Staple line reinforcement for anvil and cartridge

Information

  • Patent Grant
  • 9693772
  • Patent Number
    9,693,772
  • Date Filed
    Wednesday, July 31, 2013
    11 years ago
  • Date Issued
    Tuesday, July 4, 2017
    7 years ago
Abstract
A surgical buttress for use in a surgical stapling apparatus is provided and includes an elongate rectangular body portion defining a width; a neck portion integrally formed with and extending from a distal end of the body portion, the neck portion defining a width; a head portion integrally formed with and connected to a distal end of the neck portion, the head portion defining a width; and a tail portion integrally formed with and extending from a proximal end of the body portion, the tail portion defining a width. The width of the tail portion is less than the width of the body portion.
Description
BACKGROUND

1. Technical Field


The present disclosure relates to a surgical stapling apparatus and, more particularly, to a surgical stapling apparatus including a detachable surgical buttress for an anvil and a staple cartridge.


2. Background of Related Art


Surgical stapling instruments that are used to sequentially or simultaneously apply one or more rows of fasteners to join segments of body tissues are well known in the art. The fasteners are typically in the form of surgical staples but two part polymeric fasteners can also be utilized. Such devices generally include a pair of jaws to clamp therebetween the body tissues to be joined. Typically, one of the jaw members includes a staple cartridge which accommodates a plurality of staples arranged in at least two lateral rows while the other jaw member has an anvil that defines a surface for forming the staple legs as the staples are driven from the staple cartridge.


When the stapling instrument is actuated, longitudinally translating cams contact staple drive members in one of the jaws which in turn acts upon staple pushers to sequentially or simultaneously eject the staples from the staple cartridge. A blade can travel between the staple rows to longitudinally cut and/or open the stapled tissue between the rows of staples. Such instruments are disclosed, for example, in U.S. Pat. Nos. 3,079,606 and 3,490,675.


When stapling relatively thin or fragile tissues, it is important to effectively seal the staple line against air or fluid leakage. Additionally, it is often necessary to reinforce the staple line against the tissue to prevent tears in the tissue or pulling of the staples through the tissue. One method of preventing tears or pull through involves the placement of a biocompatible fabric reinforcing material, or a “buttress,” between the staple and the underlying tissue. In this method, a layer of buttress material is placed against the tissue and the tissue is stapled in conventional manner. In more recent methods, the layer of buttress is positioned on the stapling instrument itself prior to stapling the tissue. Some surgical staplers utilize fasteners or clips to temporarily connect buttress material to each of the jaws of the staplers, i.e., one disposed on the staple cartridge assembly and the other on the anvil assembly.


WO 2008/109125 discloses a surgical stapling apparatus that includes a cartridge assembly, an anvil assembly, and a surgical buttress releasebly secured by an anchor. The anchor releases the surgical buttress during firing of the stapling apparatus.


It is a desire of the present application to provide surgical stapling apparatus with a surgical buttress secured thereto in a manner that minimizes shifting of the surgical buttress, and tearing or other damage to the surgical buttress during assembly. It would also be desirable to provide a single profile buttress that can be used on a surgical staple cartridge assembly and/or a surgical anvil cartridge assembly, as well as cartridge and anvil assemblies of different sizes. Accordingly, it is an object of this disclosure to meet the aforementioned desires.


SUMMARY

The present disclosure relates to a surgical stapling apparatus including a surgical buttress.


According to an aspect of the present disclosure, a surgical stapling apparatus is provided and includes a cartridge assembly defining a first tissue contacting surface, the cartridge assembly housing a plurality of surgical fasteners therein, the cartridge assembly defining at least one distal attachment point and at least one proximal attachment point; an anvil assembly defining a second tissue contacting surface, the anvil assembly movably secured in relation to cartridge assembly, the anvil assembly defining at least one distal attachment point and at least one proximal attachment point, wherein the at least one proximal attachment point of the anvil assembly is offset an axial distance from the at least one proximal attachment point of the cartridge assembly; and a surgical buttress releasably secured to each of the first tissue contacting surface and the second tissue contacting surface, the surgical buttress including a body portion configured to substantially overlie at least one of the first and second tissue contacting surfaces of either the first length and second length cartridge assembly and anvil assembly.


Each surgical buttress defines a distal attachment feature for registration with the distal attachment point of the cartridge assembly and the anvil assembly; and a first proximal attachment feature and a second proximal attachment feature offset an axial distance from the first proximal attachment feature. The first proximal attachment feature registers with the proximal attachment point of the cartridge assembly; and the second proximal attachment feature registers with the proximal attachment point of the anvil assembly.


The surgical buttress may be disposed against the tissue contact surface of the cartridge assembly and the surgical buttress may be disposed against the tissue contact surface of the anvil assembly have substantially the same length.


Each surgical buttress may have the same configuration. Each surgical buttress may be fabricated from a biocompatible and bioabsorbable material.


