This specification is accompanied by an original compact disc and one identical copy, the contents of which are hereby incorporated by reference. The compact discs each contain the file: 5339-9952.txt.
This disclosure presents embodiments of novel strains of Staphylococcus aureus (“S. aureus”) and uses thereof.
In various embodiments of the present invention, the cap5 operon of S. aureus is controlled by a constitutive promoter. In various embodiments of the present invention, said constitutive promoter is the cap1 promoter from S. aureus strain M. In various embodiments of the present invention, the strains of S. aureus encompassed by this disclosure produce type 5 capsular polysaccharide at greater levels than wild-type S. aureus strain Reynolds.
One embodiment of the present invention comprises CYL1892, a novel strain of S. aureus.
In one embodiment of the present invention, the cap5 operon comprises the genes cap5A through cap5P. In one embodiment of the present invention, the cap5 operon comprises the genes cap5A through cap5O. In various embodiments of the present invention, the cap5 operon comprises genes encoding proteins involved in the synthesis of type 5 capsular polysaccharide.
In various embodiments of the present invention, a method of producing type 5 capsular polysaccharide is disclosed wherein said method comprises culturing a strain of S. aureus encompassed by various embodiments of the present invention and obtaining type 5 capsular polysaccharide from the culture.
One embodiment of the present invention provides a deoxyribonucleic acid (“DNA”) sequence comprising a 5′ flanking region of the cap5 promoter linked to a cap1 promoter operably linked to a 3′ flanking region of the cap5 promoter wherein said DNA sequence comprises a modified 5′ control region. A promoter is operably linked to a DNA sequence if the promoter is joined to said DNA sequence in a manner capable of promoting transcription of the DNA sequence.
One embodiment of the present invention provides a DNA sequence comprising a modified 5′ control region operably linked to a cap5 operon. Yet another embodiment provides a strain of S. aureus comprising a modified 5′ control region operably linked to a cap5 operon wherein said strain of S. aureus produces approximately 11.5 fold more type 5 capsular polysaccharide than S. aureus strain Reynolds.
In various embodiments of the present invention, type 5 capsular polysaccharide comprises the structure→4)-β-D-ManNAcA(1→4)-α-L-FucNAc(3OAc)-(1→3)-β-D-FucNAc(1→.
In one embodiment of the present invention, the DNA primers listed in
The forward primer Ppa8f8 (SEQ ID NO:12) and reverse primer Ppa5r2 (SEQ ID NO:9) are partially complementary to the genomic DNA of S. aureus strain Reynolds. PCR reactions using these primers and S. aureus strain Reynolds genomic DNA as template produce a 778 base pair (“bp”) PCR product, SEQ ID NO:1. The PCR product identified as SEQ ID NO:1 comprises a DNA sequence that is substantially similar to a portion of the 5′ flanking region of the cap5 operon of S. aureus strain Reynolds. The 5′ flanking region of the cap5 operon is any sequence of DNA that is no more than about 10,000 bases, no more than about 5,000 bases, no more than about 4,000 bases, no more than about 3,000 bases, no more than about 2,000 bases, or no more than about 1,000 bases 5′ to the cap5 promoter of the cap5 operon or DNA that is substantially similar to the 5′ flanking region of the cap5 operon. Substantially similar DNA sequences are DNA sequences that have at least about 80% identity. While it is recognized that SEQ ID NO:1 was used in the construction of the modified 5′ control region of one embodiment of the present invention, it is envisioned that other sequences of the 5′ flanking region of the cap5 operon could be utilized to achieve substantially the same results in other embodiments. Therefore, the use of SEQ ID NO:1 should not be construed as limiting.
In various embodiments of the present invention, the cap5 promoter of the cap5 operon is replaced by a constitutive promoter. A constitutive promoter encompassed by embodiments of the present invention includes the cap1 promoter. It is envisioned that other constitutive promoters may be used in various embodiments of the present invention including, but not limited to, promoters that are substantially similar to the cap1 promoter. It is also envisioned that other sequences comprising the cap1 promoter may be used in various embodiments of the present invention. Therefore, the examples recited should not be construed as limiting the scope of the disclosure.
The promoter of the cap1 operon of S. aureus strain M is known to be a constitutive promoter. In one embodiment of the present invention, the cap5 promoter of S. aureus strain Reynolds has been replaced with the cap1 promoter of S. aureus strain M. The forward primer Ppa1fNcoI (SEQ ID NO:13) and reverse primer Ppa1r (SEQ ID NO:10) are partially complementary to the genomic DNA of S. aureus strain M. PCR using these primers and S. aureus strain M genomic DNA as template produces a 250 by PCR product, SEQ ID NO:2. In various embodiments of the present invention, the cap1 promoter of S. aureus strain M comprises the DNA sequence identified by SEQ ID NO:2.
