Staple cartridge

Information

  • Patent Grant
  • 11944303
  • Patent Number
    11,944,303
  • Date Filed
    Wednesday, June 15, 2022
    a year ago
  • Date Issued
    Tuesday, April 2, 2024
    a month ago
Abstract
A staple cartridge can comprise a plurality of staples positioned within a cartridge body, wherein the cartridge body can comprise a tissue-contacting deck and a plurality of ridges extending from the tissue-contacting deck. The ridges can be configured to prevent, or reduce the possibility of, tissue from moving relative to the staple cartridge during use. The staple cartridge can further comprise a plurality of staple cavities, wherein each staple cavity can comprise an opening in the deck which is at least partially surrounded by a ridge. The ridges can comprise a uniform height or a height which varies along the length thereof. The height can vary relative to a proximal end and a distal end of the cartridge body and/or between the center of the cartridge body and the side.
Description
BACKGROUND
i. Technical Field

The present invention relates to stapling instruments and, in various embodiments, to a surgical stapling instrument for producing one or more rows of staples.


ii. Background of the Related Art

A stapling instrument can include a pair of cooperating elongate jaw members, wherein each jaw member can be adapted to be inserted into a patient and positioned relative to tissue that is to be stapled and/or incised. In various embodiments, one of the jaw members can support a staple cartridge with at least two laterally spaced rows of staples contained therein, and the other jaw member can support an anvil with staple-forming pockets aligned with the rows of staples in the staple cartridge. Generally, the stapling instrument can further include a pusher bar and a knife blade which are slidable relative to the jaw members to sequentially eject the staples from the staple cartridge via camming surfaces on the pusher bar and/or camming surfaces on a wedge sled that is pushed by the pusher bar. In at least one embodiment, the camming surfaces can be configured to activate a plurality of staple drivers carried by the cartridge and associated with the staples in order to push the staples against the anvil and form laterally spaced rows of deformed staples in the tissue gripped between the jaw members. In at least one embodiment, the knife blade can trail the camming surfaces and cut the tissue along a line between the staple rows. Examples of such stapling instruments are disclosed in U.S. Pat. No. 7,794,475, entitled SURGICAL STAPLES HAVING COMPRESSIBLE OR CRUSHABLE MEMBERS FOR SECURING TISSUE THEREIN AND STAPLING INSTRUMENTS FOR DEPLOYING THE SAME, the entire disclosure of which is hereby incorporated by reference herein.


The foregoing discussion is intended only to illustrate various aspects of the related art in the field of the invention at the time, and should not be taken as a disavowal of claim scope.


SUMMARY

In at least one form, a staple cartridge can comprise a plurality of staples and a cartridge body. The cartridge body can comprise a tissue-contacting deck, a plurality of staple cavities, wherein each staple cavity comprises an opening in the deck, and wherein a staple is positioned in each staple cavity. The cartridge body can further comprise a plurality of ridges extending from the tissue-contacting deck, wherein each opening is at least partially surrounded by a ridge.


In at least one form, a staple cartridge can comprise a plurality of staples and a cartridge body. The cartridge body can comprise a middle portion, a side portion, a tissue-contacting deck, a plurality of staple cavities, wherein a staple is positioned in each staple cavity, and a plurality of ridges extending from the tissue-contacting deck, wherein each ridge extends between the middle portion and the side portion of the cartridge body.


In at least one form, a staple cartridge can comprise a plurality of staples and a cartridge body. The cartridge body can comprise a proximal end, a distal end, a tissue-contacting deck, a plurality of staple cavities, wherein a staple is positioned in each staple cavity, and a plurality of ridges extending from the tissue-contacting deck, wherein each ridge comprises a height which varies between a proximal height and a distal height, and wherein the proximal height is closer to the proximal end than the distal height.


The foregoing discussion should not be taken as a disavowal of claim scope.





BRIEF DESCRIPTION OF THE DRAWINGS

Various features of the embodiments described herein are set forth with particularity in the appended claims. The various embodiments, however, both as to organization and methods of operation, together with advantages thereof, may be understood in accordance with the following description taken in conjunction with the accompanying drawings as follows.



FIG. 1 is an elevational view of a surgical stapling instrument.



FIG. 2 is a cross-sectional view of an end effector of the surgical stapling instrument of FIG. 1 taken along line 2-2 in FIG. 1.



FIG. 3 is a cross-sectional perspective view of the end effector of FIG. 1.



FIG. 4 is a cross-sectional view of the end effector of FIG. 1 illustrating staples contained therein in an unfired configuration.



FIG. 5 is a diagram illustrating the staples of FIG. 4 in a fired configuration.



FIG. 6 is a diagram illustrating the end effector of FIG. 1 being used to staple and transect tissue.



FIG. 7 is a perspective view of a staple cartridge in accordance with at least one embodiment comprising a plurality of ridges extending from a cartridge body.



FIG. 8 is a detail view of the staple cartridge of FIG. 7.



FIG. 8A is a cross-sectional view of the staple cartridge of FIG. 7.



FIG. 9 is a detail view illustrating staples positioned within staple cavities defined in the staple cartridge of FIG. 7.



FIG. 10 is a partial perspective view of a staple cartridge in accordance with at least one alternative embodiment comprising a plurality of transverse ridges extending from a cartridge body.



FIG. 11 is a partial perspective view of a staple cartridge in accordance with at least one alternative embodiment comprising a plurality of transverse ridges extending from a cartridge body.



FIG. 12 is a partial perspective view of a staple cartridge in accordance with at least one alternative embodiment comprising a plurality of ridges surrounding the proximal and distal ends of staple cavity openings defined in a cartridge body.



FIG. 13 is a partial perspective view of a staple cartridge in accordance with at least one alternative embodiment comprising a plurality of ridges surrounding the proximal and distal ends of staple cavity openings defined in a cartridge body.



FIG. 14 is a partial perspective view of a staple cartridge in accordance with at least one alternative embodiment comprising a plurality of knurled ridges extending from a cartridge body.



FIG. 15 is a partial perspective view of a staple cartridge in accordance with at least one alternative embodiment comprising a plurality of knurled ridges extending from a cartridge body.



FIG. 15A is a perspective view of a pyramidal knurl in accordance with at least one embodiment.



FIG. 15B is a perspective view of a frustoconical knurl in accordance with at least one embodiment.



FIG. 15C is a perspective view of a triangular knurl in accordance with at least one embodiment.



FIG. 16 is a partial perspective view of a staple cartridge in accordance with at least one alternative embodiment comprising a plurality of ridges entirely surrounding staple cavity openings defined in a cartridge body.



FIG. 16A is a partial perspective view of a staple cartridge in accordance with at least one alternative embodiment comprising a plurality of ridges entirely surrounding staple cavity openings defined in a cartridge body.



FIG. 17 is a perspective view of a staple cartridge in accordance with at least one alternative embodiment comprising a plurality of longitudinal ridges extending from a cartridge body.



FIG. 18 is a detail view of the staple cartridge of FIG. 17.





Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate various embodiments of the invention, in one form, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.


DETAILED DESCRIPTION

Numerous specific details are set forth to provide a thorough understanding of the overall structure, function, manufacture, and use of the embodiments as described in the specification and illustrated in the accompanying drawings. It will be understood by those skilled in the art, however, that the embodiments may be practiced without such specific details. In other instances, well-known operations, components, and elements have not been described in detail so as not to obscure the embodiments described in the specification. Those of ordinary skill in the art will understand that the embodiments described and illustrated herein are non-limiting examples, and thus it can be appreciated that the specific structural and functional details disclosed herein may be representative and illustrative. Variations and changes thereto may be made without departing from the scope of the claims.


Reference throughout the specification to “various embodiments,” “some embodiments,” “one embodiment,” or “an embodiment”, or the like, means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, appearances of the phrases “in various embodiments,” “in some embodiments,” “in one embodiment,” or “in an embodiment”, or the like, in places throughout the specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. Thus, the particular features, structures, or characteristics illustrated or described in connection with one embodiment may be combined, in whole or in part, with the features structures, or characteristics of one or more other embodiments without limitation. Furthermore, it will be appreciated that for conciseness and clarity, spatial terms such as “vertical,” “horizontal,” “up,” and “down”, for example, may be used herein with respect to the illustrated embodiments. However, these terms are used to assist the reader and are not intended to be limiting and absolute.


Turning to FIG. 1, a surgical stapling and severing instrument 10 can include a handle portion 12 that can be manipulated in order to position an implement portion 14 in a surgical site. In various embodiments, the implement portion 14 can include an end effector 16 attached to an elongate shaft 18. In various circumstances, the implement portion 14 can be sized and configured to be inserted through a cannula of a trocar (not shown) into the surgical site in order to perform an endoscopic or laparoscopic surgical procedure, for example. The end effector 16 can comprise an upper jaw, or anvil, 20 and a lower jaw 22, wherein the anvil 20 can be moved between an open position and a closed position when the closure trigger 24 of the handle portion 12 is moved, or depressed, toward a pistol grip 26 of the handle portion 12. In various embodiments, the depression of the closure trigger 24 can advance an outer closing sleeve 28 of the elongate shaft 18 wherein the outer closing sleeve 28 can contact the anvil 20 and pivot the anvil 20 into its closed position. In certain circumstances, the surgeon may rotate the implement portion 14 about its longitudinal axis by twisting a shaft rotation knob 30. In any event, once the end effector 16 has been inserted into an insufflated body cavity, for example, the closure trigger 24 may be released thereby allowing the anvil 20 to be biased open by a spring (not shown) and positioned relative to the targeted tissue. In various embodiments, the closure trigger 24 can be locked in its depressed condition and, in at least one embodiment, the handle portion 12 can further comprise a lock release actuator 44 which can be depressed to unlock the closure trigger 24. Once the anvil 20 and the lower jaw 22 have been suitably positioned relative to the tissue in the surgical site, the closure trigger 24 can be depressed once again in order to close the anvil 20 and compress the tissue against a staple cartridge 42 attached to the bottom jaw 22.


Once the anvil 20 has been closed, a firing trigger 32 can be drawn, or depressed, toward the closure trigger 24 and the pistol grip 26 in order to apply a firing force or motion to a firing member and advance the firing member from an unfired position. In various embodiments, the firing member can comprise a proximal firing rod 34 which is attached to a distal firing bar 36. In at least one such embodiment, the firing rod 34 and/or the firing bar 36 can be supported within a frame 38 in shaft 18 which can extend between the handle portion 12 and the end effector 16. As a result of the firing motion applied to the firing member, the firing bar 36 can be advanced distally within a elongate staple cartridge channel 40 of the lower jaw 22 and a staple cartridge 42 positioned within the cartridge channel 40. In various embodiments, referring to FIG. 2, the firing bar 36 can comprise an attachment portion 48 that is attached to an E-beam 50 which can translate within the end effector 16. The E-beam 50 can comprise a vertical portion 52 which can pass through a narrow longitudinal anvil slot 58 extending through a tissue-contacting surface 60 in the anvil 20, a narrow vertical slot 62 in the staple cartridge 42, and a narrow longitudinal channel slot 64 in the elongate staple channel 40 when the E-beam 50 is advanced distally. Referring now to FIGS. 2 and 3, the anvil slot 58 can extend upwardly into the anvil 20 and can comprise an end which opens into a laterally-widened longitudinal channel 66 sized and configured to receive an upper pin 54 that extends laterally from the vertical portion 52. Similarly, the channel slot 64 can extend downwardly into the channel 40 and can comprise an end which opens into a laterally-widened longitudinal channel 68 sized and configured to receive one or more lower feet 70 extending laterally from the vertical portion 52.


In various embodiments, further to the above, the E-beam 50 can further comprise one or more middle pins 72 which can extend laterally from the vertical portion 52 and can be configured to slide along a top surface of a bottom tray 74 of the staple cartridge 42. In certain embodiments, the middle pins 72 can be configured to seat the staple cartridge 42, or assure that the staple cartridge 42 remains seated, in the channel 40. A longitudinal firing recess 75 formed in the staple cartridge 42 above the bottom tray 74 is sized to allow the middle pins 72 to translate through the staple cartridge 42. In various embodiments, the E-beam 50 can further comprise a distal drive surface 76 which can be configured to translate through the vertical slot 62 in the staple cartridge 42 and drive a wedge sled 78 distally through the staple cartridge 42. In certain embodiments, the wedge sled 78 can be integrally-formed within the E-beam 50 while, in other embodiments, the wedge sled 78 can reside in the staple cartridge 42 and can be contacted by the drive surface 76 as the E-beam 50 is advanced distally. The vertical portion 52 of the E-beam 50 can further comprise a cutting surface 80 which extends along a distal edge above the distal drive surface 76 and below the upper pin 54 that severs the clamped tissue 46 as the tissue 46 is being stapled. Referring now to FIG. 4, the wedge sled 78 can be configured to engage one or more staple drivers 82 and drive the staple drivers 82 upwardly toward the anvil 20. In various embodiments, staples, such as staples 83, for example, can be seated on and/or otherwise supported by the staple drivers 82 such that, as the staple drivers 82 are lifted upwardly, the staples 83 can be lifted upwardly as well. In at least one such embodiment, the staples 83 can also be at least partially positioned within staple cavities, or pockets, 84 in a staple cartridge body 85 of the staple cartridge 42 wherein, as the staples 83 are lifted upwardly, the staples 83 can contact the anvil 20 and can be ejected from the staple cavities 84. In at least one embodiment, referring again to FIG. 4, the bottom tray 74 can be attached to the cartridge body 85 in order to retain the staple drivers 82 and the staples 83 within the staple cartridge 42 until the staples 83 are deployed therefrom as described above.


In use, referring now to FIGS. 5 and 6, the anvil 20 can be positioned on one side of the tissue 46 and the bottom jaw 22 can be positioned on the opposite side of the tissue 46 such that, when the anvil 20 is closed onto the tissue, the tissue-contacting surface 60 of the anvil 20 and the tissue-contacting deck 90 of the staple cartridge 42 can compress the tissue 46 between an uncompressed thickness 91 and a compressed thickness 92. In order to staple and transect the tissue 46, as described above, the wedge sled 78 can be advanced distally within the staple cartridge 42 in order to lift the staple drivers 82 toward the anvil 20 and deform the staples 83. In various embodiments, each staple driver 82 can comprise one or more slots defined therein which can be configured to receive and releasably hold the bases 87 of the staples 83 in position. In at least one such embodiment, each staple 83 can comprise one or more staple legs 88 extending from the base 87, wherein the staple legs 88 can extend upwardly into the staple cavities 84. In various embodiments, the tips of the staple legs 88 can be recessed with respect to the deck, or tissue-contacting surface, 90 of the cartridge body 85 when the staples 83 are in their unfired position. As the staples 83 are being lifted upwardly by the drivers 82, the tips of the staple legs 88 can emerge from the staple cavities 84, penetrate the tissue 46, and contact the anvil forming pockets 89 positioned opposite the staple cavities 84. The anvil forming pockets 89 can be configured to deform the staples 83 into any suitable shape, such as the B-form shape depicted in FIG. 5, for example. As the staples 83 are deployed, referring now to FIG. 6, the cutting edge 80 can transect the tissue 46 into stapled portions 94.


As described above, the jaw members of an end effector can be configured to apply a compressive pressure, or force, to the tissue being stapled. In various circumstances, however, the tissue can be slippery, for example, and at least a portion of the tissue can slide relative to the jaw members. In certain circumstances, the tissue can slide out of the distal end of the end effector in a longitudinal direction and/or slide out of the sides of the end effector in a direction which is transverse to the longitudinal direction. In some circumstances, portions of the tissue can milk out of the distal end of the end effector and/or the sides of the end effector when the tissue is compressed. In various embodiments disclosed herein, a staple cartridge can comprise one or more tissue retention features which can be configured to prevent, or at least reduce the possibility of, tissue positioned within the end effector from moving relative to the end effector.


In various embodiments, referring now to FIGS. 7 and 8, a staple cartridge, such as staple cartridge 142, for example, can comprise a cartridge body 185 and a plurality of staples, such as staples 187 (FIG. 9), for example, positioned within the cartridge body 185. The cartridge body 185 can comprise a proximal end 141 and a distal end 143, wherein the proximal end 141 can be configured to be inserted into a proximal end of a staple cartridge channel and the distal end 143 can be configured to be inserted into a distal end of the staple cartridge channel. In at least one embodiment, the cartridge body 185 can comprise a plurality of staple cavities 184 which can each be configured to receive a staple 187 therein. In certain alternative embodiments, although not illustrated, a staple cavity can comprise more than one staple positioned therein. In any event, the staple cavities 184 can be arranged in a plurality of rows within the cartridge body 185. More particularly, in at least one embodiment, the staple cavities 184 can be arranged in three staple rows, for example, on a first side 145 of the cartridge body 185 and three staple rows, for example, on a second side 147 of the cartridge body 185. In at least one such embodiment, the first side 145 and the second side 147 of the cartridge body 185 can be separated by a knife slot 162 which can be configured to slidably receive a cutting member therein. In various other embodiments, a cartridge can comprise any other suitable number of staple rows, such as two staple rows or four staple rows, for example, on each side of the knife slot 162. Referring to FIG. 9, in various embodiments, the staple cartridge 142 can further comprise a plurality of staple drivers 182 configured to support the staples 187 and/or eject the staples 187 from the staple cavities 184. In certain embodiments, each staple cavity 184 can comprise an open end, or opening, 110 in the deck 190 of the cartridge body 185 through which the staples 187 can be ejected.


In various embodiments, referring primarily to FIG. 8, the staple cavities 184 can be arranged such that they are staggered longitudinally relative to one another. For example, the staple cavities 184 on the first side 145 of the cartridge body 185, for example, can be arranged in an innermost row of staple cavities 184, an intermediate row of staple cavities 184, and an outermost row of staple cavities 184, wherein the staple cavities 184 in one row may not be aligned transversely with the staple cavities 184 in one or both of the other rows. In at least one embodiment, each staple cavity 184 can comprise a proximal end 111 and a distal end 112, wherein the proximal end 111 of each staple cavity 184 can be positioned closer to the proximal end 141 of the cartridge body 185 than the distal end 112. Likewise, the distal end 112 of each cavity 184 can be positioned closer to the distal end 143 of the cartridge body 185 than the proximal end 111. In various embodiments, the innermost row of staple cavities 184 can be positioned such that the distal ends 112 of the staple cavities 184 within the innermost row are positioned distally with respect to the distal ends 112 of the staple cavities 184 in the intermediate row of staple cavities 184. Similarly, the outermost row of staple cavities 184 can be positioned such that the distal ends 112 of the staple cavities 184 within the outermost row are positioned distally with respect to the distal ends 112 of the staple cavities in the intermediate row of staple cavities 184. For example, the distalmost staple cavity 184 in the innermost row can be positioned distally with respect to the distalmost staple cavity 184 in the intermediate row and, similarly, the distalmost staple cavity 184 in the outermost row can be positioned distally with respect to the distalmost staple cavity 184 in the intermediate row. In certain embodiments, the staple cavities 184 of the innermost row and the staple cavities 184 of the outermost row can be aligned transversely with each other such that, one, the distal ends 112 of the innermost staple cavities 184 are aligned with the distal ends 112 of the outermost staple cavities 184 and, two, the proximal ends 111 of the innermost staple cavities 184 are aligned with the proximal ends 111 of the outermost staple cavities 184. In various embodiments, each staple cavity 184, and their openings 110, can have the same, or at least approximately the same, configuration and, in at least one embodiment, the staple cavities 184 can be spaced equidistantly, or at least substantially equidistantly, relative to one another within a staple row.