The surgical stapling apparatus may further include sutures retaining surgical buttresses against the tissue contacting surface of the cartridge assembly and the anvil assembly.


The surgical stapling apparatus may further include a suture retaining a distal end portion of the surgical buttress against a respective one of the cartridge assembly and the anvil assembly, wherein the suture maintains the distal attachment feature of the surgical buttress in registration with the distal attachment point of the respective one of the cartridge assembly and the anvil assembly.


The surgical stapling apparatus may further include a suture retaining a proximal end portion of the surgical buttress against a respective one of the cartridge assembly and the anvil assembly, wherein a suture maintains the first proximal attachment feature of the surgical buttress in registration with the proximal attachment point of the cartridge assembly and the anvil assembly, and wherein a suture maintains the second proximal attachment feature of the surgical buttress in registration with the proximal attachment point of the anvil assembly.


According to another aspect of the present disclosure, a surgical stapling apparatus is provided and includes a cartridge assembly defining a first tissue contacting surface, the cartridge assembly housing a plurality of surgical fasteners therein, the cartridge assembly being either a first length or a second length longer than the first length; an anvil assembly defining a second tissue contacting surface, the anvil assembly movably secured in relation to cartridge assembly, the anvil assembly being either the first length or the second length each corresponding to the length of the cartridge assembly; and a surgical buttress releasably secured to at least one of the first tissue contacting surface and the second tissue contacting surface, the surgical buttress including a head portion, a neck portion, and a body portion. The head portion is connected to a distal end of the body portion by the neck portion. The surgical buttress is configured to substantially overlie at least one of the first and second tissue contacting surfaces of either the first length and second length cartridge assembly and anvil assembly.


The body portion of the surgical buttress may define a recess formed in a proximal edge thereof, the recess longitudinally bisecting the proximal edge. The recess may be a notch having a v-shape profile.


The body portion of the surgical buttress may define at least one pair of opposing proximal recesses, and each of the at least one pair of opposing proximal recesses may be formed on an opposing lateral side of the body portion near a proximal edge of the surgical buttress. The at least one pair of opposing proximal recesses may be a notch having a v-shape profile.


The body portion of the surgical buttress may further define a pair of opposing distal recesses, and each of the pair of opposing distal recesses may be formed on an opposing lateral side of the body portion near a distal edge of the body portion.


The pair of opposing distal recesses may be longitudinally tapered. A distal edge of the body portion of the surgical buttress may be arcuate. A distal edge of the body portion of the surgical buttress may have a transverse width dimension that is less than that of the rest of the body portion. The head portion may have a substantially rectangular shape.


Each surgical buttress may be fabricated from a biocompatible and bioabsorbable material.


According to a further aspect of the present disclosure, a surgical buttress for use in a surgical stapling apparatus is provided. The surgical buttress includes a body portion; a neck portion; and a head portion connected to a distal end of the body portion by the neck portion, wherein the body portion defines at least one pair of opposing proximal recesses, each of the at least one pair of opposing proximal recesses is formed on an opposing lateral side of the body portion near a proximal edge of the body portion.


Each of the at least one pair of opposing proximal recesses may be a notch having a v-shape profile. The body portion may further define a pair of opposing distal recesses, each of the pair of opposing distal recesses may be formed on an opposing lateral side of the body portion near a distal edge of the body portion.


The body portion of the surgical buttress may further define a proximal edge recess formed in a proximal edge thereof, the proximal edge recess longitudinally bisecting the proximal edge. A distal edge of the body portion of the surgical buttress may be arcuate. A distal edge of the body portion of the surgical buttress may have a transverse width dimension less than that of the rest of the body portion. The head portion may have a substantially rectangular shape.


The surgical buttress may be fabricated from a biocompatible and bioabsorbable material.


According to still another aspect of the present disclosure, a surgical buttress is provided for use with a surgical stapling apparatus having a cartridge assembly of any number of lengths and an anvil assembly of any number of lengths corresponding to the lengths of the cartridge assembly, wherein each of the cartridge assembly and anvil assembly defines respective juxtaposed tissue contacting surfaces, and wherein the cartridge assembly includes a plurality of staples stored in staple slots thereof for formation against staple formation pockets of the anvil assembly. The surgical buttress includes a body portion configured and dimensioned to overlie all of the staple slots of the cartridge assembly for any length cartridge assembly, and/or overlie all of the staple formation pockets of the anvil assembly for any length anvil assembly. The surgical buttress further includes a neck portion extending from the body portion; and a head portion connected to the neck portion and opposite a distal end of the body portion, wherein the body portion defines at least one pair of opposing proximal recesses, each of the at least one pair of opposing proximal recesses is formed on an opposing lateral side of the body portion near a proximal edge of the body portion.


