spliced form







of F52C9.8b [Caenorhabditis elegans]


958
1
503
3
gi|1255425
C33G8.2 gene product [Caenorhabditis elegans]
37
25
501


59
12
8294
10636
gi|535260
STARP antigen [Plasmodium reichenowi]
36
24
2343


63
5
3550
8079
gi|298032
EF [Streptococcus suis]
36
19
4530


544
3
2507
3601
gi|1015903
ORF YJR151c [Saccharomyces cerevisiae]
35
22
1095


63
4
1949
3574
gi|552195
circumsporozoite protein (Plasmodium falciparum) sp|P05691|CSP_PLAFL
32
27
1626







CIRCUMSPOROZOITE PROTEIN (CS) (FRAGMENT).










[0290]

3





TABLE 3












S. aureus
- Putative coding regions of



novel proteins not similar to known proteins












Contig
ORF
Start
Stop



ID
ID
(nt)
(nt)
















4
1
692
150



4
3
1712
2278



4
4
3032
2361



4
14
12585
12097



5
2
1601
663



5
3
1532
1771



5
7
4550
4359



5
9
6422
4905



5
12
8547
8383



6
4
1982
1605



8
1
176
3



11
8
5144
5983



11
9
5968
6498



11
10
6284
6096



11
16
10954
11271



12
5
4942
4532



12
6
4596
4862



15
3
1650
1405



16
10
10835
10407



18
2
917
741



20
9
7764
6403



20
10
8230
7889



20
12
8803
8405



20
13
10470
8782



23
1
339
4



23
6
5485
4832



23
8
5942
5508



23
9
6881
6111



23
15
12618
12830



24
4
4185
3814



24
6
5241
4840



25
2
1824
2402



31
2
505
849



31
3
1177
1524



31
4
2454
3005



32
2
765
1388



32
9
7952
8575



32
10
8591
8728



32
11
9379
9020



32
12
10087
9377



34
2
1049
783



36
7
5226
5801



36
11
7261
6947



36
12
7424
7621



37
4
2964
2770



38
2
980
375



38
11
6425
6868



38
20
16371
15760



38
26
20253
20804



38
27
20722
21264



39
1
1
627



40
1
404
3



43
1
428
60



44
4
2324
1974



44
5
2484
3263



44
14
10129
9671



44
20
13536
13348



44
21
13596
13994



45
7
6297
6019



46
8
6365
6520



46
12
10449
10976



46
17
15032
15424



47
1
288
1079



48
9
7620
7778



50
1
962
312



50
2
1316
1011



51
1
370
2



51
5
2245
1970



53
1
287
132



53
7
6319
5933



54
7
8709
8404



55
1
326
60



55
3
786
520



56
1
1
261



56
3
1228
905



56
4
1560
1150



56
17
18712
18332



57
4
3521
3348



57
8
5436
5822



58
9
8553
8221



59
3
1366
1509



59
6
2802
2578



59
7
3570
3370



59
9
4563
4180



59
11
7518
8378



59
13
10401
16403



62
2
1521
346



62
11
5440
5757



63
1
1
336



67
1
900
1781



67
2
1774
2610



67
3
2591
3904



67
8
6955
6800



68
1
78
326



70
6
5199
3637



70
11
8645
8355



77
3
1192
794



79
2
1228
947



79
3
1411
1791



83
1
2
403



85
9
8300
8653



85
10
8781
8593



86
3
1232
1038



87
8
9187
9366



88
3
1620
1922



89
1
3
161



89
7
4878
4714



91
1
550
2



91
3
3141
2344



92
2
449
928



92
3
1467
976



92
9
5638
6024



94
1
332
3



94
3
1813
1181



94
4
2197
1811



96
11
10601
11050



99
6
4523
4374



99
7
4784
4554



100
8
7287
6916



102
7
4368
4039



103
3
2035
1574



104
1
2
694



104
2
699
1277



105
1
693
151



105
3
2655
2077



106
1
3
221



106
3
1209
1355



107
1
542
3



109
4
3651
3277



109
13
11625
11996



109
14
11981
12268



109
20
17401
17688



110
1
2
760