In various embodiments, referring again to FIGS. 7 and 8, the cartridge body 185 of the staple cartridge 142 can further comprise one or more ridges, such as ridges 113, 114, and 115, for example, which can be configured to contact and compress the targeted tissue. More particularly, referring now to FIG. 8A, the anvil 120 of an end effector can be closed in order to compress the tissue T against the staple cartridge 142 wherein, in such circumstances, the tissue-contacting deck 190 and the ridges 113, 114, and 115 extending therefrom can engage the tissue. As the anvil 120 is closed, in certain circumstances, the anvil 120 can push the tissue toward the staple cartridge 142 such that the tissue first contacts the ridges 113, 114, and 115 and then contacts the cartridge deck 190. In other circumstances, the staple cartridge 142 can be positioned against the tissue such that the ridges 113, 114, and 115 contact the tissue before the tissue is contacted by the cartridge deck 190. In any event, the ridges 113, 114, and 115, once in contact in with the tissue, can prevent, or at least limit, relative movement between the tissue and the staple cartridge 142. In certain embodiments, the ridges 113, 114, and 115 can extend upwardly from a flat, or at least substantially flat, cartridge deck 190 and can define one or more pockets or channels, for example, which can be configured to receive a portion of the tissue therein and, as a result, inhibit the relative movement of the tissue in the longitudinal direction and/or the transverse direction of the end effector, especially when the tissue is at least partially compressed between the anvil 120 and the ridges 113, 114, and 115. In various embodiments, as the ridges 113, 114, and 115 extend above the cartridge deck 190, the tissue positioned intermediate the anvil 120 and the ridges 113, 114, and 115 can be compressed before the tissue positioned intermediate the anvil 120 and the cartridge deck 190 is compressed. In some such circumstances, as a result, the tissue positioned between the anvil 120 and the ridges 113, 114, and 115 can be pre-compressed, i.e., at least partially compressed before the other portions of the tissue positioned between the anvil 120 and the cartridge deck 190 are compressed. Owing to this pre-compression, in various circumstances, portions of the tissue can be controlled or prevented from slipping out of the end effector before the tissue is fully compressed as described in greater detail below.


In various embodiments, referring again to FIGS. 7 and 8, the ridges 113 extending from the cartridge deck 190 can extend around the proximal ends 111 of the staple cavity openings 110. Similarly, the ridges 114 extending from the cartridge deck 190 can extend around the distal ends 112 of the staple cavity openings 110. These proximal ridges 113 and distal ridges 114, in various embodiments, can be configured to engage the tissue positioned above and/or around the staple cavities 184 and hold these portions of the tissue in position as the tissue is being compressed and/or stapled. Stated another way, holding the tissue positioned above and/or surrounding the staple cavities 184 can provide localized control over the portions of the tissue that are going to be stapled and, as a result, prevent, or at least limit, the relative movement between these portions of the tissue and the staple cartridge 142. In various embodiments, the ridges 113 and 114 can be positioned around the openings 110 of all of the staple cavities 184 or only some of the staple cavities 184. In at least one embodiment, a cartridge body may comprise ridges 113 and 114 surrounding only the staple cavities 184 in the outermost rows of the first and second sides 145 and 147. In such embodiments, the ridges surrounding the outermost rows of staple cavities 184 may be sufficient to block the lateral movement of the tissue within the end effector. In certain embodiments, a cartridge body may only comprise proximal ridges 113 surrounding the proximal ends 111 of the proximalmost staple cavities 184 and/or distal ridges 114 surrounding the distal ends 112 of the distalmost staple cavities 184. In such embodiments, the ridges surrounding the proximalmost and distalmost staple cavities 184 may be sufficient to block the longitudinal movement of the tissue within the end effector.


In various embodiments, further to the above, each proximal ridge 113 can comprise an arcuate or curved profile, for example, which surrounds a proximal end 111 of an opening 110. The arcuate profile of each proximal ridge 113 can be defined by one radius of curvature or more than one radius of curvature. Similarly, each distal ridge 114 can comprise an arcuate or curved profile, for example, which surrounds a distal end 112 of an opening 110. The arcuate profile of each distal ridge 114 can be defined by one radius of curvature or more than one radius of curvature. In certain embodiments, further to the above, each ridge 113 and 114 can form a pocket which can receive a portion of tissue that is being compressed and prevent that portion of tissue from moving longitudinally and/or transversely relative to the staple cartridge 142. In various embodiments, the staple cartridge 142 can further comprise intermediate ridges 115 which can extend between and/or connect adjacent ridges 113 and 114 in adjacent rows of staple cavities 184. In at least one such embodiment, one or more ridges 113, 114, and 115 can co-operatively form an undulating ridge extending across the first side 145 or the second side 147 of the cartridge body 185 wherein, in at least one embodiment, the undulating ridge can extend between a center portion and a side portion of the cartridge body 142. In various embodiments, each undulating ridge can comprise a plurality of wave portions winding around the proximal and distal ends of the staple cavities 184, for example. In various embodiments, each ridge 113, 114, and 115 can comprise a height defined from the cartridge deck 190 wherein, in certain embodiments, the height of each ridge 113, 114, and 115 can be uniform, or at least substantially uniform, across the length thereof. In at least one embodiment, each ridge 113, 114, and 115 can have the same, or at least substantially the same, height.


In various embodiments, as described above, the staple cavities defined in a staple cartridge body can comprise a staple positioned therein wherein the entirety of the staple can be positioned below the top surface, or tissue-contacting surface, of the cartridge deck when the staple is in its unfired position. In certain other embodiments, at least a portion of the staple, such as the tips of the staple legs, for example, can extend above the top surface, or tissue-contacting surface, of the cartridge deck when the staples are in their unfired position. In some such embodiments, the tips of the staples can protrude from the deck and may snag on tissue as the staple cartridge is inserted into a surgical site. In at least one embodiment, referring now to FIG. 9, the ridges 113 and 114, for example, which extend above the tissue-contacting cartridge deck 190, can at least partially surround and protect the staple legs 183 of staples 187 when they extend above the cartridge deck 190 in their unfired position. Although the ridges 113 and 114 may not extend entirely around each opening 110, in various embodiments, the proximal ridge 113 may sufficiently surround one of the staple leg tips and the distal ridge 114 may sufficiently surround the other staple leg tip such that the staple leg tips do not contact the tissue prior to the tissue being compressed against the staple cartridge 142 and/or the staples 187 being ejected from the staple cartridge 142. In at least one embodiment, the staple leg tips can be positioned below the top surfaces 116 of the ridges 113 and 114. In certain embodiments, the staple leg tips can lie in a common plane with the top surfaces 116 of the ridges 113 and 114. In various embodiments, as a result of the protection afforded by the ridges 113 and 114, for example, staples having a taller staple height can be used without the staple tips protruding from the staple cartridge 142 in their unfired position. In certain embodiments, referring again to FIG. 9, the ridges 113 and 114 can extend or increase the length in which the staple legs 183 of the staples 187 can be controlled and/or supported. In at least one such embodiment, each ridge 113 and 114 can extend or increase the length in which the staple legs 183 are supported on three sides thereof. Such embodiments can prevent, or at least reduce the possibility of, the staple legs 183 from buckling when they are inserted through dense tissue, such as bronchus tissue, for example.


In various embodiments, referring again to FIG. 4, the cartridge body 85 can comprise cavities 84, slot 62, and channels 86, for example, defined therein which can reduce the strength of the cartridge body 85. In various circumstances, especially when the cartridge body 85 is compressed by the anvil 20, for example, the cartridge body 85 can deflect as a result of the load applied thereto. In at least one such embodiment, the portions of the cartridge deck 90 extending over the channels 86, for example, may be especially thin and may be especially subject to deflection and/or breakage. In certain embodiments, referring again to FIGS. 7 and 8, the ridges 113, 114, and/or 115 can be configured to strengthen and/or stiffen the cartridge body 185. In at least one such embodiment, the ridges 113 and 114, for example, can extend around the openings 110 in order to strengthen and/or stiffen the portions of the cartridge body 185 surrounding the staple cavities 184. In certain embodiments, the ridges 115, for example, can extend transversely over channels 86, or the like, defined within the cartridge body 185 such that the ridges 115 can strengthen and/or stiffen the cartridge body 185 surrounding the channels 86. In various other embodiments, the cartridge body 185 can comprise any suitable number and configuration of ridges extending therefrom in order to achieve the advantages described herein.


In various embodiments, a staple cartridge body 185 can be comprised of plastic materials, metallic materials, and/or ceramic materials, for example. Some such materials can comprise liquid crystal polymers, such as Vectra, for example, thermoplastic polymers, such as polycarbonate, ABS, Noryl, polyamides (nylons), polyethersulfones, polyetherimides, such as Ultem, for example, and/or polymer blends of two or more of the aforementioned thermoplastic polymers, for example, wherein, in various embodiments, the cartridge body 185 can be formed by an injection molding process, for example. Some such materials can comprise thermoset polymers, like thermoset polyesters, for example, investment cast stainless steels, such as 17-4 PH, for example, and/or metal Injection molded stainless steels, such as 17-4 PH, for example. In at least one such embodiment, the ridges 113, 114, and/or 115 can be integrally formed with the cartridge deck 190 of the cartridge body 185. In certain embodiments, the ridges 113, 114, and/or 115 can be attached to the cartridge deck 190 by at least one adhesive, for example.


In various embodiments, referring now to FIG. 12, a staple cartridge, such as staple cartridge 342, for example, can comprise a cartridge body 385, a plurality of staple cavities 384 defined in the cartridge body 385, and a staple positioned in each of the staple cavities 384. In certain embodiments, the cartridge body 385 can further comprise a first side 345 comprising a first group of staple cavities 384, a second side 347 comprising a second group of staple cavities 384, and a cartridge deck 390. In various embodiments, the cartridge body 385 can further comprise a plurality of ridges 315 extending from the cartridge deck 390 which can be positioned intermediate adjacent staple cavities 384 in a row of staple cavities 384. In at least one embodiment, each ridge 315 can comprise a cross-shaped or X-shaped configuration, for example. In at least one such embodiment, for example, each ridge 315 can comprise a V-shaped portion 313 which can at least partially surround a proximal end 311 of a staple cavity opening 310 and, in addition, a V-shaped portion 314 which can at least partially surround a distal end 312 of another staple cavity opening 310. In certain embodiments, only the outermost rows of staple cavities 384 in cartridge body 385 can be at least partially surrounded by ridges 315. In certain other embodiments, referring now to FIG. 13, a staple cartridge body 385′ can comprise ridges 315 which at least partially surround the opening 310 of every staple cavity 384 in the cartridge body. In any event, in various embodiments, each ridge 315 can be configured to compress and control tissue positioned against the staple cartridge 342 as described above and/or surround the staple legs of the staples extending above the deck 390.


In various embodiments, referring now to FIG. 16, a staple cartridge, such as staple cartridge 542, for example, can comprise a cartridge body 585, a plurality of staple cavities 584 defined in the cartridge body 585, and a staple positioned in each of the staple cavities 584. In certain embodiments, the cartridge body 585 can further comprise a first side 545 comprising a first group of staple cavities 584, a second side 547 comprising a second group of staple cavities 584, and a cartridge deck 590. In various embodiments, the cartridge body 585 can further comprise a plurality of ridges 515 extending from the cartridge deck 590, wherein each ridge 515 can entirely surround or encompass a staple cavity opening 510. As illustrated in FIG. 16, some cavity openings 510 in the cartridge body 585 may not be surrounded by a ridge 515; whereas, in various alternative embodiments, referring now to FIG. 16A, every cavity opening 510 in a cartridge body 585′ can be surrounded by a ridge 515. Various embodiments are contemplated where a cartridge body comprises a first group of staple cavities 584 which are surrounded by a ridge 515 and a second group of staple cavities 584 which are not surrounded by a ridge 515, wherein staples having a taller staple height can be positioned in the first group of staple cavities 584 and wherein staples having a shorter staple height can be positioned in the second group of staple cavities 584 such that neither the taller staples nor the shorter staples protrude from the staple cartridge 542. In at least one such embodiment, for example, the cartridge body can be configured to utilize taller staples in one row of staple cavities 584 and shorter staples in another row of staple cavities 584. In certain embodiments, ridges 515 can surround all of the staple cavities 584 in the outermost rows of staple cavities 584 in the cartridge body such that taller staples can be utilized in the outermost rows and shorter staples can be utilized in the innermost rows and/or intermediate rows of staple cavities 584, for example.


In various embodiments, referring now to FIG. 14, a staple cartridge, such as staple cartridge 442, for example, can comprise a cartridge body 485, a plurality of staple cavities 484 defined in the cartridge body 485, and a staple positioned in each of the staple cavities 484. In certain embodiments, the cartridge body 485 can further comprise a first side 445 comprising a first group of staple cavities 484, a second side 447 comprising a second group of staple cavities 484, and a cartridge deck 490. In various embodiments, the cartridge body 445 can further comprise a plurality of ridges 415 extending from the cartridge deck 490, wherein each ridge 415 can comprise a plurality, or array, of knurls. In use, an anvil can be utilized to position tissue against the knurls such that the tissue conforms to the contour of the knurls. In various embodiments, each ridge 415 can comprise a plurality of pyramidal-shaped, or diamond-shaped, knurls, for example, at least partially surrounding one or more staple cavity openings 410 wherein, in at least one embodiment, the pyramidal-shaped knurls can point upwardly from the cartridge deck 490. In at least one embodiment, each pyramidal knurl can comprise four triangular sides which can converge together to form a sharp point. In certain embodiments, referring to FIG. 15A, the pyramidal knurls of ridges 415 can be truncated, wherein the top of each knurl can comprise a flat top surface surrounded by inclined sides. Although four-sided pyramidal knurls can be utilized, referring now to FIG. 15C, other pyramidal shapes are contemplated which have less than four sides or more than four sides, such as three sides, for example. In various embodiments, one or more ridges 415 can comprise a plurality of cone-shaped knurls, wherein each cone-shaped knurl can comprise a circular, or at least substantially circular, base which tapers upwardly to form a sharp point. In certain embodiments, referring now to FIG. 15B, the cone-shaped knurls can be truncated, wherein the top of each knurl can comprise a flat top surface surrounded by an annular side. In various embodiments, referring again to FIG. 14, the knurls of the ridges 415 can extend along the lateral sides of the staple cavity openings 410 and/or between adjacent staple cavity openings 410. In at least one embodiment, the knurls can extend around the proximal ends 411 and/or the distal ends 412 of the staple cavity openings 410. In certain embodiments, the knurls of ridges 415 may only surround some of the staple cavities 484 while, in certain other embodiments, referring to FIG. 15, the knurls of ridges 415 may cover the entirety, or at least the substantial entirety, of the cartridge deck 490, for example.


In various embodiments, referring now to FIG. 10, a staple cartridge, such as staple cartridge 242, for example, can comprise a cartridge body 285, a plurality of staple cavities 284 defined in the cartridge body 285, and a staple positioned in each of the staple cavities 284. In certain embodiments, the cartridge body 285 can further comprise a first side 245 comprising a first group of staple cavities 284, a second side 247 comprising a second group of staple cavities 284, and a cartridge deck 290. In various embodiments, the cartridge body 285 can further comprise a plurality of ridges, or bumps, 215 extending from the cartridge deck 290. In at least one such embodiment, each ridge 215 can extend transversely between a center, or middle, portion of the cartridge body 245 positioned adjacent to a knife slot 262 and a lateral portion of the cartridge body 245. More particularly, referring specifically to the first side 245 of the cartridge body 285, each ridge 215 can comprise a first end 213 positioned adjacent to the knife slot 262 and a second end 214 positioned adjacent to the first side 261 of the cartridge body 285. Similarly, referring now to the second side 247 of the cartridge body 285, each ridge 215 can comprise a first end 213 positioned adjacent to the knife slot 262 and a second end 214 positioned adjacent to the second side 263 of the cartridge body 285. In at least one embodiment, each ridge 215 can comprise a height measured from the deck 290 wherein, in at least one such embodiment, the height of each ridge 215 can vary along the length thereof. In certain embodiments, the second end 214 can be taller than the first end 213 and the height of each ridge 215 can taper between the second end 214 and the first end 213. In certain alternative embodiments, although not illustrated, the first end 213 of the ridge 215 can be taller than the second end 214. In at least one embodiment, the height of each ridge 215 can taper linearly, or at least substantially linearly, between the ends 213 and 214. In at least one such embodiment, the height of each ridge 215 can taper between a maximum height at the second end 214 down to no height at all at the first end 213. In certain embodiments, the height of each ridge 215 can vary geometrically between the ends 213 and 214. In certain alternative embodiments, referring now to FIG. 11, each ridge 215′ can comprise a uniform height across the length thereof.


As described above, the inner ends 213 of the ridges 215 can be shorter than the outer ends 214 of the ridges 215. In various circumstances, as a result, the inner ends 213 can apply less pressure to the tissue clamped between an anvil and the staple cartridge 242 as compared to the outer ends 214. In various embodiments, as described above, each ridge 215 can extend transversely across the cartridge deck 290. In certain embodiments, each ridge 215 can extend along a ridge axis which transects a longitudinal axis 299 of the cartridge body 285. In at least one such embodiment, the ridge axes can be perpendicular, or at least substantially perpendicular, to the longitudinal axis 299. In various embodiments, the staple cavities 284 can be arranged in a plurality of rows, wherein each row of staple cavities 284 can be defined along a longitudinal axis which can be parallel to, or at least substantially parallel to, the longitudinal axis 299. In at least one embodiment, the ridge axes of the ridges 215 can extend in a direction which transect the longitudinal axes of the staple cavities 284. In at least one such embodiment, the ridge axes of the ridges 215 can extend in a direction which is perpendicular, or at least substantially perpendicular, to the longitudinal axes of the staple cavities 284. In various embodiments, referring again to FIG. 10, each ridge 215 can comprise a crest 209 and, in addition, sloped surfaces 208 extending between the crest 209 and the cartridge deck 290. In certain embodiments, each sloped surface 208 can comprise one or more flat surfaces, curved surfaces, concave surfaces, and/or convex surfaces, for example. In various embodiments, each ridge 215 can extend along a path which extends across one or more openings 210 of the staple cavities 284. In at least one such embodiment, such openings 210 can extend upwardly through the ridges 215. As the ridges 215 extend transversely across the cartridge deck 290, the ridges 215, similar to the ridges 115, can increase the strength and/or stiffness of the cartridge body 285.