According to yet another aspect of the present disclosure a surgical buttress for use in a surgical stapling apparatus is provided and includes an elongate rectangular body portion defining a width; a neck portion integrally formed with and extending from a distal end of the body portion, the neck portion defining a width; a head portion integrally formed with and connected to a distal end of the neck portion, the head portion defining a width; and a tail portion integrally formed with and extending from a proximal end of the body portion, the tail portion defining a width. The width of the tail portion is less than the width of the body portion, and the surgical buttress is formed from a material having filaments.


In certain embodiments, the width of the neck portion is less than the width of the body portion, or the width of the neck portion is less than the width of the tail portion, or the width of the neck portion is more than one-half the width of the body portion.


A length of the head portion may be greater than a length of the tail portion. A length of the head portion may be greater than a length of the neck portion.


The tail portion can define at least one pair of opposing proximal recesses, each of the at least one pair of opposing proximal recesses is formed on an opposing lateral side of the tail portion.


The body portion can further define a pair of opposing distal recesses, each of the pair of opposing distal recesses is formed on an opposing lateral side of the body portion near a distal edge of the body portion.


The tail portion of the surgical buttress can define a proximal edge recess formed in a proximal edge thereof, wherein the proximal edge recess longitudinally bisects the proximal edge.


The surgical buttress is desirably fabricated from a biocompatible and bioabsorbable material.


The surgical buttress can be fabricated from a material selected from the group consisting of polyglycolic acid and glycolide trimethylene carbonate. The surgical buttress can be formed as a non-woven material.


According to a further aspect of the present disclosure, a surgical buttress is provided for use with a surgical stapling apparatus having a cartridge assembly of any number of lengths and an anvil assembly of any number of lengths corresponding to the lengths of the cartridge assembly, wherein each of the cartridge assembly and anvil assembly defines respective juxtaposed tissue contacting surfaces, and wherein the cartridge assembly includes a plurality of staples stored in staple slots thereof for formation against staple formation pockets of the anvil assembly. The surgical buttress includes an elongate rectangular body portion defining a length and a width; a neck portion integrally formed with and extending from a distal end of the body portion, the neck portion defining a length and a width; a head portion integrally formed with and connected to a distal end of the neck portion, the head portion defining a length and a width; and a tail portion integrally formed with and extending from a proximal end of the body portion, the tail portion defining a length and a width. The width of the tail portion is less than the width of the body portion. The body portion and the tail portion are configured and dimensioned to overlie all of the staple slots of the cartridge assembly for any length cartridge assembly, and/or overlie all of the staple formation pockets of the anvil assembly for any length anvil assembly.


The width of the neck portion may be less than the width of the body portion. The width of the neck portion may be less than the width of the tail portion. The width of the neck portion may be more than one-half the width of the body portion.


The length of the head portion may be greater than the length of the tail portion. The length of the head portion may be greater than the length of the neck portion.


The tail portion may define at least one pair of opposing proximal recesses. Each of the at least one pair of opposing proximal recesses may be formed on an opposing lateral side of the tail portion.


The body portion may further define a pair of opposing distal recesses. Each of the pair of opposing distal recesses may be formed on an opposing lateral side of the body portion near a distal edge of the body portion.


The tail portion of the surgical buttress may define a proximal edge recess formed in a proximal edge thereof. The proximal edge recess may longitudinally bisect the proximal edge.


The surgical buttress may be fabricated from a biocompatible and bioabsorbable material. The surgical buttress may be fabricated from a material selected from the group consisting of polyglycolic acid and glycolide trimethylene carbonate. The surgical buttress can be made as a non-woven material.





BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure will be further described with reference to the accompanying drawings, wherein like reference numerals refer to like parts in the several views, and wherein:



FIG. 1 is a perspective view of a surgical stapling apparatus according to an embodiment of the present disclosure;



FIG. 2 is a top, exploded, perspective view of a distal end of a DLU of the surgical stapling apparatus of FIG. 1;



FIG. 3 is a top plan view of a buttress according to an embodiment of the present disclosure;



FIG. 4 is a top, perspective view of a cartridge half-section of the DLU of FIG. 2;



FIG. 5 is a perspective view of a cartridge assembly of the DLU of FIG. 2;



FIG. 6 is an enlarged perspective view of a distal end of the cartridge assembly of FIG. 5;



FIG. 7 is an enlarged view of the indicated area of detail of FIG. 5;



FIG. 8 is an enlarged view of the indicated area of detail of FIG. 7;



FIG. 9 is a perspective view of an anvil assembly of the DLU of FIG. 2, illustrating the buttress of FIG. 3 secured thereto;



FIG. 10 is a plan view of the cartridge assembly of the DLU of FIGS. 4-8 and the anvil assembly of the DLU of FIG. 9, illustrating the attachment of the buttress of FIG. 3 at different attachment points of a respective cartridge assembly and anvil assembly; and



FIG. 11 is a top plan view of a buttress according to another embodiment of the present disclosure.