114
10
8764
9384



116
1
1
309



116
3
4462
2651



116
8
9976
8903



116
9
10158
10003



120
5
3320
2937



120
6
3869
3468



120
13
9290
9844



121
2
417
569



126
3
818
546



127
3
2648
3196



127
5
4084
4395



131
6
6438
6103



132
2
715
1695



134
1
2
667



135
2
258
4



135
3
729
334



138
1
3
152



138
7
6008
6463



140
1
1032
4



140
2
1513
1007



140
5
2387
2743



142
2
1360
2388



142
7
7586
6342



143
7
6502
5714



144
1
640
53



146
1
2
511



146
3
502
1350



146
4
2540
1407



146
5
2874
3071



147
1
1
339



149
11
3615
3274



149
12
3785
3534



149
13
4145
3783



149
15
4610
4413



149
16
5049
4603



149
18
5491
5243



149
21
7054
6692



149
23
8521
7826



149
24
9106
8531



149
25
9897
9115



150
2
1587
871



154
3
1508
1221



154
8
6398
6210



154
14
12147
11590



154
15
12803
12075



156
1
315
593



157
3
1183
2232



158
2
1064
657



159
3
452
808



161
2
876
1808



161
6
4279
3905



161
7
4540
4277



161
8
4717
4538



161
11
5638
5459



163
2
840
76



163
5
2344
1892



163
7
2647
2342



163
9
4905
5132



164
3
1147
956



166
3
4854
4495



168
4
2500
2868



168
5
3595
4158



170
3
2517
2777



171
2
1450
623



171
11
11125
9674



172
1
3
278



172
2
1149
358



173
1
708
127



173
5
6114
5227



174
2
593
1105



175
3
2552
2890



175
5
3335
2850



175
7
4342
4506



182
4
4986
4495



184
5
5702
5361



188
2
1210
1755



188
4
2647
2994



189
6
2614
3039



190
3
1998
2564



191
1
1
153



191
2
669
388



191
10
11786
13039



191
11
12363
11824



192
1
91
426



195
3
1932
1558



195
5
2606
2313



198
2
1016
1591



201
1
170
625



203
2
783
1466



206
6
7815
6700



206
12
13636
13325



206
21
27960
27712



212
2
170
817



212
3
796
1167



212
7
3128
3436



212
9
3749
4075



213
1
1
705



214
2
570
64



214
6
3738
3412



214
9
6600
6995



214
10
7469
7074



217
1
965
3



218
1
178
657



218
3
1776
2156



220
2
1369
887



220
3
2262
1273



220
7
7208
6141



220
8
8661
7078



220
9
10216
8636



221
4
2613
2131



221
9
10757
10086



226
1
3
659



226
2
1459
722



226
3
1476
1961



227
1
2
487



227
2
460
975



227
4
1855
2121



227
5
2052
2345



227
6
3768
2776



227
9
5591
6367



228
5
2503
2877



228
6
2846
3526



233
7
3762
3580



236
2
579
349



238
2
1391
807



239
2
905
393



241
5
4334
4173



242
2
1363
1049



243
1
127
576



244
1
647
3



244
2
1962
889



245
2
1258
902



246
1
69
215



246
4
738
1733



249
3
3712
3518



250
1
249
4



254
1
1
156



256
2
956
1144



257
3
3227
2754



260
4
4580
4254



261
4
2196
2606



261
6
3214
3681



264
2
155
439



264
5
4533
3814



264
6
4739
5107



267
2
931
539



268
4
4700
4260



272
1
446
30



272
3
1200
1439



272
9
4691
4909



272
10
6035
5601



276
4
1746
1901



278
1
224
553



278
5
3299
3448



278
7
4849
5127



285
2
551
736



288
3
1756
1950



288
5
2055
2276



289
1
1055
3



290
2
1932
1630



291
2
332
622



291
5
1545
2051



295
3
1349
1092



295
4
2141
1554



295
5
2220
2762



297
2
465
142



298
1
2
205