In various embodiments, referring now to FIGS. 17 and 18, a staple cartridge, such as staple cartridge 642, for example, can comprise a cartridge body 685, a plurality of staple cavities 684 defined in the cartridge body 685, and a staple positioned in each of the staple cavities 684. In certain embodiments, the cartridge body 685 can further comprise a first side 645 comprising a first group of staple cavities 684, a second side 647 comprising a second group of staple cavities 684, and a cartridge deck 690. In various embodiments, the cartridge body 685 can further comprise a plurality of ridges, or bumps, 615 extending from the cartridge deck 690. In at least one such embodiment, each ridge 615 can extend in a longitudinal direction, wherein each ridge 615 can comprise a distal end 613 and a proximal end 614, wherein the distal end 613 of the ridge 615 can positioned closer to the distal end 643 of the cartridge body 685, and wherein the proximal end 614 of the ridge 615 can be positioned closer to the proximal end 641. In at least one embodiment, each ridge 615 can comprise a height measured from the deck 690 wherein, in at least one such embodiment, the height of each ridge 615 can vary along the length thereof. In certain embodiments, the proximal end 614 can be taller than the distal end 613 and the height of each ridge 615 can taper between the proximal end 614 and the distal end 613. In certain alternative embodiments, although not illustrated, the distal end 613 of the ridge 615 can be taller than the proximal end 614. In at least one embodiment, the height of each ridge 615 can taper linearly, or at least substantially linearly, between the ends 613 and 614. In at least one such embodiment, the height of each ridge 615 can taper between a maximum height at the proximal end 614 down to no height at all at the distal end 613. In certain embodiments, the height of each ridge 615 can vary geometrically between the ends 613 and 614. In certain alternative embodiments, each ridge 615 can comprise a uniform height across the length thereof.


As described above, the distal ends 613 of the ridges 615 can be shorter than the proximal ends 614 of the ridges 615. In various circumstances, as a result, the distal ends 613 can apply less pressure to the tissue clamped between an anvil and the staple cartridge 642 as compared to the proximal ends 614. In various embodiments, as described above, each ridge 615 can extend longitudinally across the cartridge deck 690. In certain embodiments, each ridge 615 can extend along a ridge axis which is parallel to, or at least substantially parallel to, a longitudinal axis 699 of the cartridge body 685. In various embodiments, the staple cavities 684 can be arranged in a plurality of rows, wherein each row of staple cavities 684 can be defined along a longitudinal axis which can be parallel to, or at least substantially parallel to, the ridge axes of ridges 615. In at least one embodiment, referring again to FIG. 18, each ridge 615 can comprise a ramped surface which can comprise one or more flat surfaces, curved surfaces, concave surfaces, and/or convex surfaces, for example. In at least one such embodiment, the bottom of the ramped surface can face distally which can facilitate the sliding of tissue across the staple cartridge 642 when the tissue is positioned in the end effector. In various embodiments, each ridge 615 can extend along a path which extends across one or more openings 610 of the staple cavities 684. In at least one such embodiment, such openings 610 can extend upwardly through the ridges 615. As the ridges 615 extend transversely across the cartridge deck 690, the ridges 615 can increase the strength and/or stiffness of the cartridge body 685.


In various embodiments, further to the above, a surgical staple can be comprised of titanium, such as titanium wire, for example. In certain embodiments, a surgical staple can be comprised of an alloy comprising titanium, aluminum, and/or vanadium, for example. In at least one embodiment, the surgical staple can be comprised of surgical stainless steel and/or an alloy comprised of cobalt and chromium, for example. In any event, the surgical staple can be comprised of metal, such as titanium, and a metal oxide outer surface, such as titanium oxide, for example. In various embodiments, the metal oxide outer surface can be coated with a material. In certain embodiments, the coating material can be comprised of polytetrafluoroethylene (PTFE), such as TEFLON®, and/or a tetrafluoroethylene (TFE) such as ethylene-tetrafluoroethylene (ETFE), perfluroralkoxyethylene-tetrafluoroethylene (PFA), and/or Fluorinated Ethylene Propylene (FEP), for example. Certain coatings can comprise silicon. In various embodiments, such coating materials can prevent, or at least inhibit, further oxidation of the metal. In certain embodiments, the coating materials can provide one or more lubricious surfaces against which the anvil, or staple pockets, can contact the staples in order to reduce the friction force therebetween. In various circumstances, lower friction forces between the staples and the staple pockets can reduce the force required to deform the staples.


Although the various embodiments of the devices have been described herein in connection with certain disclosed embodiments, many modifications and variations to those embodiments may be implemented. Also, where materials are disclosed for certain components, other materials may be used. Furthermore, according to various embodiments, a single component may be replaced by multiple components, and multiple components may be replaced by a single component, to perform a given function or functions. The foregoing description and following claims are intended to cover all such modification and variations.


The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, the device can be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, the device can be disassembled, and any number of the particular pieces or parts of the device can be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, the device can be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.


Preferably, the invention described herein will be processed before surgery. First, a new or used instrument is obtained and if necessary cleaned. The instrument can then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK® bag. The container and instrument are then placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation kills bacteria on the instrument and in the container. The sterilized instrument can then be stored in the sterile container. The sealed container keeps the instrument sterile until it is opened in the medical facility.


While this invention has been described as having exemplary designs, the present invention may be further modified within the spirit and scope of the disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains.


Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.

Claims
  • 1. A fastener cartridge, comprising: a plurality of fasteners; anda cartridge body, comprising: a proximal end;a distal end;a deck configured to support patient tissue;a longitudinal slot defined in said deck extending from said proximal end toward said distal end, wherein said deck comprises a first deck side on a first side of said longitudinal slot and a second deck side on a second side of said longitudinal slot;a first fastener cavity comprising a first opening defined in said first deck side, wherein a first fastener of said plurality of fasteners is removably stored in said first fastener cavity;a second fastener cavity comprising a second opening defined in said first deck side, wherein said second fastener cavity is positioned distally with respect to said first fastener cavity, and wherein a second fastener of said plurality of fasteners is removably stored in said second fastener cavity;a first projection extending from said deck, wherein said first opening is at least partially surrounded by said first projection; anda second projection extending from said deck, wherein said second opening is at least partially surrounded by said second projection, and wherein at least a portion of said first projection is positioned intermediate said first opening and said second opening.
  • 2. The fastener cartridge of claim 1, wherein at least a portion of said second projection is positioned intermediate said first opening and said second opening.
  • 3. The fastener cartridge of claim 1, wherein said first fastener cavity and said second fastener cavity are part of a longitudinal row of fastener cavities.
  • 4. The fastener cartridge of claim 3, wherein said first fastener cavity and said second fastener cavity are adjacent to one another in said longitudinal row of fastener cavities.
  • 5. The fastener cartridge of claim 3, wherein all of the fastener cavities in said longitudinal row of fastener cavities comprise an opening defined in said first deck side and are at least partially surrounded by a projection extending from said deck.
  • 6. The fastener cartridge of claim 3, wherein said first projection has a height that varies laterally with respect to said longitudinal row of fastener cavities.
  • 7. The fastener cartridge of claim 1, wherein said first opening comprises a first lateral side and a second lateral side opposite the first lateral side, and wherein said first projection comprises: a first portion at least partially surrounding said first lateral side of said first opening; anda second portion at least partially surrounding said second lateral side of said first opening.
  • 8. The fastener cartridge of claim 7, wherein said first portion comprises a first height and a second height, wherein said first height is different from said second height.
  • 9. The fastener cartridge of claim 7, wherein said first portion comprises a first height, wherein said second portion comprises a second height, and wherein said first height is different from said second height.
  • 10. A surgical staple cartridge, comprising: a plurality of staples; anda cartridge body, comprising: a deck;a proximal end;a distal end;a longitudinal slot defined in said deck extending from said proximal end toward said distal end, wherein said deck comprises a first deck side on a first side of said longitudinal slot and a second deck side on a second side of said longitudinal slot;a first staple cavity defined in said first deck side, wherein a first staple of said plurality of staples is removably stored in said first staple cavity;a second staple cavity defined in said first deck side, wherein a second staple of said plurality of staples is removably stored in said second staple cavity;a first ridge extending from said deck, wherein said first staple cavity is at least partially surrounded by said first ridge; anda second ridge extending from said deck, wherein said second staple cavity is at least partially surrounded by said second ridge, and wherein at least a portion of said first ridge is positioned intermediate said first staple cavity and said second staple cavity.
  • 11. The surgical staple cartridge of claim 10, wherein at least a portion of said second ridge is positioned intermediate said first staple cavity and said second staple cavity.
  • 12. The surgical staple cartridge of claim 10, wherein said first staple cavity and said second staple cavity are part of a longitudinal row of staple cavities.
  • 13. The surgical staple cartridge of claim 12, wherein said first staple cavity and said second staple cavity are adjacent to one another in said longitudinal row of staple cavities.
  • 14. The surgical staple cartridge of claim 12, wherein all of the staple cavities in said longitudinal row of staple cavities are defined in said first deck side and are at least partially surrounded by a ridge extending from said deck.
  • 15. The surgical staple cartridge of claim 12, wherein said first ridge has a height that varies laterally with respect to said longitudinal row of staple cavities.
  • 16. The surgical staple cartridge of claim 10, wherein said first staple cavity comprises a first lateral side and a second lateral side opposite the first lateral side, and said first ridge comprises: a first portion at least partially surrounding said first lateral side of said first staple cavity; anda second portion at least partially surrounding said second lateral side of said first staple cavity.
  • 17. The surgical staple cartridge of claim 16, wherein said first portion comprises a first height and a second height, wherein said first height is different from said second height.
  • 18. The surgical staple cartridge of claim 16, wherein said first portion comprises a first height, wherein said second portion comprises a second height, and wherein said first height is different from said second height.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation application claiming priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 17/129,032, entitled STAPLE CARTRIDGE, filed Dec. 21, 2020, which issued on Jan. 18, 2023 as U.S. Pat. No. 11,571,213, which is a continuation application claiming priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 16/153,111, entitled FASTENER CARTRIDGE, filed Oct. 5, 2018, which issued on Jan. 26, 2021 as U.S. Pat. No. 10,898,191, which is a continuation application claiming priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 14/733,026, entitled STAPLE CARTRIDGE, filed Jun. 8, 2015, which issued on Nov. 20, 2018 as U.S. Pat. No. 10,130,363, which is a continuation application claiming priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 13/772,903, entitled STAPLE CARTRIDGE, filed Feb. 21, 2013, which issued on Sep. 15, 2015 as U.S. Pat. No. 9,131,940, which is a continuation application claiming priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 12/893,461, entitled STAPLE CARTRIDGE, filed Sep. 29, 2010, which issued on May 27, 2014 as U.S. Pat. No. 8,733,613, the entire disclosures of which are hereby incorporated by reference herein.