DETAILED DESCRIPTION OF EMBODIMENTS

Embodiments of the presently disclosed staple line reinforcement for anvil and cartridge of a loading unit of a surgical stapling apparatus will now be described in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views. In the drawings and in the description that follows, the term “proximal,” as is traditional, will refer to the end of the stapling apparatus which is closest to the operator, while the term “distal” will refer to the end of the apparatus which is farthest from the operator.


Referring now to FIG. 1, there is disclosed a linear surgical stapling apparatus, generally referred to as 10. In the interest of brevity, this disclosure will focus primarily on a buttress utilized in a loading unit 100, e.g., a single use loading unit (“SULU”) or a disposable loading unit (“DLU”). For simplicity, hereinafter, SULU or DLU will be referred to as “DLU,” but it should be understood to include either or both a DLU or SULU. An exemplary example of this type of surgical stapling instrument is disclosed in U.S. Pat. No. 7,128,253, the entire disclosure of which is incorporated by reference herein.


Surgical stapling apparatus 10 generally includes a handle assembly 12 and an elongate body 14 extending distally from handle assembly 12. A DLU 100 is releasably secured to the distal end of elongate body 14. DLU 100 includes a cartridge assembly 200 housing a plurality of surgical fasteners or staples 223 (see FIG. 2) and an anvil assembly 300 movably secured in relation to cartridge assembly 200. Handle assembly 12 includes a stationary handle member 22, a movable handle member 24, and a barrel portion 26. An articulation lever 30 is mounted on the forward end of barrel portion 26 adjacent rotatable member 28 to facilitate articulation of DLU 100. A pair of knobs 32 is movably positioned along barrel portion 26. Knobs 32 are advanced distally to approximate or close cartridge and/or anvil assembly 200, 300, and retracted proximally to unapproximate or open cartridge and/or anvil assembly 200, 300. Actuation of movable handle member 24 applies lines of staples 223 to tissue. In order to properly orient cartridge and anvil assembly 200, 300 relative to the tissue to be stapled, surgical stapling apparatus 10 is additionally provided with a rotatable member 28 on the forward end of barrel portion 26. Rotation of rotatable member 28 relative to handle assembly 12 rotates elongate body 14 and loading unit 100 relative to handle assembly 12 so as to properly orient cartridge assembly 200 and anvil assembly 300 relative to the tissue to be stapled.


As seen in FIG. 2, cartridge assembly 200 includes a carrier 210 defining an elongated support channel 212. Elongated support channel 212 of carrier 210 is dimensioned and configured to selectively receive a staple cartridge 220 therein. Staple cartridge 220 includes retention slots 222 formed therein for receiving a plurality of fasteners 223 and pushers 226. A plurality of spaced apart longitudinal slots extend through staple cartridge 220 to accommodate upstanding cam wedges of actuation sled 228. A central longitudinal slot 234 is formed in and extends along the length of staple cartridge 220 to facilitate passage of knife blade 156 of drive bar 150 therethrough. During operation of surgical stapler 10, actuation sled 228 translates through staple cartridge 220 to advance the cam wedges into sequential contact with pushers 226, to cause pushers 226 to translate vertically within retention slots 222 and urge staples 223 from slots 222 into staple forming cavities of anvil plate 310 of anvil assembly 300.


As seen in FIG. 2, cartridge assembly 200 includes a surgical cartridge buttress 500 operatively secured to an upper surface of staple cartridge 220, by sutures “S1, S2,” to overlie at least some of retention slots 222 and/or at least a portion of a length of longitudinal slot 234. A first suture “S1” is threaded through each of a distal pair of recesses or attachment points 238 and around/over distal portion of cartridge buttress 500 and, and a second suture “S2” is threaded through each of a proximal pair of recesses or attachment points 236 and around/over proximal portion of cartridge buttress 500. A first end of each suture “S1, S2” may be anchored or fixed in a respective one recesses of the proximal and distal pair of recesses or attachment points 236, 238 while a second end of each suture “S1, S2” passes transversely across respective distal and proximal portions of cartridge buttress 500 and is anchored or fixed in a respective other recess of the proximal and distal pair of recesses or attachment points 236, 238. As seen in FIG. 10, cartridge assembly 200 defines an axial distance “D1” between the distal pair of recesses or attachment points 238 and the proximal pair of recesses or attachment points 236.


With reference still to FIG. 2, anvil assembly 300 includes an anvil plate 310 having a plurality of staple deforming pockets/cavities 310a (see FIG. 9) and a cover plate 320 secured to a top surface of anvil plate 310. Anvil assembly 300 further includes a knife blade 330 operatively interposed within the cavity defined between anvil plate 310 and cover plate 320.