300
2
1928
1476



301
7
2624
2454



304
1
3
194



306
1
109
654



306
5
4036
4257



307
1
339
4



307
8
3645
3995



308
1
1
654



308
2
599
78



308
4
2332
2021



313
2
1919
1524



314
1
10
702



316
2
982
1341



316
6
2758
3165



317
1
2
1114



317
3
3458
2346



321
6
5217
4789



321
7
6140
5961



321
8
6794
6138



322
2
543
259



326
2
165
1112



326
3
1117
1467



328
1
469
2



328
5
3276
3100



329
1
3
719



329
2
781
1212



329
3
1471
1833



330
1
289
2



330
3
1447
1623



332
3
2204
2055



332
7
4971
5138



333
2
3128
2961



335
1
433
2



337
2
95
526



340
2
1356
1054



341
1
3
281



341
3
2476
3192



341
5
3618
3944



341
6
3929
4558



344
5
2889
2581



345
1
768
4



346
2
221
592



350
3
1410
1598



352
2
1765
1352



352
3
4596
1876



352
7
7967
8404



352
8
8906
9247



352
9
9854
9537



359
1
1
546



362
1
3
656



364
2
1808
1458



364
8
10714
10454



365
2
1313
1014



365
5
4090
3500



365
7
4980
6239



366
3
520
1719



367
3
906
1085



368
1
494
240



375
1
2
136



380
3
1097
843



389
1
1
276



390
1
2
877



390
2
1373
1549



391
2
560
369



395
1
197
3



396
1
1068
4



398
3
1141
938



399
1
178
669



401
3
566
847



402
2
100
465



404
8
5370
5179



408
2
2269
1031



408
3
2672
2469



408
5
3524
4423



410
3
1890
1669



413
1
488
96



416
1
320
33



416
2
578
847



416
3
1590
985



417
1
3
179



417
2
161
616



420
2
513
238



422
2
357
677



431
2
856
1407



432
2
446
1084



433
1
1
417



433
3
2033
1755



434
1
535
128



434
2
1235
381



440
1
1
450



442
2
1269
3320



443
3
1520
1167



444
1
1
696



444
7
6366
5971



451
1
614
288



453
2
636
376



453
8
3833
4786



453
9
4512
4306



453
10
4731
4525



455
1
219
4



455
2
472
930



459
1
265
687



462
1
2
247



466
2
907
320



467
1
349
44



468
1
2
250



469
1
925
362



469
3
2386
3372



469
4
3464
3706



470
1
77
538



470
6
3694
3290



470
7
5686
5042



470
9
7351
8181



470
10
8175
9773



471
1
500
60



471
2
1017
472



476
1
70
267



477
1
2
760



477
3
1764
2081



477
4
2066
2332



480
5
4016
4261



481
2
480
4



486
3
613
774



487
6
1795
2112



488
1
359
3



492
1
127
675



493
1
2
520



493
2
496
1242



502
3
1149
1571



504
1
346
2



505
5
4150
3734



511
2
1232
723



512
2
583
747



515
1
609
812



517
4
2179
2511



520
4
2097
2360



520
6
3669
3430



527
1
1
498



528
1
335
33



529
2
1104
529



530
7
5298
5534



536
1
156
4



538
1
736
110



538
3
2203
2880



538
5
3121
2711



538
6
3731
3114



540
1
664
332



540
2
1031
567



541
1
89
433



541
2
432
145



542
2
1048
1272



545
2
734
456



551
1
1129
113



555
2
704
516



558
3
1154
951



558
4
1458
1156



558
5
1821
1537



558
6
2020
1874



558
7
2322
2008



558
8
2802
2551



558
9
3453
2920



560
1
475
921



565
3
1485
1264



571
1
156
4



571
3
994
1206



577
1
2
199



577
2
163
453



579
1
1
477



579
2
1200
616



583
1
996
4



585
1
539
132



587
1
22
573



588
2
1372
848



588
3
1554
1366



590
1
47
334



592
2
1141
827