US Referenced Citations (1757)
Number Name Date Kind
662587 Blake Nov 1900 A
951393 Hahn Mar 1910 A
1306107 Elliott Jun 1919 A
2132295 Hawkins Oct 1938 A
2161632 Nattenheimer Jun 1939 A
2211117 Hess Aug 1940 A
2526902 Rublee Oct 1950 A
2674149 Benson Apr 1954 A
3032769 Palmer May 1962 A
3079606 Bobrov et al. Mar 1963 A
3166072 Sullivan, Jr. Jan 1965 A
3357296 Lefever Dec 1967 A
3490675 Green et al. Jan 1970 A
3551987 Wilkinson Jan 1971 A
3744495 Johnson Jul 1973 A
3746002 Haller Jul 1973 A
3751902 Kingsbury et al. Aug 1973 A
3821919 Knohl Jul 1974 A
3841474 Maier Oct 1974 A
3885491 Curtis May 1975 A
3894174 Cartun Jul 1975 A
3981051 Brumlik Sep 1976 A
4060089 Noiles Nov 1977 A
4129059 Van Eck Dec 1978 A
4198734 Brumlik Apr 1980 A
4198982 Fortner et al. Apr 1980 A
4207898 Becht Jun 1980 A
4261244 Becht et al. Apr 1981 A
4275813 Noiles Jun 1981 A
4290542 Fedotov et al. Sep 1981 A
4305539 Korolkov et al. Dec 1981 A
4317451 Cerwin et al. Mar 1982 A
4321002 Froehlich Mar 1982 A
4340331 Savino Jul 1982 A
4379457 Gravener et al. Apr 1983 A
4382326 Rabuse May 1983 A
4397311 Kanshin et al. Aug 1983 A
4402445 Green Sep 1983 A
4409057 Molenda et al. Oct 1983 A
4428376 Mericle Jan 1984 A
4429695 Green Feb 1984 A
4434796 Karapetian et al. Mar 1984 A
4438659 Desplats Mar 1984 A
4467805 Fukuda Aug 1984 A
4485816 Krumme Dec 1984 A
4489875 Crawford et al. Dec 1984 A
4505272 Utyamyshev et al. Mar 1985 A
4505273 Braun et al. Mar 1985 A
4520817 Green Jun 1985 A
4526174 Froehlich Jul 1985 A
4548202 Duncan Oct 1985 A
4573468 Conta et al. Mar 1986 A
4573469 Golden et al. Mar 1986 A
4589416 Green May 1986 A
4604786 Howie, Jr. Aug 1986 A
4605001 Rothfuss et al. Aug 1986 A
4605004 Di Giovanni et al. Aug 1986 A
4607638 Crainich Aug 1986 A
4608981 Rothfuss et al. Sep 1986 A
4610250 Green Sep 1986 A
4610383 Rothfuss et al. Sep 1986 A
4612933 Brinkerhoff et al. Sep 1986 A
4619262 Taylor Oct 1986 A
4633874 Chow et al. Jan 1987 A
4634419 Kreizman et al. Jan 1987 A
4652820 Maresca Mar 1987 A
4655222 Florez et al. Apr 1987 A
4663874 Sano et al. May 1987 A
4667674 Korthoff et al. May 1987 A
4676245 Fukuda Jun 1987 A
4693248 Failla Sep 1987 A
4708141 Inoue et al. Nov 1987 A
4719917 Barrows et al. Jan 1988 A
4727308 Huljak et al. Feb 1988 A
4741336 Failla et al. May 1988 A
4747820 Hornlein et al. May 1988 A
4750902 Wuchinich et al. Jun 1988 A
4752024 Green et al. Jun 1988 A
4754909 Barker et al. Jul 1988 A
4767044 Green Aug 1988 A
4773420 Green Sep 1988 A
4777780 Holzwarth Oct 1988 A
4787387 Burbank, III et al. Nov 1988 A
4805617 Bedi et al. Feb 1989 A
4809695 Gwathmey et al. Mar 1989 A
4817847 Redtenbacher et al. Apr 1989 A
4827911 Broadwin et al. May 1989 A
4834720 Blinkhorn May 1989 A
4844068 Arata et al. Jul 1989 A
4865030 Polyak Sep 1989 A
4890613 Golden et al. Jan 1990 A
4893622 Green et al. Jan 1990 A
4896678 Ogawa Jan 1990 A
4903697 Resnick et al. Feb 1990 A
4930674 Barak Jun 1990 A
4931047 Broadwin et al. Jun 1990 A
4932960 Green et al. Jun 1990 A
4938408 Bedi et al. Jul 1990 A
4941623 Pruitt Jul 1990 A
4978049 Green Dec 1990 A
4978333 Broadwin et al. Dec 1990 A
4986808 Broadwin et al. Jan 1991 A
5002553 Shiber Mar 1991 A
5014899 Presty et al. May 1991 A
5015227 Broadwin et al. May 1991 A
5038109 Goble et al. Aug 1991 A
5040715 Green et al. Aug 1991 A
5074454 Peters Dec 1991 A
5088997 Delahuerga et al. Feb 1992 A
5104397 Vasconcelos et al. Apr 1992 A
5116349 Aranyi May 1992 A
5129570 Schulze et al. Jul 1992 A
5139513 Segato Aug 1992 A
5141144 Foslien et al. Aug 1992 A
5156315 Green et al. Oct 1992 A
5158567 Green Oct 1992 A
D330699 Gill Nov 1992 S
5163598 Peters et al. Nov 1992 A
5170925 Madden et al. Dec 1992 A
5171253 Klieman Dec 1992 A
5190517 Zieve et al. Mar 1993 A
5197648 Gingold Mar 1993 A
5205459 Brinkerhoff et al. Apr 1993 A
5221281 Klicek Jun 1993 A
5222975 Crainich Jun 1993 A
5222976 Yoon Jun 1993 A
5223675 Taft Jun 1993 A
5234447 Kaster et al. Aug 1993 A
5240163 Stein et al. Aug 1993 A
5242457 Akopov et al. Sep 1993 A
5246443 Mai Sep 1993 A
5258009 Conners Nov 1993 A
5258012 Luscombe et al. Nov 1993 A
5263629 Trumbull et al. Nov 1993 A
5263973 Cook Nov 1993 A
5275608 Forman et al. Jan 1994 A
5281216 Klicek Jan 1994 A
5282829 Hermes Feb 1994 A
5284128 Hart Feb 1994 A
5297714 Kramer Mar 1994 A
5304204 Bregen Apr 1994 A
5312023 Green et al. May 1994 A
5312024 Grant et al. May 1994 A
5312329 Beaty et al. May 1994 A
5333772 Rothfuss et al. Aug 1994 A
5336229 Noda Aug 1994 A
5336232 Green et al. Aug 1994 A
5342395 Jarrett et al. Aug 1994 A
5346504 Ortiz et al. Sep 1994 A
5350388 Epstein Sep 1994 A
5352229 Goble et al. Oct 1994 A
5352238 Green et al. Oct 1994 A
5358506 Green et al. Oct 1994 A
5358510 Luscombe et al. Oct 1994 A
5364001 Bryan Nov 1994 A
5364003 Williamson, IV Nov 1994 A
5366134 Green et al. Nov 1994 A
5370645 Klicek et al. Dec 1994 A
5372596 Klicek et al. Dec 1994 A
5374277 Hassler Dec 1994 A
5381943 Allen et al. Jan 1995 A
5382247 Cimino et al. Jan 1995 A
5383882 Buess et al. Jan 1995 A
5389098 Tsuruta et al. Feb 1995 A
5389102 Green et al. Feb 1995 A
5389104 Hahnen et al. Feb 1995 A
5392979 Green et al. Feb 1995 A
5395030 Kuramoto et al. Mar 1995 A
5395033 Byrne et al. Mar 1995 A
5395384 Duthoit et al. Mar 1995 A
5397324 Carroll et al. Mar 1995 A
5403312 Yates et al. Apr 1995 A
5405072 Zlock et al. Apr 1995 A
5405344 Williamson et al. Apr 1995 A
5413272 Green et al. May 1995 A
5413573 Koivukangas May 1995 A
5415334 Williamson et al. May 1995 A
5417361 Williamson, IV May 1995 A
5421829 Olichney et al. Jun 1995 A
5422567 Matsunaga Jun 1995 A
5423471 Mastri et al. Jun 1995 A
5423809 Klicek Jun 1995 A
5431668 Burbank, III et al. Jul 1995 A
5433721 Hooven et al. Jul 1995 A
5438302 Goble Aug 1995 A
5439156 Grant et al. Aug 1995 A
5441191 Linden Aug 1995 A
5441193 Gravener Aug 1995 A
5441483 Avitall Aug 1995 A
5445644 Pietrafitta et al. Aug 1995 A
5447265 Vidal et al. Sep 1995 A
5447417 Kuhl et al. Sep 1995 A
5449355 Rhum et al. Sep 1995 A
5452836 Huitema et al. Sep 1995 A
5452837 Williamson, IV Sep 1995 A
5456401 Green et al. Oct 1995 A
5462215 Viola et al. Oct 1995 A
5465819 Weilant et al. Nov 1995 A
5465895 Knodel et al. Nov 1995 A
5465896 Allen et al. Nov 1995 A
5466020 Page et al. Nov 1995 A
5468253 Bezwada et al. Nov 1995 A
5470009 Rodak Nov 1995 A
5472442 Klicek Dec 1995 A
5474057 Makower et al. Dec 1995 A
5474566 Alesi et al. Dec 1995 A
5478003 Green et al. Dec 1995 A
5478354 Tovey et al. Dec 1995 A
5480089 Blewett Jan 1996 A
5482197 Green et al. Jan 1996 A
5484398 Stoddard Jan 1996 A
5485947 Olson et al. Jan 1996 A
5485952 Fontayne Jan 1996 A
5487499 Sorrentino et al. Jan 1996 A
5489058 Plyley et al. Feb 1996 A
5496312 Klicek Mar 1996 A
5496317 Goble et al. Mar 1996 A
5497933 DeFonzo et al. Mar 1996 A
5503320 Webster et al. Apr 1996 A
5503638 Cooper et al. Apr 1996 A
5505363 Green et al. Apr 1996 A
5507426 Young et al. Apr 1996 A
5509596 Green et al. Apr 1996 A
5509916 Taylor Apr 1996 A
5520678 Heckele et al. May 1996 A
5522817 Sander et al. Jun 1996 A
5529235 Boiarski et al. Jun 1996 A
5533661 Main et al. Jul 1996 A
5535934 Boiarski et al. Jul 1996 A
5540375 Bolanos et al. Jul 1996 A
5541376 Ladtkow et al. Jul 1996 A
5542594 McKean et al. Aug 1996 A
5549621 Bessler et al. Aug 1996 A
5551622 Yoon Sep 1996 A
5553765 Knodel et al. Sep 1996 A
5554148 Aebischer et al. Sep 1996 A
5560530 Bolanos et al. Oct 1996 A
5560532 DeFonzo et al. Oct 1996 A
5562241 Knodel et al. Oct 1996 A
5564615 Bishop et al. Oct 1996 A
5571285 Chow et al. Nov 1996 A
5573543 Akopov et al. Nov 1996 A
5575803 Cooper et al. Nov 1996 A
5577654 Bishop Nov 1996 A
5580067 Hamblin et al. Dec 1996 A
5582611 Tsuruta et al. Dec 1996 A
5586711 Plyley et al. Dec 1996 A
5588579 Schnut et al. Dec 1996 A
5588580 Paul et al. Dec 1996 A
5588581 Conlon et al. Dec 1996 A
5597107 Knodel et al. Jan 1997 A
5599344 Paterson Feb 1997 A
5601224 Bishop et al. Feb 1997 A
5603443 Clark et al. Feb 1997 A
5605273 Hamblin et al. Feb 1997 A
5607094 Clark et al. Mar 1997 A
5609285 Grant et al. Mar 1997 A
5609601 Kolesa et al. Mar 1997 A
5611709 McAnulty Mar 1997 A
5613966 Makower et al. Mar 1997 A
5615820 Viola Apr 1997 A
5618303 Marlow et al. Apr 1997 A
5619992 Guthrie et al. Apr 1997 A
5620289 Curry Apr 1997 A
5620452 Yoon Apr 1997 A
5628446 Geiste et al. May 1997 A
5628743 Cimino May 1997 A
5628745 Bek May 1997 A
5630539 Plyley et al. May 1997 A
5630540 Blewett May 1997 A
5632432 Schulze et al. May 1997 A
5632433 Grant et al. May 1997 A
5634584 Okorocha et al. Jun 1997 A
5636780 Green et al. Jun 1997 A
5639008 Gallagher et al. Jun 1997 A
5647869 Goble et al. Jul 1997 A
5649937 Bito et al. Jul 1997 A
5651491 Heaton et al. Jul 1997 A
5653373 Green et al. Aug 1997 A
5653374 Young et al. Aug 1997 A
5653721 Knodel et al. Aug 1997 A
5655698 Yoon Aug 1997 A
5657921 Young et al. Aug 1997 A
5658300 Bito et al. Aug 1997 A
5662258 Knodel et al. Sep 1997 A
5662260 Yoon Sep 1997 A
5662662 Bishop et al. Sep 1997 A
5667517 Hooven Sep 1997 A
5667526 Levin Sep 1997 A
5669544 Schulze et al. Sep 1997 A
5669904 Platt, Jr. et al. Sep 1997 A
5669907 Platt, Jr. et al. Sep 1997 A
5673840 Schulze et al. Oct 1997 A
5673841 Schulze et al. Oct 1997 A
5680981 Mililli et al. Oct 1997 A
5680982 Schulze et al. Oct 1997 A
5685474 Seeber Nov 1997 A
5690269 Bolanos et al. Nov 1997 A
5692668 Schulze et al. Dec 1997 A
5693020 Rauh Dec 1997 A
5693051 Schulze et al. Dec 1997 A
5695494 Becker Dec 1997 A
5695524 Kelley et al. Dec 1997 A
5697543 Burdorff Dec 1997 A
5702387 Arts et al. Dec 1997 A
5702409 Rayburn et al. Dec 1997 A
5704534 Huitema et al. Jan 1998 A
5709680 Yates et al. Jan 1998 A
5711472 Bryan Jan 1998 A
5713505 Huitema Feb 1998 A
5713895 Lontine et al. Feb 1998 A
5715604 Lanzoni Feb 1998 A
5715987 Kelley et al. Feb 1998 A
5718360 Green et al. Feb 1998 A
5720744 Eggleston et al. Feb 1998 A
5725536 Oberlin et al. Mar 1998 A
5725554 Simon et al. Mar 1998 A
5730758 Allgeyer Mar 1998 A
5732871 Clark et al. Mar 1998 A
5732872 Bolduc et al. Mar 1998 A
5735874 Measamer et al. Apr 1998 A
5743456 Jones et al. Apr 1998 A
5749893 Vidal et al. May 1998 A
5752644 Bolanos et al. May 1998 A
5752965 Francis et al. May 1998 A
5758814 Gallagher et al. Jun 1998 A
5762256 Mastri et al. Jun 1998 A
5766188 Igaki Jun 1998 A
5772379 Evensen Jun 1998 A
5772659 Becker et al. Jun 1998 A
5776130 Buysse et al. Jul 1998 A
5779130 Alesi et al. Jul 1998 A
5779131 Knodel et al. Jul 1998 A
5779132 Knodel et al. Jul 1998 A
5782397 Koukline Jul 1998 A
5782748 Palmer et al. Jul 1998 A
5785232 Vidal et al. Jul 1998 A
5797536 Smith et al. Aug 1998 A
5797537 Oberlin et al. Aug 1998 A
5797538 Heaton et al. Aug 1998 A
5799857 Robertson et al. Sep 1998 A
5800379 Edwards Sep 1998 A
5806676 Wasgien Sep 1998 A
5807393 Williamson, IV et al. Sep 1998 A
5810855 Rayburn et al. Sep 1998 A
5814055 Knodel et al. Sep 1998 A
5814057 Oi et al. Sep 1998 A
5820009 Melling et al. Oct 1998 A
5826776 Schulze et al. Oct 1998 A
5827271 Buysse et al. Oct 1998 A
5830598 Patterson Nov 1998 A
5833695 Yoon Nov 1998 A
5836503 Ehrenfels et al. Nov 1998 A
5839639 Sauer et al. Nov 1998 A
5843021 Edwards et al. Dec 1998 A
5843096 Igaki et al. Dec 1998 A
5855311 Hamblin et al. Jan 1999 A
5860581 Robertson et al. Jan 1999 A
5860975 Goble et al. Jan 1999 A
5865361 Milliman et al. Feb 1999 A
5871135 Williamson IV et al. Feb 1999 A
5891558 Bell et al. Apr 1999 A
5893506 Powell Apr 1999 A
5897552 Edwards et al. Apr 1999 A
5901895 Heaton et al. May 1999 A
5902312 Frater et al. May 1999 A
5908402 Blythe Jun 1999 A
5911353 Bolanos et al. Jun 1999 A
5915616 Viola et al. Jun 1999 A
5937951 Izuchukwu et al. Aug 1999 A
5941442 Geiste et al. Aug 1999 A
5944715 Goble et al. Aug 1999 A
5947984 Whipple Sep 1999 A
5947996 Logeman Sep 1999 A
5951552 Long et al. Sep 1999 A
5954259 Viola et al. Sep 1999 A
5964774 Mckean et al. Oct 1999 A
5984949 Levin Nov 1999 A
6004319 Goble et al. Dec 1999 A
6010054 Johnson et al. Jan 2000 A
6012494 Balazs Jan 2000 A
6013076 Goble et al. Jan 2000 A
6015406 Goble et al. Jan 2000 A
6027501 Goble et al. Feb 2000 A
6032849 Mastri et al. Mar 2000 A
6033399 Gines Mar 2000 A
6039734 Goble Mar 2000 A
6045560 McKean et al. Apr 2000 A
6050172 Corves et al. Apr 2000 A
6050472 Shibata Apr 2000 A
6050996 Schmaltz et al. Apr 2000 A
6053390 Green et al. Apr 2000 A
6053922 Krause et al. Apr 2000 A
RE36720 Green et al. May 2000 E
6063097 Oi et al. May 2000 A
6068627 Orszulak et al. May 2000 A
6074401 Gardiner et al. Jun 2000 A
6083191 Rose Jul 2000 A
6083242 Cook Jul 2000 A
6093186 Goble Jul 2000 A
6099551 Gabbay Aug 2000 A
6102271 Longo et al. Aug 2000 A
6117158 Measamer et al. Sep 2000 A
6119913 Adams et al. Sep 2000 A
6126058 Adams et al. Oct 2000 A
6149660 Laufer et al. Nov 2000 A
6156056 Kearns et al. Dec 2000 A
6162208 Hipps Dec 2000 A
6179195 Adams et al. Jan 2001 B1
6187003 Buysse et al. Feb 2001 B1
6193129 Bittner et al. Feb 2001 B1
6197042 Ginn et al. Mar 2001 B1
6200330 Benderev et al. Mar 2001 B1
6202914 Geiste et al. Mar 2001 B1
6210403 Klicek Apr 2001 B1
6213999 Platt, Jr. et al. Apr 2001 B1
6228081 Goble May 2001 B1
6228083 Lands et al. May 2001 B1
6241139 Milliman et al. Jun 2001 B1
6241140 Adams et al. Jun 2001 B1
6250532 Green et al. Jun 2001 B1
6258107 Balazs et al. Jul 2001 B1
6261286 Goble et al. Jul 2001 B1
6264086 McGuckin, Jr. Jul 2001 B1
6264087 Whitman Jul 2001 B1
6273897 Dalessandro et al. Aug 2001 B1
6277114 Bullivant et al. Aug 2001 B1
6302311 Adams et al. Oct 2001 B1
6315184 Whitman Nov 2001 B1
6322494 Bullivant et al. Nov 2001 B1
6325799 Goble Dec 2001 B1
6325805 Ogilvie et al. Dec 2001 B1
6325810 Hamilton et al. Dec 2001 B1
6330965 Milliman et al. Dec 2001 B1
6334860 Dorn Jan 2002 B1
6334861 Chandler et al. Jan 2002 B1
6336926 Goble Jan 2002 B1
6343731 Adams et al. Feb 2002 B1
6358224 Tims et al. Mar 2002 B1
6383201 Dong May 2002 B1
6387113 Hawkins et al. May 2002 B1
6391038 Vargas et al. May 2002 B2
6402766 Bowman et al. Jun 2002 B2
H2037 Yates et al. Jul 2002 H
6413274 Pedros Jul 2002 B1
RE37814 Allgeyer Aug 2002 E
6436110 Bowman et al. Aug 2002 B2
6443973 Whitman Sep 2002 B1
6450391 Kayan et al. Sep 2002 B1
6478210 Adams et al. Nov 2002 B2
6485503 Jacobs et al. Nov 2002 B2
6488196 Fenton, Jr. Dec 2002 B1
6488197 Whitman Dec 2002 B1
