The disclosure relates to medical instruments and, more particularly, to a medical instrument for inserting, removing and adjusting bone staples.
Surgical procedures such as fracture repairs, fusions, or osteotomies require bone tissue to form between bone segments. The ability for successful bone tissue growth at the site of the bone segments is improved when the bone segments are under compression. If there is no compression, a gap may form between the bone segments. These gaps tend to lengthen the healing time or impede complete healing. One method to achieve compression is the use of compression staples.
Compression staples include two or more legs interconnected by a bridge. These staples are commonly made from shape memory material, such as a nitinol alloy. When the legs of the staple are splayed, the shape memory material tends to bias the legs towards their initial resting positions, thereby causing the legs to exert an inward compressive force on bone or bone segments.
The splaying of the legs of the staple for insertion or adjustment can result in a large rebounding force. As such, there is a desire for an instrument that can open staples for use and that can reliably and repeatedly withstand the large rebounding forces generated during use of a staple instrument. One such instrument is described in U.S. patent application Ser. No. 17/322,580, assigned to Medline Industries, LP and entitled “Staple Instrument,” which application is hereby incorporated by reference in its entirety. It is now desired to provide another such instrument.
Terms of orientation are for convenient reference to the Figures and in particular the orientation of the staple instrument in
With reference to
The staple instrument 10 is made from material that may be subjected to conventional cleaning and sterilization methods, such as steam, gas, and radiation sterilization methods. In the illustrated embodiment, the housing 12 is from a titanium alloy and the other components may be made from stainless steel. Other materials of construction are possible. These component parts may be manufactured via any suitable technique, such as stamping, milling, or additive manufacturing.
The staple holder 22 is in the form of discrete staple-engaging jaws 21, 23, and the linkage 20 is configured to separate the jaws 21, 23 via an expansion motion. The converter coupling 18 is configured to convert rotational motion of the rotational drive shaft 16 into the expansion motion of the staple holder 22, as explained in more detail below. The rotation of the rotational drive shaft 16 can be imparted by either manual and/or mechanical processes and, in some embodiments, can be effectuated by the handle 14. For example, when the handle 14 is rotated in a first direction, the rotational drive shaft 16 drives the converter coupling 18 away from the handle 14, which causes the linkage 20 to articulate in a manner that imparts the expansion motion to the staple holder 22 thereby separating the jaws 21, 23. The handle of the illustrated staple instrument 10 may be rotated in an opposing second direction to reverse the articulating movement of the linkage 20 to thereby cause the jaws 21, 23 to contract for removal of a staple from the staple instrument 10 or to permit reuse by permitting a new staple to be loaded onto the staple instrument 10.
As seen in
The linkage 20 of the staple instrument 10 comprises an articulated linkage that includes first links 30A, 30B connected to the converter coupling 18 and second links 32A, 32B connected to the first links 30A, 30B. The proximal ends of each of the first links 30A, 30B have a yoked configuration and are secured to holes 46A, 46B in wing portions 47A, 47B of the converter coupling 18 (see
The second links 32A, 32B terminate in the jaws 21, 23 of the staple holder 22 which can comprise staple hooks of various sizes and which include staple-engaging offset portions sized to accommodate a particular size or size range of staples. Returning to
As seen in
The proximal portion 66 of the rotational drive shaft 16 exits the drive shaft opening 24 of the housing 12, and a handle 14 is attached to the proximal portion 66 of the rotational drive shaft 16 via a pin 34E extending through aperture 67 in the proximal portion 66 (see
As seen in
With further reference to
The staple instrument 10 further includes a support block 28. This component receives an end of the distal portion 42 of the rotational drive shaft 16, and includes a proximal aperture 50, a distal aperture 51, and a bearing 48 (see
The converter coupling 18 includes a pair of opposing lobes or wings 47A, 47B that are provided with holes for use in attachment to the linkage 20 as heretofore described. The converter coupling 18 also includes opposing flats 49A, 49B that engage interior flat surfaces 55A, 55B (shown in
As seen in
As seen in
Upon assembly, the pins 34A-G are permanently affixed to the housing via laser welding or the like. The various apertures may be sized to permit the pins to be countersunk.
To operate the device, a user rotates the handle 14 to cause rotation of the rotational drive shaft 16. Via the threaded engagement with the converter coupling 18, the rotational motion of the rotational drive shaft 16 drives the converter coupling 18 axially forward (i.e., distally toward the staple holder 22) to translate the converter coupling 18 relative to the rotational drive shaft 16. As the converter coupling 18 translates distally, the first links 30A, 30B pivot about the pins 34A, 34C at the converter coupling 18 and drive the proximal portions of the second links 32A, 32B outward, pivoting about the pins 34B, 34D that couple the second links 32A, 32B to the first links 30A, 30B and cause the distal portions 37A, 37B of the second links 32A, 32B to pivot about the boss 38 and/or the shaft 36. This action separates the staple jaws 21, 23 of the staple holder 22, to thereby impart a biasing force on a staple (not shown in
With reference to
After the surgical staple 100 is inserted into the bone 200, the rotational drive shaft 16 may be rotated in a second direction opposite the first direction to contract the staple holder 22 to release tension and to assist in removing the surgical staple 100 therefrom. In some embodiments, the first direction is clockwise from the vantage point of the user and the second direction is counterclockwise, but the inverse is also contemplated with differently handed threading.