593
1
2
775



593
2
817
1122



595
1
87
890



596
3
1435
1277



602
1
8
169



603
5
1071
1469



606
1
322
768



607
5
1226
1008



610
1
541
53



612
1
3
500



616
1
650
309



617
2
491
246



622
1
36
347



625
4
2046
2549



627
1
67
210



628
1
452
3



631
3
4004
3219



634
1
759
70



636
1
189
368



636
2
1063
197



637
2
1994
1665



638
1
227
1081



639
1
261
4



639
2
811
245



641
1
118
444



642
3
1331
1047



642
4
1847
1434



643
1
3
608



645
4
1534
1758



645
6
2025
2321



645
7
2488
2036



648
1
2
1045



660
1
77
601



660
2
576
872



661
1
961
197



664
2
89
304



667
1
3
413



668
1
1
330



671
2
516
220



673
1
3
338



674
2
584
303



679
1
1
237



679
3
1589
1906



688
1
835
434



688
2
1077
802



694
1
3
143



696
2
432
46



706
1
224
81



709
3
1183
1449



711
1
3
908



715
1
3
167



716
1
2
637



721
1
133
570



722
1
383
3



723
1
829
2



723
2
1112
726



727
1
2
472



729
1
268
441



731
1
130
828



735
1
2
214



736
1
3
782



738
1
2
298



742
1
3
230



745
3
780
412



748
2
282
464



749
1
344
3



751
1
452
3



755
1
97
522



755
2
520
918



758
2
400
137



764
2
746
459



767
1
1
405



768
1
2
373



771
1
534
10



778
1
902
69



785
1
1023
256



787
1
631
2



791
1
3
224



799
1
15
260



804
1
304
711



805
1
3
680



808
1
219
842



810
1
1112
3



810
2
1442
1110



812
1
38
979



817
1
358
2



818
2
487
1104



819
2
1032
535



819
3
1419
1090



820
1
195
1064



828
1
255
4



829
1
48
800



830
1
291
4



832
1
298
2



835
1
320
796



840
3
491
709



845
1
457
2



850
2
303
449



853
1
359
3



860
1
2
256



864
1
18
410



864
2
383
715



864
6
1676
1828



870
1
1
588



873
1
454
2



875
1
294
4



877
1
1020
379



878
1
544
107



879
1
785
3



881
1
1
243



882
1
389
604



890
1
2
508



905
1
398
3



906
1
544
236



912
1
188
3



913
1
3
290



913
2
547
2



915
1
6
161



915
2
169
402



921
1
126
386



927
1
808
38



928
1
2
385



929
1
2
400



932
1
2
400



934
1
1
384



936
1
528
4



937
1
2
616



945
1
220
645



945
2
649
1242



946
1
950
198



949
1
1
270



951
1
3
362



955
1
3
143



960
1
400
77



963
1
1
162



965
1
346
2



966
1
606
133



969
1
3
302



971
1
12
170



974
1
161
3



976
1
348
4



977
1
2
211



982
1
982
38



984
1
296
3



987
1
3
467



993
1
1
525



994
1
549
178



1004
1
318
79



1014
1
313
2



1015
1
2
463



1016
1
145
2



1019
1
660
115



1022
1
474
109



1024
1
299
3



1024
2
276
431



1030
1
338
3



1032
1
179
3



1040
1
399
4



1043
1
3
269



1044
2
115
399



1047
1
1
159



1051
1
354
4



1051
2
733
233



1063
1
2
400



1069
1
2
148



1069
2
533
297



1075
1
399
91



1077
1
97
405



1081
1
58
438



1086
1
1
384



1087
2
246
431



1088
1
3
374



1096
1
238
2



1098
1
509
3



1100
1
511
2



1100
2
1158
796



1101
1
353
3



1102
1
194
3



1107
1
2
580



1114
1
3
422



1115
1
2
268



1119
1
22
267



1129
1
40
342



1132
1
181
2



1133
1
376
143



1144
1
225
4



1147
1
280
2



1153
1
1
153



1154
1
3