In one embodiment of the present invention, a 3′ flanking region of the cap5 promoter has been amplified by PCR. A 3′ flanking region of the cap5 promoter may be a DNA sequence of the cap5 operon that is located 3′ to the cap5 promoter including, but not limited to, any sequence comprising about the first 50 bases 3′ to the cap5 promoter, about the first 100 bases 3′ to the cap5 promoter, about the first 500 bases 3′ to the cap5 promoter, about the first 1,000 bases 3′ to the cap5 promoter, about the first 2,000 bases 3′ to the cap5 promoter, about the first 5,000 bases 3′ to the cap5 promoter, or about the first 10,000 bases 3′ to the cap5 promoter or portions thereof.
PCR using the primers Ppa8af7 (SEQ ID NO:11) and Ppa5ar1 (SEQ ID NO:8) and S. aureus strain Reynolds genomic DNA as template produces an 872 bp PCR product that spans the cap5A gene and a partial cap5B gene. The 3′ flanking region of the cap5 promoter comprises the 872 bp PCR product and is identified as SEQ ID NO:3. Although the 872 bp 3′ flanking region of the cap5 promoter has been used in some embodiments of the present invention, it is envisioned that other sequences that are 3′ to the cap5 promoter may be used to create a 3′ flanking region. Additionally, it is envisioned that DNA sequences that are substantially similar to the 3′ flanking region of the cap5 promoter may be used in various embodiments of the present invention. Therefore, the example should not be construed as limiting.
The DNA comprising SEQ ID NO:2 (250 by cap1 promoter) has been joined to the DNA comprising SEQ ID NO:3 (872 bp 3′ flanking region of the cap5 promoter) by overlapping PCR according to the method of Higuchi. (1) The PCR primer Ppa8af7 (SEQ ID NO:11) is partially complementary to the sequence of PCR primer Ppa1r (SEQ ID NO:10) as shown in
DNA comprising SEQ ID NO:4 as ligated into pGEM T-vector was digested with the restriction enzymes NcoI and BamHI and purified according to standard techniques. (2)
DNA comprising SEQ ID NO:1 was generated by PCR. The PCR product was ligated into pGEM T-vector (Promega, Madison, Wis.) and verified by sequencing. The vector with the SEQ ID NO:1 insert was digested with restriction enzymes EcoRI and NcoI and purified according to standard techniques. (2)
EcoRI and NcoI digested DNA comprising SEQ ID NO:1 and NcoI and BamHI digested DNA comprising SEQ ID NO:4 were ligated such that the resulting DNA of the ligation comprised a 5′ flanking region of the cap5 promoter ligated to a cap1 promoter that is operably linked to a 3′ flanking region of the cap5 promoter as shown in
The shuttle vector pCL10 was digested with EcoRI and BamHI. The DNA comprising SEQ ID NO:5 that comprised DNA digested with EcoRI and BamHI restriction enzymes was purified and ligated into digested pCL10 as shown in
In various embodiments of the present invention, the pCL10-modified 5′ control region plasmid may be introduced into a first host bacterial strain such as, for example, RN4220. The plasmid may be transferred via transduction from the first host bacterial strain to a second host bacterial strain such as, for example, S. aureus strain Reynolds.
In various embodiments of the present invention, electroporation may be used to introduce plasmids into S. aureus. Electroporation may be carried out by the following procedure:
In various embodiments of the present invention, transduction of a recipient strain may be carried out with bacteriophage. The bacteriophage used in the transduction may be prepared as follows:
In various embodiments of the present invention, transduction of a recipient strain such as, for example, S. aureus strain Reynolds, may be carried out with bacteriophage such as, for example, bacteriophage 52A, according to the following procedure:
In various embodiments of the present invention, the pCL10-modified 5′ control region plasmid is introduced into strain RN4220 bacteria by electroporation. In various embodiments of the present invention, the pCL10-modified 5′ control region plasmid is introduced into S. aureus strain Reynolds via bacteriophage transduction. Furthermore, he 5′ flanking region of the cap5 promoter and the 3′ flanking region of the cap5 promoter which are part of the modified 5′ control region are homologous to sequences of the S. aureus strain Reynolds genomic DNA. During replication of S. aureus strain Reynolds which has been transduced with the plasmid DNA comprising the modified 5′ control region, the modified 5′ control region may be integrated into the genomic DNA of S. aureus by homologous recombination. The homologous recombination event may occur such that the cap5 promoter sequence within the S. aureus genome is replaced by the cap1 promoter sequence encoded within the modified 5′ control region of the plasmid. The resulting strain of S. aureus comprises a cap5 operon controlled by a constitutive promoter. Further, the resulting strain comprises a constitutive promoter operably linked to a cap5 operon. Further still, the resulting strain comprises a cap1 promoter operably linked to a cap5 operon. The DNA sequence of the constitutive promoter operably linked to the cap5 operon has been verified by sequencing. The resulting strain is CYL1892.
In various embodiments of the present invention, a strain of Staphylococcus aureus of the present invention comprises a DNA sequence comprising the cap1 promoter operably linked to the genes of the cap5 operon wherein the genes of the cap5 operon comprise the genes cap5A through cap5P as listed in SEQ ID NO:6. In various embodiments of the present invention, a strain of Staphylococcus aureus of the present invention comprises a DNA sequence comprising the cap1 promoter operably linked to the genes of the cap5 operon wherein the genes of the cap5 operon comprise the genes cap5A through cap5O as listed in SEQ ID NO:7.