Anvil plate 310 defines a proximal pair of recesses or attachment points 316 formed near a proximal end of anvil plate 310 and disposed, one each, on opposed sides of longitudinal slot 314. Anvil plate 310 defines a distal pair of recesses or attachment points 318 formed near a distal end of anvil plate 310 and disposed, one each, on opposed sides of longitudinal slot 314. At least one recess of each of the proximal pair of recesses or attachment points 316 and the distal pair of recesses or attachment points 318 is in the form of a slot or notch having a constricting profile so as to frictionally engage and/or pinch a suture “S”. Anvil assembly 300 further includes a surgical anvil buttress 500 operatively secured to a lower surface of anvil plate 310, by sutures “S3, S4,” to overlie at least some of anvil pockets 310a and/or at least a portion of a length of longitudinal slot 314.


With reference still to FIG. 2, anvil buttress 500 is secured to a lower surface of anvil plate 310, by anchors “S3, S4”, to overlie at least some of the anvil pockets and/or at least a portion of a length of longitudinal slot 314. In particular, an anchor “S3” is threaded across a distal portion of the anvil buttress 500 and each of the corresponding distal pair of recesses or attachment points 318, and an anchor “S4” is threaded across a proximal portion of anvil buttress 500 and each of the corresponding proximal pair of recesses or attachment points 316. As seen in FIG. 10, anvil assembly 300 defines an axial distance “D2” between the distal pair of recesses or attachment points 318 and the proximal pair of recesses or attachment points 316.


Reference may be made to U.S. patent application Ser. No. 12/342,400, filed on Dec. 23, 2008, the entire content of which is incorporated herein by reference, for a detailed discussion of the construction and operation of surgical stapling apparatus 10, cartridge assembly 200 and/or anvil assembly 300.


Buttress 500 for each of cartridge assembly 200 and anvil assembly 300 is provided to reinforce and seal staple lines applied to tissue by surgical stapling apparatus 10. Cartridge assembly 200 and anvil assembly 300 are particularly configured to allow surgical buttresses 500 to be localized on inwardly facing surfaces of cartridge assembly 200 and anvil assembly 300 in order to facilitate passage of surgical stapling apparatus 10 into the body of a patient without risk of tearing or wrinkling of the respective buttresses as surgical stapling apparatus 10 is inserted into and manipulated within the body of a patient. The material from which the buttress 500 is formed may be bioabsorbable or non-bioabsorbable. It should be understood that any combination of natural, synthetic, bioabsorbable and non-bioabsorbable materials may be used to form the buttress material. The buttress material may be porous or non-porous, combination of porous and non-porous layers. The non-porous buttress material may be utilized to retard or prevent tissue ingrowth from surrounding tissues thereby acting as an adhesion barrier and preventing the formation of unwanted scar tissue.


Additional exemplary materials for surgical buttresses 500 for use with the surgical stapling devices disclosed herein are set forth in commonly assigned U.S. Pat. Nos. 5,542,594; 5,908,427; 5,964,774; and 6,045,560, and commonly assigned U.S. Application Publication Nos. 2006/0085034, filed on Apr. 20, 2006; and 2006/0135992, filed on Jun. 22, 2006, the entire contents of each of which is incorporated herein by reference.


In an embodiment, surgical buttresses 500 may be fabricated from a suitable biocompatible and bioabsorbable material. Surgical buttresses 500 may also be fabricated from a non-absorbent material which does not retain fluid, for example, surgical buttresses 500 may be fabricated from “BIOSYN™”, (a synthetic polyester, commercially available from Tyco Healthcare Group, LP d/b/a COVIDIEN, North Haven, Conn.), which is made from “GLYCOMER 631” (a block copolymer) which is a synthetic polyester composed of glycolide, dioxanone and trimethylene carbonate.


One block of the resulting copolymer contains randomly combined units derived from p-dioxanone (1,4-dioxan-2-one) and trimethylene carbonate (1,3-dioxan-2-one). A second block of the copolymer contains randomly combined units derived from glycolide and p-dioxanone. The resulting polyester is an ABA triblock terpolymer possessing about 60% glycolide, about 14% dioxanone, and about 26% trimethylene carbonate.


Anvil buttress and/or cartridge buttress 500 may be pre-loaded (i.e., from the manufacturer) onto anvil assembly 300 or cartridge assembly 200. Additional or replacement buttresses 500 for anvil assembly 300 and/or cartridge assembly 200 may be secured to either anvil assembly 300 or cartridge assembly 200 as needed or desired.