It has been found that superelastic staples, particularly relatively small staples, require considerable force to splay open the legs thereof. This can cause stress on the jaws 21, 23 and in turn can generate pressures within the device at the proximal end of the rotational drive shaft 16. The staple instrument 10 is configured to accommodate this stress by the large threaded engagement between the converted coupling and shaft, and by the large area of engagement between the beveled stop surface 72 and the surface 64 within the housing 12. This large area reduces the internal pressures generated within the housing 12 as compared to those generated within the device shown in application Ser. No. 17/322,580.
As seen in
The kit 300 can be used as a unit in conjunction with various surgical procedures that involve insertion or removal of staples from a bone. For example, in typical use a surgeon first selects the most appropriate size staple and drill guide from the kit 300 for a particular patient's anatomy. The selected staple is loaded onto the staple instrument 10 and manipulated into the open configuration as described herein. Then, the drill guide is placed against the bone and the drill bit is used to drill through drill sleeve to drill pilot holes for the selected staple. The staple then is inserted into the bone. If desired, the tamp and a mallet can be used to seat the bridge of the staple flush with the bone after the staple instrument 10 is removed and placement of the staple is verified visually or with instrumentation. If the staple requires repositioning or removal, the staple instrument 10 can be used to pry, expand and lift the staple from its seated position.
It is thus seen that a staple instrument is provided, as are kits and surgical methods. Although described principally in connection with insertion of a staple, it will be appreciated that the staple instrument 10 can be used to assist in removal of a surgical staple from a bone.
Uses of singular terms such as “a,” “an,” are intended to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms. Any description of certain embodiments as “preferred” embodiments, and other recitation of embodiments, features, or ranges as being preferred, or suggestion that such are preferred, is not deemed to be limiting. The invention is deemed to encompass embodiments that are presently deemed to be less preferred and that may be described herein as such. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended to illuminate the invention and does not pose a limitation on the scope of the invention. Any statement herein as to the nature or benefits of the invention or of the preferred embodiments is not intended to be limiting. This invention includes all modifications and equivalents of the subject matter recited herein as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context. The description herein of any reference or patent, even if identified as “prior,” is not intended to constitute a concession that such reference or patent is available as prior art against the present invention. No unclaimed language should be deemed to limit the invention in scope. Any statements or suggestions herein that certain features constitute a component of the claimed invention are not intended to be limiting unless reflected in the appended claims. Neither the marking of the patent number on any product nor the identification of the patent number in connection with any service should be deemed a representation that all embodiments described herein are incorporated into such product or service.
Number | Name | Date | Kind |
---|---|---|---|
3960147 | Murray | Jun 1976 | A |
D337159 | Hunt | Jul 1993 | S |
6089435 | Malek | Jul 2000 | A |
8137351 | Prandi | Mar 2012 | B2 |
8382767 | Wassinger | Feb 2013 | B2 |
9095338 | Taylor | Aug 2015 | B2 |
9855036 | Palmer | Jan 2018 | B2 |
9861413 | Palmer et al. | Jan 2018 | B2 |
10064619 | Palmer | Sep 2018 | B2 |
10130358 | Palmer | Nov 2018 | B2 |
10610218 | Palmer et al. | Apr 2020 | B2 |
10945725 | Hollis | Mar 2021 | B2 |
11284887 | Hartdegen | Mar 2022 | B2 |
D977640 | Ritz | Feb 2023 | S |
11596398 | Wahl | Mar 2023 | B2 |
20160199060 | Morgan | Jul 2016 | A1 |
20170296174 | Wahl | Oct 2017 | A1 |
20180271521 | Wahl | Sep 2018 | A1 |
20180317906 | Hollis et al. | Nov 2018 | A1 |
20180344316 | Palmer | Dec 2018 | A1 |
20220361877 | Reed | Nov 2022 | A1 |
20230027093 | Wahl | Jan 2023 | A1 |
20230200809 | Wahl | Jun 2023 | A1 |
Number | Date | Country |
---|---|---|
3563776 | Nov 2019 | EP |
Entry |
---|
Arthrex, Inc. Dynanite Product Technique and Highlights Brochure, 2019. |
CrossRoads® Extremity Systems, LLC Announces Launch of the DynaFORCE™ Dynamic Compression Fixation System, https://www.crextremity.com/crossroads-extremity-systems-llc-announces-launch-of-the-dynaforce-dynamic-compression-fixation-system/, dated Jul. 11, 2017. |
DePuy Synthes, BME Elite Implant Technique Overview, 2017. |
DePuy Synthes, Speed Memory Implant Brochure, 2016-2018. |
Medshape, Inc., Dynaclip Fixation System, Surgical Technique Guide, 2019. |
NeoSpan Food, In2Bones, https://web.archive.org/web/20170410093305/http:/i2b-USA.com/neospan-foot/, 2017. |
NeoSpan SE Compression Staples, https://i2b-usa.com/neospan-se-compression-staple/, 2021. |
Paragon 28, Inc., Surgical Technique Guide: JAWS Nitinol Staple System Brochure, 2020. |
Stryker Corporation, “EasyClip Osteosynthesis Compression Staples,” 2012. |
Stryker Corporation, “EasyClip Osteosynthesis Compression Staples,” 2015. |
U.S. Food & Drug Administration, 510(k) Premarket Notification, https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K161426, Oct. 24, 2016. |
Number | Date | Country | |
---|---|---|---|
20240065692 A1 | Feb 2024 | US |