6488659 Rosenman Dec 2002 B1
6491201 Whitman Dec 2002 B1
6491690 Goble et al. Dec 2002 B1
6503257 Grant et al. Jan 2003 B2
6503259 Huxel et al. Jan 2003 B2
6505768 Whitman Jan 2003 B2
6517528 Pantages et al. Feb 2003 B1
6517565 Whitman et al. Feb 2003 B1
6517566 Hovland et al. Feb 2003 B1
6533157 Whitman Mar 2003 B1
6543456 Freeman Apr 2003 B1
6551333 Kuhns et al. Apr 2003 B2
6558379 Batchelor et al. May 2003 B1
6569085 Kortenbach et al. May 2003 B2
6578751 Hartwick Jun 2003 B2
6585144 Adams et al. Jul 2003 B2
6588643 Bolduc et al. Jul 2003 B2
6589118 Soma et al. Jul 2003 B1
6592597 Grant et al. Jul 2003 B2
6601749 Sullivan et al. Aug 2003 B2
6607475 Doyle et al. Aug 2003 B2
6616686 Coleman et al. Sep 2003 B2
6619529 Green et al. Sep 2003 B2
6629630 Adams Oct 2003 B2
6629988 Weadock Oct 2003 B2
6638285 Gabbay Oct 2003 B2
6638297 Huitema Oct 2003 B1
6644532 Green et al. Nov 2003 B2
6652595 Nicolo Nov 2003 B1
6656193 Grant et al. Dec 2003 B2
6669073 Milliman et al. Dec 2003 B2
6670806 Wendt et al. Dec 2003 B2
6671185 Duval Dec 2003 B2
6676660 Wampler et al. Jan 2004 B2
6681978 Geiste et al. Jan 2004 B2
6681979 Whitman Jan 2004 B2
6682527 Strul Jan 2004 B2
6685727 Fisher et al. Feb 2004 B2
6692507 Pugsley et al. Feb 2004 B2
6695198 Adams et al. Feb 2004 B2
6695199 Whitman Feb 2004 B2
6698643 Whitman Mar 2004 B2
6704210 Myers Mar 2004 B1
6716232 Vidal et al. Apr 2004 B1
6722552 Fenton, Jr. Apr 2004 B2
6723109 Solingen Apr 2004 B2
6736854 Vadurro et al. May 2004 B2
6747121 Gogolewski Jun 2004 B2
6749560 Konstorum et al. Jun 2004 B1
6755338 Hahnen et al. Jun 2004 B2
6761685 Adams et al. Jul 2004 B2
6767356 Kanner et al. Jul 2004 B2
6769594 Orban, III Aug 2004 B2
6786382 Hoffman Sep 2004 B1
6793652 Whitman et al. Sep 2004 B1
6793661 Hamilton et al. Sep 2004 B2
6805273 Bilotti et al. Oct 2004 B2
6817508 Racenet et al. Nov 2004 B1
6817509 Geiste et al. Nov 2004 B2
6817974 Cooper et al. Nov 2004 B2
6820791 Adams Nov 2004 B2
6821284 Sturtz et al. Nov 2004 B2
6827246 Sullivan et al. Dec 2004 B2
6830174 Hillstead et al. Dec 2004 B2
6835336 Watt Dec 2004 B2
6837846 Jaffe et al. Jan 2005 B2
6840423 Adams et al. Jan 2005 B2
6843403 Whitman Jan 2005 B2
6858005 Ohline et al. Feb 2005 B2
RE38708 Bolanos et al. Mar 2005 E
6863694 Boyce et al. Mar 2005 B1
6866178 Adams et al. Mar 2005 B2
6874669 Adams et al. Apr 2005 B2
6877647 Green et al. Apr 2005 B2
6878106 Herrmann Apr 2005 B1
6905057 Swayze et al. Jun 2005 B2
6908472 Wiener et al. Jun 2005 B2
6913608 Liddicoat et al. Jul 2005 B2
6921412 Black et al. Jul 2005 B1
6931830 Liao Aug 2005 B2
6932810 Ryan Aug 2005 B2
6939358 Palacios et al. Sep 2005 B2
6945444 Gresham et al. Sep 2005 B2
6953138 Dworak et al. Oct 2005 B1
6953139 Milliman et al. Oct 2005 B2
6958035 Friedman et al. Oct 2005 B2
6959851 Heinrich Nov 2005 B2
6959852 Shelton, IV et al. Nov 2005 B2
6964363 Wales et al. Nov 2005 B2
6969395 Eskuri Nov 2005 B2
6974462 Sater Dec 2005 B2
6978921 Shelton, IV et al. Dec 2005 B2
6978922 Bilotti et al. Dec 2005 B2
6981628 Wales Jan 2006 B2
6981978 Gannoe Jan 2006 B2
6984231 Goble et al. Jan 2006 B2
6986451 Mastri et al. Jan 2006 B1
6988649 Shelton, IV et al. Jan 2006 B2
6988650 Schwemberger et al. Jan 2006 B2
6990796 Schnipke et al. Jan 2006 B2
6995729 Govari et al. Feb 2006 B2
7000818 Shelton, IV et al. Feb 2006 B2
7000819 Swayze et al. Feb 2006 B2
7001408 Knodel et al. Feb 2006 B2
7008435 Cummins Mar 2006 B2
7018357 Emmons Mar 2006 B2
7032798 Whitman et al. Apr 2006 B2
7032799 Viola et al. Apr 2006 B2
7037344 Kagan et al. May 2006 B2
7041868 Greene et al. May 2006 B2
7044352 Shelton, IV et al. May 2006 B2
7044353 Mastri et al. May 2006 B2
7052494 Goble et al. May 2006 B2
7055731 Shelton, IV et al. Jun 2006 B2
7056330 Gayton Jun 2006 B2
7059508 Shelton, IV et al. Jun 2006 B2
7063712 Vargas et al. Jun 2006 B2
7066944 Laufer et al. Jun 2006 B2
7070083 Jankowski Jul 2006 B2
7080769 Vresh et al. Jul 2006 B2
7083075 Swayze et al. Aug 2006 B2
7097644 Long Aug 2006 B2
7097650 Weller et al. Aug 2006 B2
7104741 Krohn Sep 2006 B2
7108709 Cummins Sep 2006 B2
7111769 Wales et al. Sep 2006 B2
7112214 Peterson et al. Sep 2006 B2
7114642 Whitman Oct 2006 B2
7119534 Butzmann Oct 2006 B2
7121446 Arad et al. Oct 2006 B2
7128253 Mastri et al. Oct 2006 B2
7128254 Shelton, IV et al. Oct 2006 B2
7128748 Mooradian et al. Oct 2006 B2
7133601 Phillips et al. Nov 2006 B2
7134587 Schwemberger et al. Nov 2006 B2
7137981 Long Nov 2006 B2
7140527 Ehrenfels et al. Nov 2006 B2
7140528 Shelton, IV Nov 2006 B2
7143923 Shelton, IV et al. Dec 2006 B2
7143924 Scirica et al. Dec 2006 B2
7143925 Shelton, IV et al. Dec 2006 B2
7143926 Shelton, IV et al. Dec 2006 B2
7147138 Shelton, IV Dec 2006 B2
7147139 Schwemberger et al. Dec 2006 B2
7147637 Goble Dec 2006 B2
7147650 Lee Dec 2006 B2
7150748 Ebbutt et al. Dec 2006 B2
7156863 Sonnenschein et al. Jan 2007 B2
7159750 Racenet et al. Jan 2007 B2
7168604 Milliman et al. Jan 2007 B2
7172104 Scirica et al. Feb 2007 B2
7182239 Myers Feb 2007 B1
7188758 Viola et al. Mar 2007 B2
7199537 Okamura et al. Apr 2007 B2
7204404 Nguyen et al. Apr 2007 B2
7204835 Latterell et al. Apr 2007 B2
7207471 Heinrich et al. Apr 2007 B2
7207472 Wukusick et al. Apr 2007 B2
7207556 Saitoh et al. Apr 2007 B2
7210609 Leiboff et al. May 2007 B2
7211081 Goble May 2007 B2
7213736 Wales et al. May 2007 B2
7217285 Vargas et al. May 2007 B2
7225964 Mastri et al. Jun 2007 B2
7234624 Gresham et al. Jun 2007 B2
7235302 Jing et al. Jun 2007 B2
7237708 Guy et al. Jul 2007 B1
7238195 Viola Jul 2007 B2
7246734 Shelton, IV Jul 2007 B2
7247161 Johnston et al. Jul 2007 B2
7258262 Mastri et al. Aug 2007 B2
7258546 Beier et al. Aug 2007 B2
7267679 McGuckin, Jr. et al. Sep 2007 B2
7278562 Mastri et al. Oct 2007 B2
7278563 Green Oct 2007 B1
7282048 Goble et al. Oct 2007 B2
7296722 Ivanko Nov 2007 B2
7296724 Green et al. Nov 2007 B2
7300450 Vleugels et al. Nov 2007 B2
7303106 Milliman et al. Dec 2007 B2
7303107 Milliman et al. Dec 2007 B2
7303108 Shelton, IV Dec 2007 B2
7308998 Mastri et al. Dec 2007 B2
7326203 Papineau et al. Feb 2008 B2
7326213 Benderev et al. Feb 2008 B2
7328828 Ortiz et al. Feb 2008 B2
7328829 Arad et al. Feb 2008 B2
7331340 Barney Feb 2008 B2
7331969 Inganas et al. Feb 2008 B1
7334717 Rethy et al. Feb 2008 B2
7334718 McAlister et al. Feb 2008 B2
7336048 Lohr Feb 2008 B2
7341591 Grinberg Mar 2008 B2
RE40237 Bilotti et al. Apr 2008 E
7351258 Ricotta et al. Apr 2008 B2
7354447 Shelton, IV et al. Apr 2008 B2
7357287 Shelton, IV et al. Apr 2008 B2
7357806 Rivera et al. Apr 2008 B2
7364060 Milliman Apr 2008 B2
7364061 Swayze et al. Apr 2008 B2
7377928 Zubik et al. May 2008 B2
7380695 Doll et al. Jun 2008 B2
7380696 Shelton, IV et al. Jun 2008 B2
7396356 Mollenauer Jul 2008 B2
7398907 Racenet et al. Jul 2008 B2
7398908 Holsten et al. Jul 2008 B2
7401721 Holsten et al. Jul 2008 B2
7404508 Smith et al. Jul 2008 B2
7404509 Ortiz et al. Jul 2008 B2
7404822 Viart et al. Jul 2008 B2
7407075 Holsten et al. Aug 2008 B2
7407076 Racenet et al. Aug 2008 B2
7407078 Shelton, IV et al. Aug 2008 B2
7410086 Ortiz et al. Aug 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
RE40514 Mastri et al. Sep 2008 E
7419080 Smith et al. Sep 2008 B2
7419081 Ehrenfels et al. Sep 2008 B2
7419321 Tereschouk Sep 2008 B2
7422136 Marczyk Sep 2008 B1
7422139 Shelton, IV et al. Sep 2008 B2
7424965 Racenet et al. Sep 2008 B2
7427607 Suzuki Sep 2008 B2
7431188 Marczyk Oct 2008 B1
7431189 Shelton, IV et al. Oct 2008 B2
7431694 Stefanchik et al. Oct 2008 B2
7431730 Viola Oct 2008 B2
7434715 Shelton, IV et al. Oct 2008 B2
7434717 Shelton, IV et al. Oct 2008 B2
7438209 Hess et al. Oct 2008 B1
7438718 Milliman et al. Oct 2008 B2
7441684 Shelton, IV et al. Oct 2008 B2
7441685 Boudreaux Oct 2008 B1
7442201 Pugsley et al. Oct 2008 B2
7448525 Shelton, IV et al. Nov 2008 B2
7451904 Shelton, IV Nov 2008 B2
7455208 Wales et al. Nov 2008 B2
7455676 Holsten et al. Nov 2008 B2
7461767 Viola et al. Dec 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7464847 Viola et al. Dec 2008 B2
7464849 Shelton, IV et al. Dec 2008 B2
7467740 Shelton, IV et al. Dec 2008 B2
7472815 Shelton, IV et al. Jan 2009 B2
7472816 Holsten et al. Jan 2009 B2
7473253 Dycus et al. Jan 2009 B2
7481347 Roy Jan 2009 B2
7481349 Holsten et al. Jan 2009 B2
7485124 Kuhns et al. Feb 2009 B2
7485133 Cannon et al. Feb 2009 B2
7485142 Milo Feb 2009 B2
7490749 Schall et al. Feb 2009 B2
7494039 Racenet et al. Feb 2009 B2
7500979 Hueil et al. Mar 2009 B2
7503474 Hillstead et al. Mar 2009 B2
7506790 Shelton, IV Mar 2009 B2
7506791 Omaits et al. Mar 2009 B2
7510107 Timm et al. Mar 2009 B2
7510566 Jacobs et al. Mar 2009 B2
7517356 Heinrich Apr 2009 B2
7546939 Adams et al. Jun 2009 B2
7546940 Milliman et al. Jun 2009 B2
7547312 Bauman et al. Jun 2009 B2
7549563 Mather et al. Jun 2009 B2
7549564 Boudreaux Jun 2009 B2
7549998 Braun Jun 2009 B2
7556185 Viola Jul 2009 B2
7559449 Viola Jul 2009 B2
7559450 Wales et al. Jul 2009 B2
7559452 Wales et al. Jul 2009 B2
7565993 Milliman et al. Jul 2009 B2
7568603 Shelton, IV et al. Aug 2009 B2
7568604 Ehrenfels et al. Aug 2009 B2
7575144 Ortiz et al. Aug 2009 B2
7588174 Holsten et al. Sep 2009 B2
7588175 Timm et al. Sep 2009 B2
7588176 Timm et al. Sep 2009 B2
7588177 Racenet Sep 2009 B2
7597229 Boudreaux et al. Oct 2009 B2
7597230 Racenet et al. Oct 2009 B2
7604150 Boudreaux Oct 2009 B2
7604151 Hess et al. Oct 2009 B2
7607557 Shelton, IV et al. Oct 2009 B2
7611038 Racenet et al. Nov 2009 B2
7615067 Lee et al. Nov 2009 B2
7624902 Marczyk et al. Dec 2009 B2
7624903 Green et al. Dec 2009 B2
7625370 Hart et al. Dec 2009 B2
7631793 Rethy et al. Dec 2009 B2
7635074 Olson et al. Dec 2009 B2
7637409 Marczyk Dec 2009 B2
7638958 Philipp et al. Dec 2009 B2
7641091 Olson et al. Jan 2010 B2
7641092 Kruszynski et al. Jan 2010 B2
7641095 Viola Jan 2010 B2
7644848 Swayze et al. Jan 2010 B2
7645230 Mikkaichi et al. Jan 2010 B2
7651017 Ortiz et al. Jan 2010 B2
7651498 Shifrin et al. Jan 2010 B2
7654431 Hueil et al. Feb 2010 B2
7658311 Boudreaux Feb 2010 B2
7658312 Vidal et al. Feb 2010 B2
7662161 Briganti et al. Feb 2010 B2
7665646 Prommersberger Feb 2010 B2
7665647 Shelton, IV et al. Feb 2010 B2
7669746 Shelton, IV Mar 2010 B2
7669747 Weisenburgh, II et al. Mar 2010 B2
7670334 Hueil et al. Mar 2010 B2
7673780 Shelton, IV et al. Mar 2010 B2
7673781 Swayze et al. Mar 2010 B2
7673782 Hess et al. Mar 2010 B2
7673783 Morgan et al. Mar 2010 B2
7686201 Csiky Mar 2010 B2
7695485 Whitman et al. Apr 2010 B2
7699204 Viola Apr 2010 B2
7699846 Ryan Apr 2010 B2
7699856 Van Wyk et al. Apr 2010 B2
7699859 Bombard et al. Apr 2010 B2
7708180 Murray et al. May 2010 B2
7708182 Viola May 2010 B2
7708758 Lee et al. May 2010 B2
7717312 Beetel May 2010 B2
7717313 Criscuolo et al. May 2010 B2
7717846 Zirps et al. May 2010 B2
7718180 Karp May 2010 B2
7718556 Matsuda et al. May 2010 B2
7721930 Mckenna et al. May 2010 B2
7721931 Shelton, IV et al. May 2010 B2
7721933 Ehrenfels et al. May 2010 B2
7721934 Shelton, IV et al. May 2010 B2
7721936 Shalton, IV et al. May 2010 B2
7722527 Bouchier et al. May 2010 B2
7722610 Viola et al. May 2010 B2
7726537 Olson et al. Jun 2010 B2
7726538 Holsten et al. Jun 2010 B2
7731072 Timm et al. Jun 2010 B2
7735703 Morgan et al. Jun 2010 B2
7738971 Swayze et al. Jun 2010 B2
7740159 Shelton, IV et al. Jun 2010 B2
7743960 Whitman et al. Jun 2010 B2
7744627 Orban, III et al. Jun 2010 B2
7748587 Haramiishi et al. Jul 2010 B2
7751870 Whitman Jul 2010 B2
7753245 Boudreaux et al. Jul 2010 B2
7753904 Shelton, IV et al. Jul 2010 B2
7766209 Baxter, III et al. Aug 2010 B2
7766210 Shelton, IV et al. Aug 2010 B2
7766821 Brunnen et al. Aug 2010 B2
7770773 Whitman et al. Aug 2010 B2
7770774 Mastri et al. Aug 2010 B2
7770775 Shelton, IV et al. Aug 2010 B2
7770776 Chen et al. Aug 2010 B2
7776060 Mooradian et al. Aug 2010 B2
7780054 Wales Aug 2010 B2
7780055 Scirica et al. Aug 2010 B2
7780663 Yates et al. Aug 2010 B2
7780685 Hunt et al. Aug 2010 B2
7784662 Wales et al. Aug 2010 B2
7784663 Shelton, IV Aug 2010 B2
7789889 Zubik et al. Sep 2010 B2
7793812 Moore et al. Sep 2010 B2
7794475 Hess et al. Sep 2010 B2
7798386 Schall et al. Sep 2010 B2
7799039 Shelton, IV et al. Sep 2010 B2
7810690 Bilotti et al. Oct 2010 B2
7810691 Boyden et al. Oct 2010 B2
7810692 Hall et al. Oct 2010 B2
7810693 Broehl et al. Oct 2010 B2
7815092 Whitman et al. Oct 2010 B2
7819296 Hueil et al. Oct 2010 B2
7819297 Doll et al. Oct 2010 B2
7819298 Hall et al. Oct 2010 B2
7819299 Shelton, IV et al. Oct 2010 B2
7823592 Bettuchi et al. Nov 2010 B2
7823760 Zemlok et al. Nov 2010 B2
7828189 Holsten et al. Nov 2010 B2
7832408 Shelton, IV et al. Nov 2010 B2
7832611 Boyden et al. Nov 2010 B2
7832612 Baxter, III et al. Nov 2010 B2
7837079 Holsten et al. Nov 2010 B2
7837080 Schwemberger Nov 2010 B2
7837081 Holsten et al. Nov 2010 B2
7837694 Tethrake et al. Nov 2010 B2
7842028 Lee Nov 2010 B2
7845533 Marczyk et al. Dec 2010 B2
7845535 Scircia Dec 2010 B2
7845536 Viola et al. Dec 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7854736 Ryan Dec 2010 B2
7857183 Shelton, IV Dec 2010 B2
7857185 Swayze et al. Dec 2010 B2
7857186 Baxter, III et al. Dec 2010 B2
7857813 Schmitz et al. Dec 2010 B2
7861906 Doll et al. Jan 2011 B2
7866525 Scirica Jan 2011 B2
7866527 Hall et al. Jan 2011 B2
7886951 Hessler Feb 2011 B2
7891531 Ward Feb 2011 B1
7891532 Mastri et al. Feb 2011 B2
7892245 Liddicoat et al. Feb 2011 B2
7893586 West et al. Feb 2011 B2
7896215 Adams et al. Mar 2011 B2
7896877 Hall et al. Mar 2011 B2
7900805 Shelton, IV et al. Mar 2011 B2
7905380 Shelton, IV et al. Mar 2011 B2
7905381 Baxter, III et al. Mar 2011 B2
7909039 Hur Mar 2011 B2
7909220 Viola Mar 2011 B2
7909221 Viola et al. Mar 2011 B2
7913891 Doll et al. Mar 2011 B2
7913893 Mastri et al. Mar 2011 B2
7914543 Roth et al. Mar 2011 B2
7918376 Knodel et al. Apr 2011 B1
7918377 Measamer et al. Apr 2011 B2
7918845 Saadat et al. Apr 2011 B2
7922061 Shelton, IV et al. Apr 2011 B2
7922063 Zemlok et al. Apr 2011 B2
7922743 Heinrich et al. Apr 2011 B2
7926691 Viola et al. Apr 2011 B2
7931660 Aranyi et al. Apr 2011 B2
7934630 Shelton, IV et al. May 2011 B2
7934631 Balbierz et al. May 2011 B2
7935773 Hadba et al. May 2011 B2
7938307 Bettuchi May 2011 B2