The following examples are further illustrative of the present invention, but it is understood that the invention is not limited thereto.
Immuno-dot blotting may be performed according to the following procedure:
10× PBS (pH 7.5) comprises the following: 0.06 grams of KH2PO4, 1.85 grams of Na2HPO4, 7.65 grams of NaCl and H2O to 100 milliliters. 10× TS comprises the following: 0.1M Tris-Cl (pH 7.5) and 1.5M NaCl. TS-skim milk comprises the following: 1× TS and 5% skim milk freshly prepared for each use and slightly warmed in a microwave oven.
Color developing reagent comprises the following: i) 12 mg HRP color developing reagent (BioRad) in 4 milliliters of Methanol; and ii) 0.012 milliliters of 30% H2O2 in 20 milliliters of TS. Parts i) and ii) of the color developing reagent should be mixed immediately prior to application.
Quantitation of type 5 capsular polysaccharide production illustrated in
The overproduction of type 5 capsular polysaccharide in CYL1892 is demonstrated on solid agar plates.
In various embodiments of the present invention, PCR may be carried out using the Advantage HF-2 PCR kit from Stratagene according to the manufacturer's instructions. The PCR may comprise the following protocol:
In various embodiments of the present invention, plasmid DNA may be purified with a plasmid purification kit (Qiagen, Inc., Chatsworth, Calif.). PCR products may be separated by agarose gel electrophoresis and purified by a PCR product purification kit (Qiagen, Inc., Chatsworth, Calif.). Bulk chromosomal DNA from S. aureus may be purified with a chromosomal DNA purification kit (Promega, Madison, Wis.). PCR amplification may be carried out with the Advantage cDNA PCR kit (Clontech, Palo Alto, Calif.) or the Advantage HF-2 PCR kit (Stratagene, La Jolla, Calif.). Unless otherwise described but without being limited thereto, standard DNA manipulations and other molecular biology techniques may be performed as described by Sambrook, et al. (2).
Genomic DNA from S. aureus strain Reynolds, a type 5 capsular polysaccharide producing strain containing the cap5 locus, was used as the template for the 5′ flanking region of the cap5 promoter and the 3′ flanking region of the cap5 promoter. Genomic DNA from S. aureus strain M, a type 1 capsular polysaccharide producing strain containing the cap1 locus, was used as the template for the cap1 promoter.
S. aureus RN4220 was used as the recipient in electroporations of the pCL10-modified 5′ control region plasmid.
Bacteriophage 52A was used to transduce pCL10-modified 5′ control region plasmid from RN4220 to S. aureus strain Reynolds.
S. aureus strain Reynolds, a type 5 capsular polysaccharide producing strain containing the cap5 locus, was used as the parent strain for constructing the type 5 capsular polysaccharide overproducing strain, CYL1892. S. aureus strain Reynolds was transduced with bacteriophage comprising the pCL10-modified 5′ control region plasmid. S. aureus strain CYL1892 resulted from homologous recombination of the pCL10-modified 5′ control region plasmid with S. aureus strain Reynolds genomic DNA.
Escherichia coli strain XL1-Blue was used as a host strain for plasmid constructions.
S. aureus strains were cultured in Trypticase soy medium (Difco Laboratories, Detroit, Mich.). E. coli strains were cultured in Luria-Bertani medium (Difco Laboratories). Where applicable, bacteria were cultured on agar plates containing the appropriate aforementioned media and 0.5% agar.
In various embodiments of the present invention, DNA sequences are listed as single-stranded DNA sequences. These sequences should not be construed to be limited to merely the single strand of DNA but should be construed to encompass a complementary strand where applicable.
All references cited in this specification are hereby incorporated by reference in their entirety. The discussion of the references herein is intended merely to summarize the assertions made by their authors and no admission is made that any reference constitutes prior art relevant to patentability. Applicant reserves the right to challenge the accuracy and pertinence of the cited references.
As various changes could be made in the above methods and compositions without departing from the scope of the invention, it is intended that all matter contained in the above description be interpreted as illustrative and not in a limiting sense. Unless explicitly stated to recite activities that have been done (i.e., using the past tense), illustrations and examples are not intended to be a representation that given embodiments of this invention have, or have not, been performed.
This application is a divisional of U.S. Ser. No. 11/285,700, filed on Nov. 21, 2005, now U.S. Pat. No. 7,521,221, issued on Apr. 21, 2009, and is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5843780 | Thomson | Dec 1998 | A |
6030836 | Thiede | Feb 2000 | A |
6200806 | Thomson | Mar 2001 | B1 |
6387367 | Davis-Sproul | May 2002 | B1 |
6800480 | Bodnar | Oct 2004 | B1 |
6911201 | Merchav | Jun 2005 | B1 |
7521221 | Lee et al. | Apr 2009 | B2 |
20050013872 | Freyman | Jan 2005 | A1 |
Number | Date | Country |
---|---|---|
2005009498 | Feb 2005 | WO |
2006114500 | Nov 2006 | WO |
2007118979 | Oct 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20100184160 A1 | Jul 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11285700 | Nov 2005 | US |
Child | 12398821 | US |