In operation, with DLU 100 coupled to a distal end of elongated body 14 of surgical stapling apparatus 10, and with anvil and cartridge buttresses 500 pre-loaded onto anvil assembly 300 and cartridge assembly 200, respectively, surgical stapling apparatus 10 is used in accordance with methods known by those skilled in the art. Once anvil assembly 300 and cartridge assembly 200 are clamped onto tissue, surgical stapling apparatus 10 is fired. In firing surgical stapling apparatus 10, drive bar 150 is advanced from a proximal-most position to a distal-most position of DLU 100. In so doing, knife blade 156 of drive bar 150 enters notch 528 of buttress 500 thereby facilitating the dividing of buttress 500 and reducing any incidents of pushing or bunching-up of buttress 500 by blade 156. As drive bar 150 begins to travel distally, knife blade 156 substantially simultaneously cuts through a central section of the proximal anchors “S2, S4” of anvil assembly 300 and cartridge assembly 200, thereby respectively freeing the proximal ends of anvil and cartridge buttresses 500 therefrom. As knife blade 156 is moved distally, knife blade 156 slices or cuts longitudinally through both anvil buttress 500 and cartridge buttress 500, thereby dividing the buttresses 500 substantially in half.


Additionally, as drive bar 150 approaches the distal-most position, drive bar 150 and/or knife blade 156 engage a suture cutting assembly or suture release assembly, as described in U.S. patent application Ser. No. 12/342,400, filed on Dec. 23, 2008, the entire content of which is incorporated herein by reference, to thereby sever or release distal sutures “S1 or S3” and thus release a distal end of buttress 500.


With reference to FIG. 3, an embodiment of a surgical buttress 500 having a uniform profile in accordance with the present disclosure is illustrated. Buttress 500 includes a head portion 510, a body portion 520, a neck portion 530 interconnecting head portion 510 and body portion 520, and a tail portion 532 extending proximally from body portion 520.


Buttress 500 is configured to be detachably secured to any sized anvil assembly 300 and/or cartridge assembly 200, as described above. Body portion 520 of buttress 500 defines a pair of opposing distal recesses 524 on transverse edges near a distal location 522 thereof. The pair of opposing distal recesses 524 may be utilized to secure body portion 520 to a distal end of anvil assembly 300 and/or cartridge assembly 200, either through a use of suture “S1 or S3” or any other type of fastener, e.g., staple. Distal portion 522 of body portion 520 has a reduced transverse cross-sectional dimension, e.g., angled, arcuate, so as to be suitable for various types of anvil and cartridge assemblies having different shapes.


Tail portion 532 of buttress 500 defines two pairs of opposing proximal recesses 526a, 526b formed therein. Each of the pair of proximal recesses 526a, 526b is disposed on a transverse side of tail portion 532 near the proximal edge thereof. Such proximal pair of recesses 526a, 526b serve to detachably secure tail portion 532 of buttress 500 to a proximal end of anvil assembly 300 and/or cartridge assembly 200. In order to accommodate various types of profiles, tail portion 532 of buttress 500 preferably has been provided with two pairs of opposing recesses, a first proximal pair of recesses 526a, and a second proximal pair of recesses 526b (located distal of the first proximal pair of recesses 526a). Each of the proximal pair of recesses 526a, 526b has a substantially v-shape profile.


In particular, when buttress 500 is to be used with a relatively longer anvil assembly 300 and/or cartridge assembly 200, then a suture “S2 or S4” is extended across tail portion 532 of buttress 500, passed through the proximal-most pair of recesses 526a of buttress 500, and secured to respective recesses 316 of anvil assembly 300 and/or recesses 236 of cartridge assembly 200. Moreover, when buttress 500 is to be used with a relatively shorter anvil assembly 300 and/or cartridge assembly 200, then a suture “S2 or S4” is extended across tail portion 532 of buttress 500, passed through the distal pair 526b of the proximal pair of recesses of buttress 500, and secured to respective recess 316 of anvil assembly 300 and/or recesses 236 of cartridge assembly 200.


According to another aspect of the present disclosure, a single profile or configuration buttress 500 may be used in connection with cartridge assembly 200 and/or anvil assembly 300. For example, the buttresses 500 that are used in connection with cartridge assembly 200 and anvil assembly 300 each may have the same overall length, width, thickness, perimetrical profile and material of construction.


In particular, as seen in FIG. 10, when buttress 500 is used in connection with cartridge assembly 200, a suture “S1” may extend transversely across a distal end portion of cartridge assembly 200 and captures or is otherwise secured to distal pair of recesses or attachment points 238 of cartridge assembly 200, wherein suture “S1” is in registration with distal recesses 524 of secure a distal end of body portion 520 of buttress 500. Additionally, when buttress 500 is used in connection with cartridge assembly 200, a suture “S2” may extend transversely across a proximal end portion of cartridge assembly 200 and captures or is otherwise secured to each of a proximal pair of recesses or attachment points 236 of cartridge assembly 200, wherein suture “S2” is in registration with the proximal-most pair 526a of the proximal pair of recesses of tail portion 532 of buttress 500.