7942890 D'Agostino et al. May 2011 B2
7950560 Zemlok et al. May 2011 B2
7950561 Aranyi May 2011 B2
7951071 Whitman et al. May 2011 B2
7951166 Orban, III et al. May 2011 B2
7954682 Giordano et al. Jun 2011 B2
7954684 Boudreaux Jun 2011 B2
7954686 Baxter, III et al. Jun 2011 B2
7954687 Zemlok et al. Jun 2011 B2
7959050 Smith et al. Jun 2011 B2
7959051 Smith et al. Jun 2011 B2
7963432 Knodel et al. Jun 2011 B2
7963433 Whitman et al. Jun 2011 B2
7966799 Morgan et al. Jun 2011 B2
7967180 Scirica Jun 2011 B2
7967181 Viola et al. Jun 2011 B2
7967839 Flock et al. Jun 2011 B2
7972298 Wallace et al. Jul 2011 B2
7976563 Summerer Jul 2011 B2
7980443 Scheib et al. Jul 2011 B2
7988026 Knodel et al. Aug 2011 B2
7988027 Olson et al. Aug 2011 B2
7988779 Disalvo et al. Aug 2011 B2
7992757 Wheeler et al. Aug 2011 B2
7997469 Olson et al. Aug 2011 B2
8002795 Beetel Aug 2011 B2
8006885 Marczyk Aug 2011 B2
8006889 Adams et al. Aug 2011 B2
8007513 Nalagatla et al. Aug 2011 B2
8011550 Aranyi et al. Sep 2011 B2
8011551 Marczyk et al. Sep 2011 B2
8011553 Mastri et al. Sep 2011 B2
8011555 Tarinelli et al. Sep 2011 B2
8016176 Kasvikis et al. Sep 2011 B2
8016177 Bettuchi et al. Sep 2011 B2
8016178 Olson et al. Sep 2011 B2
8016849 Wenchell Sep 2011 B2
8016855 Whitman et al. Sep 2011 B2
8016858 Whitman Sep 2011 B2
8020742 Marczyk Sep 2011 B2
8020743 Shelton, IV Sep 2011 B2
8025199 Whitman et al. Sep 2011 B2
8028883 Stopek Oct 2011 B2
8028885 Smith et al. Oct 2011 B2
8033438 Scirica Oct 2011 B2
8035487 Malackowski Oct 2011 B2
8038045 Bettuchi et al. Oct 2011 B2
8038046 Smith et al. Oct 2011 B2
8047236 Perry Nov 2011 B2
8056787 Boudreaux et al. Nov 2011 B2
8056788 Mastri et al. Nov 2011 B2
8062330 Prommersberger et al. Nov 2011 B2
8066167 Measamer et al. Nov 2011 B2
D650074 Hunt et al. Dec 2011 S
8083119 Prommersberger Dec 2011 B2
8083120 Shelton, IV et al. Dec 2011 B2
8091756 Viola Jan 2012 B2
8092932 Phillips et al. Jan 2012 B2
8097017 Viola Jan 2012 B2
8100310 Zemlok Jan 2012 B2
8105350 Lee et al. Jan 2012 B2
8109426 Milliman et al. Feb 2012 B2
8113410 Hall et al. Feb 2012 B2
8114100 Smith et al. Feb 2012 B2
8123103 Milliman Feb 2012 B2
8123767 Bauman et al. Feb 2012 B2
8128645 Sonnenschein et al. Mar 2012 B2
8136712 Zingman Mar 2012 B2
8140417 Shibata Mar 2012 B2
8141762 Bedi et al. Mar 2012 B2
8141763 Milliman Mar 2012 B2
8152041 Kostrzewski Apr 2012 B2
8152756 Webster et al. Apr 2012 B2
8157145 Shelton, IV et al. Apr 2012 B2
8157148 Scirica Apr 2012 B2
8157152 Holsten et al. Apr 2012 B2
8157153 Shelton, IV et al. Apr 2012 B2
8161977 Shelton, IV et al. Apr 2012 B2
8162138 Bettenhausen et al. Apr 2012 B2
8162197 Mastri et al. Apr 2012 B2
8162933 Francischelli et al. Apr 2012 B2
8167185 Shelton, IV et al. May 2012 B2
8167895 D'Agostino et al. May 2012 B2
8172120 Boyden et al. May 2012 B2
8172122 Kasvikis et al. May 2012 B2
8172124 Shelton, IV et al. May 2012 B2
8177797 Shimoji et al. May 2012 B2
8186555 Shelton, IV et al. May 2012 B2
8186560 Hess et al. May 2012 B2
8191752 Scirica Jun 2012 B2
8192460 Orban, III et al. Jun 2012 B2
8196795 Moore et al. Jun 2012 B2
8196796 Shelton, IV et al. Jun 2012 B2
8201721 Zemlok et al. Jun 2012 B2
8205781 Baxter, III et al. Jun 2012 B2
8210411 Yates et al. Jul 2012 B2
8210414 Bettuchi et al. Jul 2012 B2
8210415 Ward Jul 2012 B2
8211125 Spivey Jul 2012 B2
8214019 Govari et al. Jul 2012 B2
8215531 Shelton, IV et al. Jul 2012 B2
8215533 Viola et al. Jul 2012 B2
8220688 Laurent et al. Jul 2012 B2
8220690 Hess et al. Jul 2012 B2
8225799 Bettuchi Jul 2012 B2
8231040 Zemlok et al. Jul 2012 B2
8231042 Hessler et al. Jul 2012 B2
8231043 Tarinelli et al. Jul 2012 B2
8236010 Ortiz et al. Aug 2012 B2
8241308 Kortenbach et al. Aug 2012 B2
8241322 Whitman et al. Aug 2012 B2
8245899 Swensgard et al. Aug 2012 B2
8245900 Scirica Aug 2012 B2
8245901 Stopek Aug 2012 B2
8246637 Viola et al. Aug 2012 B2
8256654 Bettuchi et al. Sep 2012 B2
8256655 Sniffin et al. Sep 2012 B2
8257356 Bleich et al. Sep 2012 B2
8257391 Orban, III et al. Sep 2012 B2
8267300 Boudreaux Sep 2012 B2
8272553 Mastri et al. Sep 2012 B2
8276801 Zemlok et al. Oct 2012 B2
8276802 Kostrzewski Oct 2012 B2
8281973 Wenchell et al. Oct 2012 B2
8286845 Perry et al. Oct 2012 B2
8292150 Bryant Oct 2012 B2
8292151 Viola Oct 2012 B2
8292155 Shelton, IV et al. Oct 2012 B2
8292157 Smith et al. Oct 2012 B2
8292888 Whitman Oct 2012 B2
8308040 Huang et al. Nov 2012 B2
8308042 Aranyi Nov 2012 B2
8308046 Prommersberger Nov 2012 B2
8313496 Sauer et al. Nov 2012 B2
8313509 Kostrzewski Nov 2012 B2
8317070 Hueil et al. Nov 2012 B2
8317074 Ortiz et al. Nov 2012 B2
8317744 Kirschenman Nov 2012 B2
8322455 Shelton, IV et al. Dec 2012 B2
8322589 Boudreaux Dec 2012 B2
8328062 Viola Dec 2012 B2
8328063 Milliman et al. Dec 2012 B2
8328064 Racenet et al. Dec 2012 B2
8333313 Boudreaux et al. Dec 2012 B2
8333764 Francischelli et al. Dec 2012 B2
8348123 Scirica et al. Jan 2013 B2
8348127 Marczyk Jan 2013 B2
8348129 Bedi et al. Jan 2013 B2
8348130 Shah et al. Jan 2013 B2
8348131 Omaits et al. Jan 2013 B2
8353437 Boudreaux Jan 2013 B2
8353438 Baxter, III et al. Jan 2013 B2
8353439 Baxter, III et al. Jan 2013 B2
8360296 Zingman Jan 2013 B2
8360297 Shelton, IV et al. Jan 2013 B2
8360299 Zemlok et al. Jan 2013 B2
8365973 White et al. Feb 2013 B1
8365976 Hess et al. Feb 2013 B2
8366787 Brown et al. Feb 2013 B2
8371491 Huitema et al. Feb 2013 B2
8371492 Aranyi et al. Feb 2013 B2
8371493 Aranyi et al. Feb 2013 B2
8372094 Bettuchi et al. Feb 2013 B2
8377029 Nagao et al. Feb 2013 B2
8393513 Jankowski Mar 2013 B2
8393514 Shelton, IV et al. Mar 2013 B2
8397971 Yates et al. Mar 2013 B2
8398633 Mueller Mar 2013 B2
8403198 Sorrentino et al. Mar 2013 B2
8403945 Whitfield et al. Mar 2013 B2
8408439 Huang et al. Apr 2013 B2
8408442 Racenet et al. Apr 2013 B2
8413870 Pastorelli et al. Apr 2013 B2
8413871 Racenet et al. Apr 2013 B2
8413872 Patel Apr 2013 B2
8414577 Boudreaux et al. Apr 2013 B2
8424739 Racenet et al. Apr 2013 B2
8424740 Shelton, IV et al. Apr 2013 B2
8424741 McGuckin, Jr. et al. Apr 2013 B2
8444036 Shelton, IV May 2013 B2
8453904 Eskaros et al. Jun 2013 B2
8453907 Laurent et al. Jun 2013 B2
8453908 Bedi et al. Jun 2013 B2
8453912 Mastri et al. Jun 2013 B2
8453914 Laurent et al. Jun 2013 B2
8459520 Giordano et al. Jun 2013 B2
8459525 Yates et al. Jun 2013 B2
8464922 Marczyk Jun 2013 B2
8464923 Shelton, IV Jun 2013 B2
8464924 Gresham et al. Jun 2013 B2
8464925 Hull et al. Jun 2013 B2
8469973 Meade et al. Jun 2013 B2
8470355 Skalla et al. Jun 2013 B2
8474677 Woodard, Jr. et al. Jul 2013 B2
8475454 Alshemari Jul 2013 B1
8479969 Shelton, IV Jul 2013 B2
8480703 Nicholas et al. Jul 2013 B2
8485412 Shelton, IV et al. Jul 2013 B2
8485413 Scheib et al. Jul 2013 B2
8490853 Criscuolo et al. Jul 2013 B2
8496156 Sniffin et al. Jul 2013 B2
8499993 Shelton, IV et al. Aug 2013 B2
8500762 Sholev et al. Aug 2013 B2
8506555 Ruiz Morales Aug 2013 B2
8517239 Scheib et al. Aug 2013 B2
8517241 Nicholas et al. Aug 2013 B2
8517243 Giordano et al. Aug 2013 B2
8517244 Shelton, IV et al. Aug 2013 B2
8523043 Ullrich et al. Sep 2013 B2
8529600 Woodard, Jr. et al. Sep 2013 B2
8534528 Shelton, IV Sep 2013 B2
8540128 Shelton, IV et al. Sep 2013 B2
8540129 Baxter, III et al. Sep 2013 B2
8540130 Moore et al. Sep 2013 B2
8540131 Swayze Sep 2013 B2
8540133 Bedi et al. Sep 2013 B2
8550984 Takemoto Oct 2013 B2
8556151 Viola Oct 2013 B2
8561870 Baxter, III et al. Oct 2013 B2
8567656 Shelton, IV et al. Oct 2013 B2
8568425 Ross et al. Oct 2013 B2
8573459 Smith et al. Nov 2013 B2
8573461 Shelton, IV et al. Nov 2013 B2
8573465 Shelton, IV Nov 2013 B2
8579937 Gresham Nov 2013 B2
8584919 Hueil et al. Nov 2013 B2
8585721 Kirsch Nov 2013 B2
8590760 Cummins et al. Nov 2013 B2
8590762 Hess et al. Nov 2013 B2
8590764 Hartwick et al. Nov 2013 B2
8602287 Yates et al. Dec 2013 B2
8602288 Shelton, IV et al. Dec 2013 B2
8608043 Scirica Dec 2013 B2
8608044 Hueil et al. Dec 2013 B2
8608045 Smith et al. Dec 2013 B2
8608046 Laurent et al. Dec 2013 B2
8616431 Timm et al. Dec 2013 B2
8622274 Yates et al. Jan 2014 B2
8622275 Baxter, III et al. Jan 2014 B2
8627995 Smith et al. Jan 2014 B2
8631987 Shelton, IV et al. Jan 2014 B2
8631993 Kostrzewski Jan 2014 B2
8632462 Yoo et al. Jan 2014 B2
8632525 Kerr et al. Jan 2014 B2
8632535 Shelton, IV et al. Jan 2014 B2
8632563 Nagase et al. Jan 2014 B2
8636187 Hueil et al. Jan 2014 B2
8636191 Meagher Jan 2014 B2
8636736 Yates et al. Jan 2014 B2
8646674 Schulte et al. Feb 2014 B2
8652120 Giordano et al. Feb 2014 B2
8657174 Yates et al. Feb 2014 B2
8657176 Shelton, IV et al. Feb 2014 B2
8657178 Hueil et al. Feb 2014 B2
8668130 Hess et al. Mar 2014 B2
8672207 Shelton, IV et al. Mar 2014 B2
8672208 Hess et al. Mar 2014 B2
8672951 Smith et al. Mar 2014 B2
8678263 Viola Mar 2014 B2
8679154 Smith et al. Mar 2014 B2
8684253 Giordano et al. Apr 2014 B2
8695866 Leimbach et al. Apr 2014 B2
8701958 Shelton, IV et al. Apr 2014 B2
8708210 Zemlok et al. Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8714430 Natarajan et al. May 2014 B2
8720766 Hess et al. May 2014 B2
8721630 Ortiz et al. May 2014 B2
8727197 Hess et al. May 2014 B2
8727199 Wenchell May 2014 B2
8733612 Ma May 2014 B2
8733613 Huitema et al. May 2014 B2
8734478 Widenhouse et al. May 2014 B2
8740034 Morgan et al. Jun 2014 B2
8740037 Shelton, IV et al. Jun 2014 B2
8740038 Shelton, IV et al. Jun 2014 B2
8746529 Shelton, IV et al. Jun 2014 B2
8746530 Giordano et al. Jun 2014 B2
8746535 Shelton, IV et al. Jun 2014 B2
8747238 Shelton, IV et al. Jun 2014 B2
8752699 Morgan et al. Jun 2014 B2
8752747 Shelton, IV et al. Jun 2014 B2
8752749 Moore et al. Jun 2014 B2
8757465 Woodard, Jr. et al. Jun 2014 B2
8758391 Swayze et al. Jun 2014 B2
8763875 Morgan et al. Jul 2014 B2
8763877 Schall et al. Jul 2014 B2
8763879 Shelton, IV et al. Jul 2014 B2
8770458 Scirica Jul 2014 B2
8770459 Racenet et al. Jul 2014 B2
8777004 Shelton, IV et al. Jul 2014 B2
8783541 Shelton, IV et al. Jul 2014 B2
8783542 Riestenberg et al. Jul 2014 B2
8783543 Shelton, IV et al. Jul 2014 B2
8789737 Hodgkinson et al. Jul 2014 B2
8789739 Swensgard Jul 2014 B2
8789740 Baxter, III et al. Jul 2014 B2
8789741 Baxter, III et al. Jul 2014 B2
8794496 Scirica Aug 2014 B2
8794497 Zingman Aug 2014 B2
8795308 Valin Aug 2014 B2
8800837 Zemlok Aug 2014 B2
8800838 Shelton, IV Aug 2014 B2
8800840 Jankowski Aug 2014 B2
8800841 Ellerhorst et al. Aug 2014 B2
8801734 Shelton, IV et al. Aug 2014 B2
8801735 Shelton, IV et al. Aug 2014 B2
8801752 Fortier et al. Aug 2014 B2
8806973 Ross et al. Aug 2014 B2
8808311 Heinrich et al. Aug 2014 B2
8814024 Woodard, Jr. et al. Aug 2014 B2
8820603 Shelton, IV et al. Sep 2014 B2
8820605 Shelton, IV Sep 2014 B2
8827133 Shelton, IV et al. Sep 2014 B2
8827134 Viola et al. Sep 2014 B2
8827903 Shelton, IV et al. Sep 2014 B2
8833632 Swensgard Sep 2014 B2
8840003 Morgan et al. Sep 2014 B2
8840603 Shelton, IV et al. Sep 2014 B2
8844789 Shelton, IV et al. Sep 2014 B2
8851354 Swensgard et al. Oct 2014 B2
8857693 Schuckmann et al. Oct 2014 B2
8857694 Shelton, IV et al. Oct 2014 B2
8858538 Belson et al. Oct 2014 B2
8858571 Shelton, IV et al. Oct 2014 B2
8858590 Shelton, IV et al. Oct 2014 B2
8864007 Widenhouse et al. Oct 2014 B2
8864009 Shelton, IV et al. Oct 2014 B2
8875971 Hall et al. Nov 2014 B2
8875972 Weisenburgh, II et al. Nov 2014 B2
8876857 Burbank Nov 2014 B2
8893946 Boudreaux et al. Nov 2014 B2
8893949 Shelton, IV et al. Nov 2014 B2
8894647 Beardsley et al. Nov 2014 B2
8899463 Schall et al. Dec 2014 B2
8899465 Shelton, IV et al. Dec 2014 B2
8899466 Baxter, III et al. Dec 2014 B2
8905977 Shelton et al. Dec 2014 B2
8911471 Spivey et al. Dec 2014 B2
8920435 Smith et al. Dec 2014 B2
8920443 Hiles et al. Dec 2014 B2
8920444 Hiles et al. Dec 2014 B2
8925782 Shelton, IV Jan 2015 B2
8925788 Hess et al. Jan 2015 B2
8926598 Mollere et al. Jan 2015 B2
8931682 Timm et al. Jan 2015 B2
8945163 Voegele et al. Feb 2015 B2
8956390 Shah et al. Feb 2015 B2
8967443 McCuen Mar 2015 B2
8967446 Beardsley et al. Mar 2015 B2
8973803 Hall et al. Mar 2015 B2
8973804 Hess et al. Mar 2015 B2
8974440 Farritor et al. Mar 2015 B2
8978954 Shelton, IV et al. Mar 2015 B2
8978955 Aronhalt et al. Mar 2015 B2
8978956 Schall et al. Mar 2015 B2
8991676 Hess et al. Mar 2015 B2
8991677 Moore et al. Mar 2015 B2
8992422 Spivey et al. Mar 2015 B2
8998058 Moore et al. Apr 2015 B2
8998935 Hart Apr 2015 B2
9005230 Yates et al. Apr 2015 B2
9005238 DeSantis et al. Apr 2015 B2
9016542 Shelton, IV et al. Apr 2015 B2
9028494 Shelton, IV et al. May 2015 B2
9028495 Mueller et al. May 2015 B2
9028519 Yates et al. May 2015 B2
9033203 Woodard, Jr. et al. May 2015 B2
9033204 Shelton, IV et al. May 2015 B2
9044227 Shelton, IV et al. Jun 2015 B2
9044228 Woodard, Jr. et al. Jun 2015 B2
9044229 Scheib et al. Jun 2015 B2
9044230 Morgan et al. Jun 2015 B2
9050083 Yates et al. Jun 2015 B2
9050084 Schmid et al. Jun 2015 B2
9055941 Schmid et al. Jun 2015 B2
9055944 Hodgkinson et al. Jun 2015 B2
9060770 Shelton, IV et al. Jun 2015 B2
9060894 Wubbeling Jun 2015 B2
9072515 Hall et al. Jul 2015 B2
9072535 Shelton, IV et al. Jul 2015 B2
9072536 Shelton, IV et al. Jul 2015 B2
9078653 Leimbach et al. Jul 2015 B2
9084601 Moore et al. Jul 2015 B2
9084602 Gleiman Jul 2015 B2
9089330 Widenhouse et al. Jul 2015 B2
9089352 Jeong Jul 2015 B2
9095339 Moore et al. Aug 2015 B2
9095362 Dachs, II et al. Aug 2015 B2
9101358 Kerr et al. Aug 2015 B2
9101385 Shelton, IV et al. Aug 2015 B2
9107663 Swensgard Aug 2015 B2
9113862 Morgan et al. Aug 2015 B2
9113864 Morgan et al. Aug 2015 B2
9113865 Shelton, IV et al. Aug 2015 B2
9113874 Shelton, IV et al. Aug 2015 B2
9113880 Zemlok et al. Aug 2015 B2
9113883 Aronhalt et al. Aug 2015 B2
9113884 Shelton, IV et al. Aug 2015 B2
9119657 Shelton, IV et al. Sep 2015 B2
9119957 Gantz et al. Sep 2015 B2
9125654 Aronhalt et al. Sep 2015 B2
9125662 Shelton, IV Sep 2015 B2
9131940 Huitema et al. Sep 2015 B2
9138225 Huang et al. Sep 2015 B2
9149274 Spivey et al. Oct 2015 B2
9168038 Shelton, IV et al. Oct 2015 B2
9179911 Morgan et al. Nov 2015 B2
9179912 Yates et al. Nov 2015 B2
9186140 Hiles et al. Nov 2015 B2
9186143 Timm et al. Nov 2015 B2
9198661 Swensgard Dec 2015 B2
9198662 Barton et al. Dec 2015 B2
9204878 Hall et al. Dec 2015 B2