818



1159
1
1
330



1161
1
186
31



1164
1
254
81



1171
1
19
240



1171
2
108
299



1183
1
2
379



1195
1
179
3



1196
1
1
189



1200
1
33
197



1203
2
129
464



1222
2
105
401



1232
1
1
387



1240
1
2
175



1247
1
311
102



1271
1
221
30



1286
1
2
595



1295
1
1
165



1306
1
185
3



1314
2
158
631



1316
1
58
570



1359
1
193
2



1370
1
1
402



1371
1
1
345



1374
1
357
4



1378
1
2
400



1392
1
3
413



1411
1
202
432



1433
1
167
3



1450
1
2
256



1453
1
149
3



1471
1
398
75



1477
1
639
409



1502
1
399
4



1518
1
126
449



1534
1
143
3



1546
1
3
401



1547
1
255
4



1583
1
3
350



1587
1
3
563



1602
2
170
679



1629
1
1
402



1665
1
235
2



1760
1
314
3



1762
1
3
200



1876
2
119
286



1895
1
2
379



1931
1
400
2



1976
2
383
51



2055
2
252
401



2056
1
167
3



2150
1
263
3



2157
1
399
4



2164
1
283
2



2175
1
218
400



2212
1
331
170



2338
1
367
2



2342
1
3
167



2352
1
166
2



2352
2
398
174



2355
1
47
352



2356
1
341
3



2359
1
152
3



2421
1
150
4



2422
1
306
43



2443
1
263
99



2454
1
3
158



2463
1
253
2



2485
1
3
374



2557
1
246
4



2575
1
2
355



2582
1
3
284



2607
1
1
294



2930
1
17
400



2939
1
242
18



2944
1
3
359



2945
2
399
97



2952
1
2
190



2953
1
399
61



2964
1
166
2



2969
1
144
4



2977
1
2
373



2981
2
334
167



2986
1
7
279



2991
1
363
118



2995
1
1
321



3007
1
191
39



3017
1
308
48



3018
2
136
351



3025
1
197
3



3040
1
180
4



3046
1
185
3



3049
1
278
3



3050
1
3
314



3052
1
253
2



3065
1
2
157



3070
1
190
23



3075
1
222
4



3080
1
1
285



3092
1
162
4



3093
1
250
89



3100
1
52
237



3103
1
47
298



3118
1
174
4



3123
1
2
145



3127
1
1
147



3138
1
169
2



3142
1
203
18



3144
1
386
108



3151
1
170
3



3155
2
202
384



3168
1
12
176



3205
1
145
2



3282
1
1
150



3303
2
239
400



3371
2
211
399



3558
1
2
148



3558
2
36
401



3568
1
377
3



3595
1
380
3



3618
1
2
238



3618
2
130
402



3622
1
86
358



3622
2
398
132



3642
1
439
2



3649
1
398
15



3651
1
314
3



3664
1
467
637



3674
1
55
402



3677
1
311
3



3704
1
1
402



3726
1
269
3



3765
1
256
2



3779
1
357
160



3794
1
135
4



3794
2
377
87



3796
2
375
112



3801
1
262
50



3806
1
298
143



3807
1
42
389



3815
1
400
2



3827
1
3
320



3842
1
392
3



3853
1
399
127



3855
1
1
324



3857
1
2
235



3861
1
297
4



3865
1
399
103



3897
1
3
173



3897
2
143
400



3898
2
225
401



3921
2
103
342



3927
1
70
375



3930
1
76
234



3946
2
382
113



3951
2
105
377



3965
1
344
42



3973
1
400
5



3981
1
3
311



3998
1
3
356



4001
1
296
111



4003
1
90
335



4018
1
2
259



4018
2
186
401



4021
1
1
345



4043
1
3
344



4054
1
3
344



4066
1
1
150



4070
1
1
324



4072
2
187
390



4073
1
1
285



4077
2
127
372



4083
1
3
359



4090
1
27
368



4101
1
103
297



4105
1
1
306



4107
1
286
2



4119
1
339
49



4121
1
372
4



4123
1
3
230



4127
1
3
341



4128
1
2
331



4130
1
415
62



4146
1
97
381



4157
1
3
206



4186
1
254
3