With continued reference to FIG. 10, when buttress 500 is used in connection with anvil assembly 300, a suture “S3” may extend transversely across a distal end portion of anvil assembly 300 and captures or is otherwise secured to distal pair of recesses or attachment points 318 of anvil assembly 300, wherein suture “S3” is in registration with distal recesses 524 of secure a distal end of body portion 520 of buttress 500. Additionally, when buttress 500 is used in connection with anvil assembly 300, a suture “S4” may extend transversely across a proximal end portion of anvil assembly 300 and captures or is otherwise secured to each of a proximal pair of recesses or attachment points 316 of anvil assembly 300, wherein suture “S4” is in registration with the distal pair 526b of the proximal pair of recesses of tail portion 532 of buttress 500.


Neck portion 530 connects head portion 510 to a distal end of body portion 520. Generally, head portion 510 is in a substantially rectangular shape which is used as a tab to facilitate placement of buttress 500 in position on anvil assembly 300 and/or cartridge assembly 200. Following placement of buttress 500 on anvil assembly 300 and/or cartridge assembly 200, head portion 510 and neck portion 530 may be torn or otherwise cut away from body portion 520.


Tail portion 532 of buttress 500 includes a notch 528 at a proximal edge thereof. Notch 528 is substantially centered with respect to the longitudinal axis. Notch 528 which has a triangular or V-shape configuration may be utilized to provide a lead-in for the knife during a cutting of buttress 500. Notch 528 has a length “L3a”, as seen in FIG. 3.


As seen in FIG. 3, buttress 500 has an overall length “La”. Body portion 520 of buttress 500 has a length “L1a”, and tail portion 532 has a length “L2a”. Body portion 520 has a width “W1a” and tail portion 532 has a width “W2a” which is less that width “W1a” of body portion 520, wherein a shoulder 534 is defined between a side edge of body portion 520 and a side edge of tail portion 532. It is contemplated that a shoulder 534 is provided or defined along each opposed side edge of buttress 500.


With continued reference to FIG. 3, neck portion 530 of buttress 500 has a length “L4a”, and head portion 510 has a length “L5a”. Neck portion 530 of buttress 500 has a width “W3a” which is less that width “W1a” of body portion 520 and less than width “W2a” of tail portion 532. Also, head portion 510 has a width “W4a” which is substantially equal to width “W1a” of body portion 520.


The uniform profile of buttress 500 which simultaneously satisfies the requirements of one or more different assemblies offers advantages of simplifying the assembly process, minimizing the total number of unique components, and reducing assembly costs associated therewith.


Moreover, buttress 500 may be used on or in connection with cartridge assembly 200 and/or anvil assembly 300. In this manner, a single profile buttress 500 is produced and used for cartridge assembly 200 and/or anvil assembly 300. As such, the manufacturing and storage costs for buttresses 500 may be reduced.


As mentioned above, DLU 100 includes an anvil surgical buttress 500 and a cartridge surgical buttress 500 pre-loaded onto anvil assembly 300 and cartridge assembly 200. An exemplary method of loading anvil assembly 300 and/or cartridge assembly 200 with a buttress 500 will now be described.


During the manufacturing and/or assembly process of DLU 100, loading of anvil assembly 300 and/or cartridge assembly 200 with buttress 500 includes the step of placing a buttress 500 atop a tissue contacting surface of anvil assembly 300 and/or cartridge assembly 200 such that notch 528 of buttress is disposed near a proximal end of anvil assembly 300 and/or cartridge assembly 200 and head portion 510 of buttress 500 extends from a distal end of anvil assembly 300 and/or cartridge assembly 200. With buttress 500 so positioned against anvil assembly 300 and/or cartridge assembly 200, proximal sutures “S2” and/or “S4” are pulled down. Tension is then applied to buttress 500, in a distal direction, by pulling on head portion 510. Distal sutures “S1” and/or “S3” are then pulled down. At this time, all the sutures “S1-S4” are cinched in the respective attachment points 316, 318, 236, 238 of anvil assembly 300 and/or cartridge assembly 200. Following cinching of sutures “S1-S4,” head portion 510 of buttress 500 may be released. Next, DLU 100 may be removed from a nesting and head portion 510 and neck portion 530 of buttress 500 may be removed or severed from body portion 520.


While the above-described embodiments surgical staplers incorporating the use of movable knife blades to sever and release surgical buttresses from the tissue contacting surfaces of the anvil assembly and the cartridge assembly have been shown and described in relation to endoscopic surgical staplers, it is envisioned and within the scope of the present disclosure that any of the above-embodiments may be incorporated into any type of surgical stapler, including and not limited to open surgical staplers, such as, for example, linear surgical staplers and transverse surgical staplers.


Moreover, while only distal and proximal sutures have been shown and described as securing buttress 500 to anvil assembly 300 and/or cartridge assembly 300, it is contemplated that any number of transverse sutures may be provided along a length of the anvil assembly and/or cartridge assembly to aid with the securement of buttress 500 along a length thereof.