9204879 Shelton, IV Dec 2015 B2
9204880 Baxter, III et al. Dec 2015 B2
9211120 Scheib et al. Dec 2015 B2
9211121 Hall et al. Dec 2015 B2
9211122 Hagerty et al. Dec 2015 B2
9216019 Schmid et al. Dec 2015 B2
9220500 Swayze et al. Dec 2015 B2
9220501 Baxter, III et al. Dec 2015 B2
9220559 Worrell et al. Dec 2015 B2
9226751 Shelton, IV et al. Jan 2016 B2
9232941 Mandakolathur Vasudevan et al. Jan 2016 B2
9232945 Zingman Jan 2016 B2
9237891 Shelton, IV Jan 2016 B2
9241714 Timm et al. Jan 2016 B2
9271799 Shelton, IV et al. Mar 2016 B2
9272406 Aronhalt et al. Mar 2016 B2
9277919 Timmer et al. Mar 2016 B2
9282962 Schmid et al. Mar 2016 B2
9282966 Shelton, IV et al. Mar 2016 B2
9282974 Shelton, IV Mar 2016 B2
9283054 Morgan et al. Mar 2016 B2
9289206 Hess et al. Mar 2016 B2
9289210 Baxter, III et al. Mar 2016 B2
9289212 Shelton, IV et al. Mar 2016 B2
9289225 Shelton, IV et al. Mar 2016 B2
9289256 Shelton, IV et al. Mar 2016 B2
9295464 Shelton, IV et al. Mar 2016 B2
9301752 Mandakolathur Vasudevan et al. Apr 2016 B2
9301753 Aldridge et al. Apr 2016 B2
9301755 Shelton, IV et al. Apr 2016 B2
9301759 Spivey et al. Apr 2016 B2
9307965 Ming et al. Apr 2016 B2
9307986 Hall et al. Apr 2016 B2
9307987 Swensgard et al. Apr 2016 B2
9307988 Shelton, IV Apr 2016 B2
9307989 Shelton, IV et al. Apr 2016 B2
9307994 Gresham et al. Apr 2016 B2
9314246 Shelton, IV et al. Apr 2016 B2
9314247 Shelton, IV et al. Apr 2016 B2
9320518 Henderson et al. Apr 2016 B2
9320521 Shelton, IV et al. Apr 2016 B2
9320523 Shelton, IV et al. Apr 2016 B2
9326767 Koch et al. May 2016 B2
9326768 Shelton, IV May 2016 B2
9326769 Shelton, IV et al. May 2016 B2
9326770 Shelton, IV et al. May 2016 B2
9326771 Baxter, III et al. May 2016 B2
9332974 Henderson et al. May 2016 B2
9332984 Weaner et al. May 2016 B2
9332987 Leimbach et al. May 2016 B2
9345477 Anim et al. May 2016 B2
9345481 Hall et al. May 2016 B2
9351726 Leimbach et al. May 2016 B2
9351727 Leimbach et al. May 2016 B2
9351730 Schmid et al. May 2016 B2
9358003 Hall et al. Jun 2016 B2
9364230 Shelton, IV et al. Jun 2016 B2
9364233 Alexander, III et al. Jun 2016 B2
9370358 Shelton, IV et al. Jun 2016 B2
9370364 Smith et al. Jun 2016 B2
9386983 Swensgard et al. Jul 2016 B2
9386984 Aronhalt et al. Jul 2016 B2
9386985 Koch, Jr. et al. Jul 2016 B2
9386988 Baxter, III et al. Jul 2016 B2
9393015 Laurent et al. Jul 2016 B2
9398911 Auld Jul 2016 B2
9402626 Ortiz et al. Aug 2016 B2
9408604 Shelton, IV et al. Aug 2016 B2
9408606 Shelton, IV Aug 2016 B2
9414838 Shelton, IV et al. Aug 2016 B2
9427223 Park et al. Aug 2016 B2
9433419 Gonzalez et al. Sep 2016 B2
9439649 Shelton, IV et al. Sep 2016 B2
9439651 Smith et al. Sep 2016 B2
9445813 Shelton, IV et al. Sep 2016 B2
9451958 Shelton, IV et al. Sep 2016 B2
9463260 Stopek Oct 2016 B2
9468438 Baber et al. Oct 2016 B2
9480476 Aldridge et al. Nov 2016 B2
9486214 Shelton, IV Nov 2016 B2
9486302 Boey et al. Nov 2016 B2
9492167 Shelton, IV et al. Nov 2016 B2
9492170 Bear et al. Nov 2016 B2
9510828 Yates et al. Dec 2016 B2
9510830 Shelton, IV et al. Dec 2016 B2
9510925 Hotter et al. Dec 2016 B2
9517063 Swayze et al. Dec 2016 B2
9517068 Shelton, IV et al. Dec 2016 B2
9522029 Yates et al. Dec 2016 B2
9549732 Yates et al. Jan 2017 B2
9549735 Shelton, IV et al. Jan 2017 B2
9554794 Baber et al. Jan 2017 B2
9561032 Shelton, IV et al. Feb 2017 B2
9561038 Shelton, IV et al. Feb 2017 B2
9566061 Aronhalt et al. Feb 2017 B2
9572577 Lloyd et al. Feb 2017 B2
9574644 Parihar Feb 2017 B2
9585657 Shelton, IV et al. Mar 2017 B2
9585660 Laurent et al. Mar 2017 B2
9585662 Shelton, IV et al. Mar 2017 B2
9592050 Schmid et al. Mar 2017 B2
9592052 Shelton, IV Mar 2017 B2
9592053 Shelton, IV et al. Mar 2017 B2
9592054 Schmid et al. Mar 2017 B2
9597075 Shelton, IV et al. Mar 2017 B2
9597080 Milliman et al. Mar 2017 B2
9603595 Shelton, IV et al. Mar 2017 B2
9603598 Shelton, IV et al. Mar 2017 B2
9603991 Shelton, IV et al. Mar 2017 B2
9615826 Shelton, IV et al. Apr 2017 B2
9629623 Lytle, IV et al. Apr 2017 B2
9629626 Soltz et al. Apr 2017 B2
9629629 Leimbach et al. Apr 2017 B2
9629814 Widenhouse et al. Apr 2017 B2
9642620 Baxter, III et al. May 2017 B2
9649110 Parihar et al. May 2017 B2
9649111 Shelton, IV et al. May 2017 B2
9655614 Swensgard et al. May 2017 B2
9655624 Shelton, IV et al. May 2017 B2
9675355 Shelton, IV et al. Jun 2017 B2
9675372 Laurent et al. Jun 2017 B2
9675375 Houser et al. Jun 2017 B2
9681870 Baxter, III et al. Jun 2017 B2
9681873 Smith et al. Jun 2017 B2
9687230 Leimbach et al. Jun 2017 B2
9687231 Baxter, III et al. Jun 2017 B2
9687232 Shelton, IV et al. Jun 2017 B2
9687236 Leimbach et al. Jun 2017 B2
9693777 Schellin et al. Jul 2017 B2
9700309 Jaworek et al. Jul 2017 B2
9700310 Morgan et al. Jul 2017 B2
9700317 Aronhalt et al. Jul 2017 B2
9700321 Shelton, IV et al. Jul 2017 B2
9706991 Hess et al. Jul 2017 B2
9724091 Shelton, IV et al. Aug 2017 B2
9724092 Baxter, III et al. Aug 2017 B2
9724098 Baxter, III et al. Aug 2017 B2
9730692 Shelton, IV et al. Aug 2017 B2
9730697 Morgan et al. Aug 2017 B2
9743928 Shelton, IV et al. Aug 2017 B2
9757123 Giordano et al. Sep 2017 B2
9757124 Schellin et al. Sep 2017 B2
9757130 Shelton, IV Sep 2017 B2
9763662 Shelton, IV et al. Sep 2017 B2
9775608 Aronhalt et al. Oct 2017 B2
9775609 Shelton, IV et al. Oct 2017 B2
9775613 Shelton, IV et al. Oct 2017 B2
9782169 Kimsey et al. Oct 2017 B2
9788834 Schmid et al. Oct 2017 B2
9795382 Shelton, IV Oct 2017 B2
9795384 Weaner et al. Oct 2017 B2
9801626 Parihar et al. Oct 2017 B2
9801634 Shelton, IV et al. Oct 2017 B2
9808244 Leimbach et al. Nov 2017 B2
9808249 Shelton, IV Nov 2017 B2
9814460 Kimsey et al. Nov 2017 B2
9814462 Woodard, Jr. et al. Nov 2017 B2
9826976 Parihar et al. Nov 2017 B2
9826978 Shelton, IV et al. Nov 2017 B2
9833236 Shelton, IV et al. Dec 2017 B2
9839420 Shelton, IV et al. Dec 2017 B2
9839422 Schellin et al. Dec 2017 B2
9839423 Vendely et al. Dec 2017 B2
9839427 Swayze et al. Dec 2017 B2
9839428 Baxter, III et al. Dec 2017 B2
9844368 Boudreaux et al. Dec 2017 B2
9844373 Swayze et al. Dec 2017 B2
9848873 Shelton, IV Dec 2017 B2
9848875 Aronhalt et al. Dec 2017 B2
9861359 Shelton, IV et al. Jan 2018 B2
9861361 Aronhalt et al. Jan 2018 B2
9867612 Parihar et al. Jan 2018 B2
9883860 Leimbach Feb 2018 B2
9884456 Schellin et al. Feb 2018 B2
9888919 Leimbach et al. Feb 2018 B2
9888924 Ebersole et al. Feb 2018 B2
9895147 Shelton, IV Feb 2018 B2
9913647 Weisenburgh, II et al. Mar 2018 B2
9918704 Shelton, IV et al. Mar 2018 B2
9918716 Baxter, III et al. Mar 2018 B2
9924942 Swayze et al. Mar 2018 B2
9924947 Shelton, IV et al. Mar 2018 B2
9968354 Shelton, IV et al. May 2018 B2
9968356 Shelton, IV et al. May 2018 B2
9974529 Shelton, IV et al. May 2018 B2
9974538 Baxter, III et al. May 2018 B2
9980630 Larkin et al. May 2018 B2
9980713 Aronhalt et al. May 2018 B2
9987006 Morgan et al. Jun 2018 B2
10004498 Morgan et al. Jun 2018 B2
10010322 Shelton, IV et al. Jul 2018 B2
10028742 Shelton, IV et al. Jul 2018 B2
10039529 Kerr et al. Aug 2018 B2
10052099 Morgan et al. Aug 2018 B2
10052100 Morgan et al. Aug 2018 B2
10058963 Shelton, IV et al. Aug 2018 B2
10064624 Shelton, IV et al. Sep 2018 B2
10070861 Spivey et al. Sep 2018 B2
10070863 Swayze et al. Sep 2018 B2
10071452 Shelton, IV et al. Sep 2018 B2
10085806 Hagn et al. Oct 2018 B2
10123798 Baxter, III et al. Nov 2018 B2
10130359 Hess et al. Nov 2018 B2
10130363 Huitema Nov 2018 B2
10130366 Shelton, IV et al. Nov 2018 B2
10136887 Shelton, IV et al. Nov 2018 B2
10136890 Shelton, IV et al. Nov 2018 B2
10149679 Shelton, IV et al. Dec 2018 B2
10149680 Parihar et al. Dec 2018 B2
10159482 Swayze et al. Dec 2018 B2
10172616 Murray et al. Jan 2019 B2
10213198 Aronhalt et al. Feb 2019 B2
10238385 Yates et al. Mar 2019 B2
10265065 Shelton, IV et al. Apr 2019 B2
10335144 Shelton, IV et al. Jul 2019 B2
10342533 Shelton, IV et al. Jul 2019 B2
10390823 Shelton, IV et al. Aug 2019 B2
10398433 Boudreaux et al. Sep 2019 B2
10405854 Schmid et al. Sep 2019 B2
10405857 Shelton, IV et al. Sep 2019 B2
10433918 Shelton, IV et al. Oct 2019 B2
10441285 Shelton, IV et al. Oct 2019 B2
10441369 Shelton, IV et al. Oct 2019 B2
10456133 Yates et al. Oct 2019 B2
10470762 Leimbach et al. Nov 2019 B2
10470763 Yates et al. Nov 2019 B2
10517682 Giordano et al. Dec 2019 B2
10595835 Kerr et al. Mar 2020 B2
10624634 Shelton, IV et al. Apr 2020 B2
10898191 Huitema et al. Jan 2021 B2
11006951 Giordano et al. May 2021 B2
11058418 Shelton, IV et al. Jul 2021 B2
11058420 Shelton, IV et al. Jul 2021 B2
11129615 Scheib et al. Sep 2021 B2
11272927 Swayze et al. Mar 2022 B2
11571213 Huitema et al. Feb 2023 B2
20020103494 Pacey Aug 2002 A1
20020117534 Green et al. Aug 2002 A1
20030009193 Corsaro Jan 2003 A1
20030039689 Chen et al. Feb 2003 A1
20030096158 Takano et al. May 2003 A1
20030181900 Long Sep 2003 A1
20030236505 Bonadio et al. Dec 2003 A1
20040034357 Beane et al. Feb 2004 A1
20040068161 Couvillon Apr 2004 A1
20040068224 Couvillon et al. Apr 2004 A1
20040073222 Koseki Apr 2004 A1
20040102783 Sutterlin et al. May 2004 A1
20040108357 Milliman et al. Jun 2004 A1
20040115022 Albertson et al. Jun 2004 A1
20040143276 Sturtz et al. Jul 2004 A1
20040147909 Johnston et al. Jul 2004 A1
20040164123 Racenet et al. Aug 2004 A1
20040167572 Roth et al. Aug 2004 A1
20040193189 Kortenbach et al. Sep 2004 A1
20040222268 Bilotti et al. Nov 2004 A1
20040225186 Horne et al. Nov 2004 A1
20040232201 Wenchell et al. Nov 2004 A1
20040260315 Dell et al. Dec 2004 A1
20040267310 Racenet et al. Dec 2004 A1
20050059997 Bauman et al. Mar 2005 A1
20050070929 Dalessandro et al. Mar 2005 A1
20050080342 Gilreath et al. Apr 2005 A1
20050080438 Weller et al. Apr 2005 A1
20050090817 Phan Apr 2005 A1
20050125897 Wyslucha et al. Jun 2005 A1
20050139636 Schwemberger et al. Jun 2005 A1
20050143759 Kelly Jun 2005 A1
20050154406 Bombard et al. Jul 2005 A1
20050169974 Tenerz et al. Aug 2005 A1
20050177181 Kagan et al. Aug 2005 A1
20050184121 Heinrich Aug 2005 A1
20050203550 Laufer et al. Sep 2005 A1
20050228224 Okada et al. Oct 2005 A1
20050245965 Orban, III et al. Nov 2005 A1
20050256533 Roth et al. Nov 2005 A1
20050263563 Racenet et al. Dec 2005 A1
20060025816 Shelton Feb 2006 A1
20060049229 Milliman et al. Mar 2006 A1
20060052825 Ransick et al. Mar 2006 A1
20060064086 Odom Mar 2006 A1
20060089535 Raz et al. Apr 2006 A1
20060173470 Oray et al. Aug 2006 A1
20060180634 Shelton et al. Aug 2006 A1
20060201989 Ojeda Sep 2006 A1
20060235368 Oz Oct 2006 A1
20060271042 Latterell et al. Nov 2006 A1
20060271102 Bosshard et al. Nov 2006 A1
20060287576 Tsuji et al. Dec 2006 A1
20060289602 Wales et al. Dec 2006 A1
20060291981 Viola et al. Dec 2006 A1
20070027468 Wales et al. Feb 2007 A1
20070034666 Holsten et al. Feb 2007 A1
20070051375 Milliman Mar 2007 A1
20070068989 Shelton Mar 2007 A1
20070084897 Shelton et al. Apr 2007 A1
20070093869 Bloom et al. Apr 2007 A1
20070102472 Shelton May 2007 A1
20070106317 Shelton et al. May 2007 A1
20070134251 Ashkenazi et al. Jun 2007 A1
20070170225 Shelton et al. Jul 2007 A1
20070173687 Shima et al. Jul 2007 A1
20070173813 Odom Jul 2007 A1
20070175950 Shelton et al. Aug 2007 A1
20070175951 Shelton et al. Aug 2007 A1
20070175955 Shelton et al. Aug 2007 A1
20070194079 Hueil et al. Aug 2007 A1
20070194082 Morgan et al. Aug 2007 A1
20070203510 Bettuchi Aug 2007 A1
20070225562 Spivey et al. Sep 2007 A1
20070243227 Gertner Oct 2007 A1
20070246505 Pace-Floridia et al. Oct 2007 A1
20070276409 Ortiz et al. Nov 2007 A1
20070279011 Jones et al. Dec 2007 A1
20070286892 Herzberg et al. Dec 2007 A1
20080029570 Shelton et al. Feb 2008 A1
20080029573 Shelton et al. Feb 2008 A1
20080029574 Shelton et al. Feb 2008 A1
20080029575 Shelton et al. Feb 2008 A1
20080078802 Hess et al. Apr 2008 A1
20080082125 Murray et al. Apr 2008 A1
20080082126 Murray et al. Apr 2008 A1
20080086078 Powell et al. Apr 2008 A1
20080091072 Omori et al. Apr 2008 A1
20080128469 Dalessandro et al. Jun 2008 A1
20080135600 Hiranuma et al. Jun 2008 A1
20080140115 Stopek Jun 2008 A1
20080169328 Shelton Jul 2008 A1
20080169332 Shelton et al. Jul 2008 A1
20080169333 Shelton et al. Jul 2008 A1
20080172087 Fuchs et al. Jul 2008 A1
20080197167 Viola et al. Aug 2008 A1
20080200762 Stokes et al. Aug 2008 A1
20080249536 Stahler et al. Oct 2008 A1
20080296346 Shelton, IV et al. Dec 2008 A1
20080308602 Timm et al. Dec 2008 A1
20080308603 Shelton et al. Dec 2008 A1
20080315829 Jones et al. Dec 2008 A1
20090001121 Hess et al. Jan 2009 A1
20090001130 Hess et al. Jan 2009 A1
20090005808 Hess et al. Jan 2009 A1
20090005809 Hess et al. Jan 2009 A1
20090048589 Takashino et al. Feb 2009 A1
20090078736 Van Lue Mar 2009 A1
20090090763 Zemlok et al. Apr 2009 A1
20090099876 Whitman Apr 2009 A1
20090149871 Kagan et al. Jun 2009 A9
20090188964 Orlov Jul 2009 A1
20090204108 Steffen Aug 2009 A1
20090206125 Huitema et al. Aug 2009 A1
20090206126 Huitema et al. Aug 2009 A1
20090206131 Weisenburgh, II et al. Aug 2009 A1
20090206133 Morgan et al. Aug 2009 A1
20090206137 Hall et al. Aug 2009 A1
20090206139 Hall et al. Aug 2009 A1
20090206141 Huitema et al. Aug 2009 A1
20090206142 Huitema et al. Aug 2009 A1
20090206143 Huitema et al. Aug 2009 A1
20090242610 Shelton, IV et al. Oct 2009 A1
20090255974 Viola Oct 2009 A1
20090292283 Odom Nov 2009 A1
20090321496 Holsten et al. Dec 2009 A1
20100069942 Shelton, IV Mar 2010 A1
20100108740 Pastorelli et al. May 2010 A1
20100133317 Shelton, IV et al. Jun 2010 A1
20100147921 Olson Jun 2010 A1
20100147922 Olson Jun 2010 A1
20100193566 Scheib et al. Aug 2010 A1
20100222901 Swayze et al. Sep 2010 A1
20110006101 Hall et al. Jan 2011 A1
20110011916 Levine Jan 2011 A1
20110024477 Hall Feb 2011 A1
20110024478 Shelton, IV Feb 2011 A1
20110060363 Hess et al. Mar 2011 A1
20110087276 Bedi et al. Apr 2011 A1
20110091515 Zilberman et al. Apr 2011 A1
20110114697 Baxter, III et al. May 2011 A1
20110125176 Yates et al. May 2011 A1
20110147433 Shelton, IV et al. Jun 2011 A1
20110163146 Ortiz et al. Jul 2011 A1
20110174861 Shelton, IV et al. Jul 2011 A1
20110192882 Hess et al. Aug 2011 A1
20110275901 Shelton, IV Nov 2011 A1
20110276083 Shelton, IV et al. Nov 2011 A1
20110278343 Knodel et al. Nov 2011 A1
20110290856 Shelton, IV et al. Dec 2011 A1
20110293690 Griffin et al. Dec 2011 A1