4224
1
256
2



4239
1
1
348



4242
1
356
3



4252
1
296
3



4253
1
1
174



4256
1
323
78



4258
2
334
170



4267
1
144
4



4271
1
2
304



4287
1
163
23



4289
1
319
167



4302
1
153
305



4304
1
1
186



4304
2
96
314



4306
1
2
151



4318
1
289
2



4322
1
5
148



4331
1
221
3



4331
2
364
200



4338
1
399
70



4346
1
277
83



4367
2
117
311



4373
1
2
268



4381
1
326
78



4384
1
309
4



4397
1
9
311



4402
1
1
249



4403
1
328
50



4406
1
3
317



4411
1
2
280



4411
2
398
99



4412
1
2
364



4418
1
3
230



4424
1
398
195



4443
1
215
3



4471
1
323
3



4478
1
271
2



4482
1
50
289



4489
1
302
3



4491
1
12
206



4495
1
3
179



4496
1
252
4



4500
1
130
306



4511
1
248
3



4518
1
1
246



4526
1
241
2



4527
1
2
163



4532
1
3
239



4542
1
11
175



4567
1
36
200



4573
1
1
231



4578
1
322
2



4619
1
1
180



4620
1
176
3



4662
1
1
246



4669
1
2
157



4680
1
28
183



4690
1
174
4











[0291]


Claims
  • 1. An isolated polynucleotide comprising a nucleic acid fragment of the Staphylococcus aureus genome, wherein said fragment consists of the nucleotide sequence of any one of SEQ ID NOS: 1-5,191 as depicted in Tables 2 and 3.
  • 2. A vector comprising the polynucleotide of claim 1.
  • 3. An organism which has been altered to contain the polynucleotide of claim 1.
  • 4. An isolated polypeptide encoded by any one of the fragments of the Staphylococcus aureus genome of SEQ ID NOS: 1-5,191 and depicted in Tables 2 and 3.
  • 5. An antibody which specifically binds the polypeptide of claim 4.
  • 6. An isolated polynucleotide encoding the polypeptide of claim 4.
  • 7. A vector comprising the polynucleotide of claim 6.
  • 8. An organism which has been altered to contain the polynucleotide of claim 6.
  • 9. A method for producing a polypeptide in a host cell comprising the steps of: (a) incubating a host containing a heterologous nucleic acid molecule whose nucleotide sequence consists of the polynucleotide of claim 6 under conditions where said heterologous nucleic acid molecule is expressed to produce said polypeptide, and (b) isolating said polypeptide.
  • 10. An isolated polypeptide comprising an amino acid sequence identical to a Staphylococcus aureus polypeptide amino acid sequence selected from the group consisting of SEQ ID NOS: 5,192 to 5,255.
CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application is a divisional of and claims priority under 35 U.S.C. § 120 to U.S. application Ser. No. 08/956,171, filed Oct. 20, 1997, which is a continuation-in-part of and claims priority under 35 U.S.C. § 120 to U.S. application Ser. No. 08/781,986, filed Jan. 3, 1997, which is a non-provisional of and claims benefit under 35 U.S.C. § 119(e) of U.S. Provisional Application No. 60/009,861, filed Jan. 5, 1996.

Provisional Applications (1)
Number Date Country
60009861 Jan 1996 US
Divisions (1)
Number Date Country
Parent 08956171 Oct 1997 US
Child 10329624 Dec 2002 US
Continuation in Parts (1)
Number Date Country
Parent 08781986 Jan 1997 US
Child 08956171 Oct 1997 US