20110295295 Shelton, IV et al. Dec 2011 A1
20120029272 Shelton, IV et al. Feb 2012 A1
20120074200 Schmid et al. Mar 2012 A1
20120080336 Shelton, IV et al. Apr 2012 A1
20120080344 Shelton, IV Apr 2012 A1
20120080478 Morgan et al. Apr 2012 A1
20120080498 Shelton, IV et al. Apr 2012 A1
20120109186 Parrott et al. May 2012 A1
20120125792 Cassivi May 2012 A1
20120234895 O'Connor et al. Sep 2012 A1
20120234897 Shelton, IV et al. Sep 2012 A1
20120248169 Widenhouse et al. Oct 2012 A1
20120283707 Giordano et al. Nov 2012 A1
20120289979 Eskaros et al. Nov 2012 A1
20120292367 Morgan et al. Nov 2012 A1
20120298722 Hess et al. Nov 2012 A1
20130020375 Shelton, IV et al. Jan 2013 A1
20130020376 Shelton, IV et al. Jan 2013 A1
20130023861 Shelton, IV et al. Jan 2013 A1
20130026208 Shelton, IV et al. Jan 2013 A1
20130026210 Shelton, IV et al. Jan 2013 A1
20130087597 Shelton, IV et al. Apr 2013 A1
20130116669 Shelton, IV et al. May 2013 A1
20130153641 Shelton, IV et al. Jun 2013 A1
20130175317 Yates et al. Jul 2013 A1
20130233906 Hess et al. Sep 2013 A1
20130256373 Schmid et al. Oct 2013 A1
20130256380 Schmid et al. Oct 2013 A1
20130270322 Scheib et al. Oct 2013 A1
20130334283 Swayze et al. Dec 2013 A1
20130334285 Swayze et al. Dec 2013 A1
20130341374 Shelton, IV et al. Dec 2013 A1
20140001231 Shelton, IV et al. Jan 2014 A1
20140001234 Shelton, IV et al. Jan 2014 A1
20140005640 Shelton, IV et al. Jan 2014 A1
20140005678 Shelton, IV et al. Jan 2014 A1
20140005718 Shelton, IV et al. Jan 2014 A1
20140014705 Baxter, III Jan 2014 A1
20140048580 Merchant et al. Feb 2014 A1
20140151433 Shelton, IV et al. Jun 2014 A1
20140175152 Hess et al. Jun 2014 A1
20140224857 Schmid Aug 2014 A1
20140243865 Swayze et al. Aug 2014 A1
20140246475 Hall et al. Sep 2014 A1
20140249557 Koch et al. Sep 2014 A1
20140263541 Leimbach et al. Sep 2014 A1
20140263552 Hall et al. Sep 2014 A1
20140284371 Morgan et al. Sep 2014 A1
20140291379 Schellin et al. Oct 2014 A1
20140291383 Spivey et al. Oct 2014 A1
20140299648 Shelton, IV et al. Oct 2014 A1
20140303645 Morgan et al. Oct 2014 A1
20140330161 Swayze et al. Nov 2014 A1
20150053737 Leimbach et al. Feb 2015 A1
20150053743 Yates et al. Feb 2015 A1
20150053746 Shelton, IV et al. Feb 2015 A1
20150053748 Yates et al. Feb 2015 A1
20150060519 Shelton, IV et al. Mar 2015 A1
20150060520 Shelton, IV et al. Mar 2015 A1
20150060521 Weisenburgh, II et al. Mar 2015 A1
20150076208 Shelton, IV Mar 2015 A1
20150076209 Shelton, IV et al. Mar 2015 A1
20150076210 Shelton, IV et al. Mar 2015 A1
20150083781 Giordano et al. Mar 2015 A1
20150090760 Giordano et al. Apr 2015 A1
20150090762 Giordano et al. Apr 2015 A1
20150173749 Shelton, IV et al. Jun 2015 A1
20150173756 Baxter, III et al. Jun 2015 A1
20150173789 Baxter, III et al. Jun 2015 A1
20150196295 Shelton, IV et al. Jul 2015 A1
20150196299 Swayze et al. Jul 2015 A1
20150201932 Swayze et al. Jul 2015 A1
20150201936 Swayze et al. Jul 2015 A1
20150201937 Swayze et al. Jul 2015 A1
20150201938 Swayze et al. Jul 2015 A1
20150201939 Swayze et al. Jul 2015 A1
20150201940 Swayze et al. Jul 2015 A1
20150201941 Swayze et al. Jul 2015 A1
20210204942 Huitema et al. Jul 2021 A1
Foreign Referenced Citations (220)
Number Date Country
2012200178 Jul 2013 AU
2488482 May 2002 CN
1634601 Jul 2005 CN
2716900 Aug 2005 CN
2738962 Nov 2005 CN
273689 May 1914 DE
1775926 Jan 1972 DE
3036217 Apr 1982 DE
3210466 Sep 1983 DE
3709067 Sep 1988 DE
19851291 Jan 2000 DE
19924311 Nov 2000 DE
20016423 Feb 2001 DE
20112837 Oct 2001 DE
20121753 Apr 2003 DE
10314072 Oct 2004 DE
202007003114 Jun 2007 DE
0000756 Feb 1979 EP
0122046 Oct 1984 EP
0129442 Nov 1987 EP
0169044 Jun 1991 EP
0594148 Apr 1994 EP
0640317 Mar 1995 EP
0646357 Apr 1995 EP
0505036 May 1995 EP
0669104 Aug 1995 EP
0705571 Apr 1996 EP
0528478 May 1996 EP
0770355 May 1997 EP
0625335 Nov 1997 EP
0879742 Nov 1998 EP
0650701 Mar 1999 EP
0923907 Jun 1999 EP
0484677 Jul 2000 EP
1034747 Sep 2000 EP
1034748 Sep 2000 EP
1053719 Nov 2000 EP
1055399 Nov 2000 EP
1055400 Nov 2000 EP
1080694 Mar 2001 EP
1090592 Apr 2001 EP
1090592 Apr 2001 EP
1095627 May 2001 EP
0806914 Sep 2001 EP
1254636 Nov 2002 EP
1284120 Feb 2003 EP
0869742 May 2003 EP
1374788 Jan 2004 EP
1407719 Apr 2004 EP
0996378 Jun 2004 EP
1157666 Sep 2005 EP
0880338 Oct 2005 EP
1158917 Nov 2005 EP
1344498 Nov 2005 EP
1330989 Dec 2005 EP
1632191 Mar 2006 EP
1082944 May 2006 EP
1253866 Jul 2006 EP
1285633 Dec 2006 EP
1011494 Jan 2007 EP
1767157 Mar 2007 EP
1767163 Mar 2007 EP
1837041 Sep 2007 EP
0922435 Oct 2007 EP
1599146 Oct 2007 EP
1330201 Jun 2008 EP
2039302 Mar 2009 EP
1719461 Jun 2009 EP
1769754 Jun 2010 EP
1627605 Dec 2010 EP
2316345 May 2011 EP
02462878 Jun 2012 EP
2517638 Oct 2012 EP
2649948 Oct 2013 EP
459743 Nov 1913 FR
999646 Feb 1952 FR
1112936 Mar 1956 FR
2598905 Nov 1987 FR
2765794 Jan 1999 FR
2815842 May 2002 FR
939929 Oct 1963 GB
1210522 Oct 1970 GB
1217159 Dec 1970 GB
1339394 Dec 1973 GB
2024012 Jan 1980 GB
2109241 Jun 1983 GB
2272159 May 1994 GB
2336214 Oct 1999 GB
930100110 Nov 1993 GR
S5033988 Apr 1975 JP
S62170011 Oct 1987 JP
H04215747 Aug 1992 JP
H0584252 Apr 1993 JP
H05123325 May 1993 JP
H0630945 Feb 1994 JP
H06237937 Aug 1994 JP
H06327684 Nov 1994 JP
H07124166 May 1995 JP
H07255735 Oct 1995 JP
H07285089 Oct 1995 JP
H0833642 Feb 1996 JP
H08164141 Jun 1996 JP
H08182684 Jul 1996 JP
H08507708 Aug 1996 JP
H08229050 Sep 1996 JP
H10118090 May 1998 JP
2000014632 Jan 2000 JP
2000033071 Feb 2000 JP
2000112002 Apr 2000 JP
2000166932 Jun 2000 JP
2000171730 Jun 2000 JP
2000287987 Oct 2000 JP
2000325303 Nov 2000 JP
2001087272 Apr 2001 JP
2001514541 Sep 2001 JP
2001276091 Oct 2001 JP
2002051974 Feb 2002 JP
2002085415 Mar 2002 JP
2002143078 May 2002 JP
2002528161 Sep 2002 JP
2002314298 Oct 2002 JP
2003135473 May 2003 JP
2003521301 Jul 2003 JP
2004147701 May 2004 JP
2004162035 Jun 2004 JP
2004229976 Aug 2004 JP
2005080702 Mar 2005 JP
2005131163 May 2005 JP
2005131164 May 2005 JP
2005131173 May 2005 JP
2005131211 May 2005 JP
2005131212 May 2005 JP
2005137423 Jun 2005 JP
2005328882 Dec 2005 JP
2005335432 Dec 2005 JP
2005342267 Dec 2005 JP
2006187649 Jul 2006 JP
2006281405 Oct 2006 JP
2006346445 Dec 2006 JP
2009507526 Feb 2009 JP
2009189838 Aug 2009 JP
2009539420 Nov 2009 JP
2010098844 Apr 2010 JP
20110003229 Jan 2011 KR
2008830 Mar 1994 RU
2052979 Jan 1996 RU
2098025 Dec 1997 RU
2141279 Nov 1999 RU
2144791 Jan 2000 RU
2181566 Apr 2002 RU
2187249 Aug 2002 RU
32984 Oct 2003 RU
2225170 Mar 2004 RU
42750 Dec 2004 RU
61114 Feb 2007 RU
189517 Jan 1967 SU
328636 Sep 1972 SU
674747 Jul 1979 SU
735249 May 1980 SU
1009439 Apr 1983 SU
1333319 Aug 1987 SU
1377053 Feb 1988 SU
1509051 Sep 1989 SU
1561964 May 1990 SU
1708312 Jan 1992 SU
1722476 Mar 1992 SU
1752361 Aug 1992 SU
1814161 May 1993 SU
WO-9315648 Aug 1993 WO
WO-9420030 Sep 1994 WO
WO-9517855 Jul 1995 WO
WO-9520360 Aug 1995 WO
WO-9623448 Aug 1996 WO
WO-9635464 Nov 1996 WO
WO-9639086 Dec 1996 WO
WO-9639088 Dec 1996 WO
WO-9724073 Jul 1997 WO
WO-9734533 Sep 1997 WO
WO-9903407 Jan 1999 WO
WO-9903409 Jan 1999 WO
WO-9948430 Sep 1999 WO
WO-0024322 May 2000 WO
WO-0024330 May 2000 WO
WO-0053112 Sep 2000 WO
WO-0057796 Oct 2000 WO
WO-0105702 Jan 2001 WO
WO-0154594 Aug 2001 WO
WO-0158371 Aug 2001 WO
WO-0162164 Aug 2001 WO
WO-0162169 Aug 2001 WO
WO-0191646 Dec 2001 WO
WO-0219932 Mar 2002 WO
WO-0226143 Apr 2002 WO
WO-0236028 May 2002 WO
WO-02065933 Aug 2002 WO
WO-03055402 Jul 2003 WO
WO-03094747 Nov 2003 WO
WO-03079909 Mar 2004 WO
WO-2004019803 Mar 2004 WO
WO-2004032783 Apr 2004 WO
WO-2004047626 Jun 2004 WO
WO-2004047653 Jun 2004 WO
WO-2004056277 Jul 2004 WO
WO-2004078050 Sep 2004 WO
WO-2004078051 Sep 2004 WO
WO-2004096015 Nov 2004 WO
WO-2006044581 Apr 2006 WO
WO-2006051252 May 2006 WO
WO-2006059067 Jun 2006 WO
WO-2006085389 Aug 2006 WO
WO-2007137304 Nov 2007 WO
WO-2007142625 Dec 2007 WO
WO-2008021969 Feb 2008 WO
WO-2008089404 Jul 2008 WO
WO-2009067649 May 2009 WO
WO-2009091497 Jul 2009 WO
WO-2011008672 Jan 2011 WO
WO-2011044343 Apr 2011 WO
WO-2012006306 Jan 2012 WO
WO-2012044606 Apr 2012 WO
Non-Patent Literature Citations (47)
Entry
Australian Office Action dated Oct. 24, 2013, for Application No. 2011314209, 3 pages.
Canadian Office Action dated Aug. 23, 2017, for Application No. 2,811,980, 4 pages.
Chinese Office Action dated Nov. 17, 2014, for Application No. 201180047031.7, 9 pages.
Extended European Search Report dated May 27, 2020, for Application No. 19204699.3, 15 pages.
Extended European Search Report dated Jan. 16, 2023, for Application No. 22200226.3, 8 pages.
Extended European Search Report dated Jun. 14, 2023, for Application No. 23162626.8, 7 pages.
International Search Report and Written Opinion dated Jan. 30, 2012, for International Application No. PCT/US2011/053040, 19 pages.
Japanese Notification of Reasons for Refusal dated Jul. 21, 2015, for Application No. 2013-631984, 3 pages.
Covidien Brochure, “Endo GIA™ Black Reload with Tri-Staple™ Technology,” (2012), 2 pages.
The Sodem Aseptic Battery Transfer Kit, Sodem Systems, 2000, 3 pages.
Schellhammer et al., “Poly-Lactic-Acid for Coating of Endovascular Stents: Preliminary Results in Canine Experimental Av-Fistulae,” Mat.-wiss. u. Werkstofftech., 32, pp. 193-199 (2001).
Miyata et al., “Biomolecule-Sensitive Hydrogels,” Advanced Drug Delivery Reviews, 54 (2002) pp. 79-98.
Jeong et al., “Thermosensitive Sol-Gel Reversible Hydrogels,” Advanced Drug Delivery Reviews, 54 (2002) pp. 37-51.
Covidien Brochure, “Endo GIA™ Ultra Universal Stapler,” (2010), 2 pages.
Qiu et al., “Environment-Sensitive Hydrogels for Drug Delivery,” Advanced Drug Delivery Reviews, 53 (2001) pp. 321-339.
Hoffman, “Hydrogels for Biomedical Applications,” Advanced Drug Delivery Reviews, 43 (2002) pp. 3-12.
Hoffman, “Hydrogels for Biomedical Applications,” Advanced Drug Delivery Reviews, 54 (2002) pp. 3-12.
Peppas, “Physiologically Responsive Hydrogels,” Journal of Bioactive and Compatible Polymers, vol. 6 (Jul. 1991) pp. 241-246.
Peppas, Editor “Hydrogels in Medicine and Pharmacy,” vol. I, Fundamentals, CRC Press, 1986.
Young, “Microcellular foams via phase separation,” Journal of Vacuum Science & Technology A 4(3), (May/Jun. 1986).
Chen et al., “Elastomeric Biomaterials for Tissue Engineering,” Progress in Polymer Science 38 (2013), pp. 584-671.
Ebara, “Carbohydrate-Derived Hydrogels and Microgels,” Engineered Carbohydrate-Based Materials for Biomedical Applications: Polymers, Surfaes, Dendrimers, Nanoparticles, and Hydrogels, Edited by Ravin Narain, 2011, pp. 337-345.
Matsuda, “Thermodynamics of Formation of Porous Polymeric Membrane from Solutions,” Polymer Journal, vol. 23, No. 5, pp. 435-444 (1991).
Byrne et al., “Molecular Imprinting Within Hydrogels,” Advanced Drug Delivery Reviews, 54 (2002) pp. 149-161.
Covidien Brochure, “Endo GIA™ Reloads with Tri-Staple™ Technology,” (2010), 1 page.
Covidien Brochure, “Endo GIA™ Reloads with Tri-Staple™ Technology and Endo GIA™ Ultra Universal Staplers,” (2010), 2 pages.
Covidien Brochure, “Endo GIA™ Curved Tip Reload with Tri-Staple™ Technology,” (2012), 2 pages.
Covidien Brochure, “Endo GIA™ Reloads with Tri-Staple™ Technology,” (2010), 2 pages.
http://ninpgan.net/publications/51-100/89.pdf; 2004, Ning Pan, On Uniqueness of Fibrous Materials, Design & Nature II. Eds: Colins, M. and Brebbia, C. WIT Press, Boston, 493-504.
D. Tuite, Ed., “Get The Lowdown On Ultracapacitors,” Nov. 15, 2007; [online] URL: http://electronicdesign.com/Articles/Print.cfm?ArticleID=17465, accessed Jan. 15, 2008 (5 pages).
C.C. Thompson et al., “Peroral Endoscopic Reduction of Dilated Gastrojejunal Anastomosis After Roux-en-Y Gastric Bypass: A Possible New Option for Patients with Weight Regain,” Surg Endosc (2006) vol. 20., pp. 1744-1748.
Datasheet for Panasonic TK Relays Ultra Low Profile 2 A Polarized Relay, Copyright Matsushita Electric Works, Ltd. (Known of at least as early as Aug. 17, 2010), 5 pages.
B.R. Coolman, DVM, MS et al., “Comparison of Skin Staples With Sutures for Anastomosis of the Small Intestine in Dogs,” Abstract; http://www.blackwell-synergy.com/doi/abs/10.1053/jvet.2000.7539?cookieSet=1&journalCode=vsu which redirects to http://www3.interscience.wiley.com/journal/119040681/abstract?CRETRY=1&SRETRY=0; [online] accessed: Sep. 22, 2008 (2 pages).
Disclosed Anonymously, “Motor-Driven Surgical Stapler Improvements,” Research Disclosure Database No. 526041, Published: Feb. 2008.
Van Meer et al., “A Disposable Plastic Compact Wrist for Smart Minimally Invasive Surgical Tools,” LAAS/CNRS (Aug. 2005).
Breedveld et al., “A New, Easily Miniaturized Sterrable Endoscope,” IEEE Engineering in Medicine and Biology Magazine (Nov./Dec. 2005).
ASTM procedure D2240-00, “Standard Test Method for Rubber Property-Durometer Hardness,” (Published Aug. 2000).
ASTM procedure D2240-05, “Standard Test Method for Rubber Property-Durometer Hardness,” (Published Apr. 2010).
Pitt et al., “Attachment of Hyaluronan to Metallic Surfaces,” J. Biomed. Mater. Res. 68A: pp. 95-106, 2004.
Solorio et al., “Gelatin Microspheres Crosslinked with Genipin for Local Delivery of Growth Factors,” J. Tissue Eng. Regen. Med. (2010), 4(7): pp. 514-523.
Covidien iDrive™ Ultra in Service Reference Card, “iDrive™ Ultra Powered Stapling Device,” (4 pages).
Covidien iDrive™ Ultra Powered Stapling System ibrochure, “The Power of iDrive™ Ultra Powered Stapling System and Tri-Staple™ Technology,” (23 pages).
Covidien “iDrive™ Ultra Powered Stapling System, A Guide for Surgeons,” (6 pages).
Covidien “iDrive™ Ultra Powered Stapling System, Cleaning and Sterilization Guide,” (2 pages).
Covidien Brochure “iDrive™ Ultra Powered Stapling System,” (6 pages).
Seils et al., Covidien Summary: Clinical Study “UCONN Biodynamics: Final Report on Results,” (2 pages).
Biomedical Coatings, Fort Wayne Metals, Research Products Corporation, obtained online at www.fwmetals.com on Jun. 21, 2010 (1 page).
Related Publications (1)
Number Date Country
20220378429 A1 Dec 2022 US
Continuations (5)
Number Date Country
Parent 17129032 Dec 2020 US
Child 17840678 US
Parent 16153111 Oct 2018 US
Child 17129032 US
Parent 14733026 Jun 2015 US
Child 16153111 US
Parent 13772903 Feb 2013 US
Child 14733026 US
Parent 12893461 Sep 2010 US
Child 13772903 US