Any of the surgical buttresses disclosed herein may be comprised of the GLYCOMER 631 a block copolymer, or other polymers discussed above, as a film, non-woven, mesh or other type of material, and may also be made as a film, non-woven, mesh or other type of material, from poly-L-lactide (PLL), or Polycaprolactam (Nylon-6), or polyglycolic acid (PGA) each of which are homopolymers, or from glycolide trimethylene carbonate (Gly-TMC), which is a copolymer, PLL and Gly-TMC both being bio-degradable polyesters polymerized through a ring opening reaction. The non-woven material can be made utilizing a melt blown or spunbond process, or other known process. Non-woven materials and polymers are disclosed in U.S. patent application Ser. No. 13/293,215, entitled Hydrophilic Medical Devices, filed Nov. 10, 2011, the disclosure of which is hereby incorporated by reference in its entirety. In certain embodiments, non-woven, felted, or other relatively supple materials having filaments are preferred.


Turning now to FIG. 11, a surgical buttress having a uniform profile, in accordance with another embodiment of the present disclosure, is generally illustrated as 600. Buttress 600 includes a head portion 610, a body portion 620, a neck portion 630 interconnecting head portion 610 and body portion 620, and a tail portion 632 extending proximally from body portion 620.


Buttress 600, similar to buttress 500, is configured to be detachably secured to any sized anvil assembly 300 and/or cartridge assembly 200, as described above. Body portion 620 of buttress 600 defines a pair of opposing distal recesses 624 formed in opposed transverse side edges near a distal location 622 thereof.


In order to accommodate various types of profiles, tail portion 632 of buttress 600 includes two pairs of opposing recesses, a first proximal pair of recesses 626a, and a second proximal pair of recesses 626b (located distal of the first proximal pair of recesses 626a). Each of the proximal pair of recesses 626a, 626b has a substantially v-shape profile. Each of the proximal pair of recesses 626a, 626b is shallower as compared to the proximal pair of recesses 526a, 526b of tail portion 532 of buttress 500.


Neck portion 630 connects head portion 610 to a distal end of body portion 620. Generally, head portion 610 is in a substantially rectangular shape which is used as a tab to facilitate placement of buttress 600 in position on anvil assembly 300 and/or cartridge assembly 200. Following placement of buttress 600 on anvil assembly 300 and/or cartridge assembly 200, under at least certain circumstances, head portion 610 and neck portion 630 may be torn, damaged, or otherwise cut away from body portion 620.


Tail portion 632 of buttress 600 includes a notch 628 at a proximal edge thereof. Notch 628 is substantially centered with respect to the longitudinal axis. Notch 628 which has a U shaped configuration, a triangular, or V-shape configuration, and may be utilized to provide a lead-in for the knife during a cutting of buttress 600. Notch 628 has a length “L3b”, as seen in FIG. 11. Length “L3b” of notch 628 of buttress 600 is greater than length “L3a” of notch 528 of buttress 500, and the notch 628 ends just before the first recesses 626a.


As seen in FIG. 11, buttress 600 has an overall length “Lb”, which is greater than the overall length “La” of buttress 500. Body portion 620 of buttress 600 has a length “L1b”, and tail portion 632 has a length “L2b”. Body portion 620 has a width “W1b” and tail portion 632 has a width “W2b” which is less that width “W1b” of body portion 620, wherein a shoulder 634 is defined between a side edge of body portion 620 and a side edge of tail portion 632. It is contemplated that a shoulder 634 is provided or defined along each opposed side edge of buttress 600.


With reference to FIGS. 3 and 11, it is contemplated that body portion 620 of buttress 600 has a length “L1b” which is greater than length “L1a” of body portion 520 of buttress 500. Additionally, it is contemplated that tail portion 632 of buttress 600 has a length “L2b” which is greater than length “L2a” of tail portion 532 of buttress 500.


With reference back to FIG. 11, neck portion 630 of buttress 600 has a length “L4b”, and head portion 610 has a length “L5b”. Neck portion 630 of buttress 600 has a width “W3b” which is less that width “W1b” of body portion 620, and which is substantially equal to width “W2b” of tail portion 632. Also, head portion 610 has a width “W4b” which is substantially equal to width “W1b” of body portion 620.


With reference to FIGS. 3 and 11, it is contemplated that neck portion 630 of buttress 600 has a width “W3b” which is greater than width “W3a” of neck portion 530 of buttress 500. Additionally, it is contemplated that head portion 610 of buttress 600 has a length “L5b” which is greater than length “L5a” of head portion 510 of buttress 500.


It will be understood that various modifications may be made to the embodiments disclosed herein. For example, the stapling apparatus need not apply staples but rather may apply two part fasteners as is known in the art. Further, the length of the linear row of staples or fasteners may be modified to meet the requirements of a particular surgical procedure. Thus, the length of a single stroke of the actuation shaft and/or the length of the linear row of staples and/or fasteners within a disposable loading unit may be varied accordingly. Therefore, the above description should not be construed as limiting, but merely as exemplifications of preferred embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended thereto.

Claims
  • 1. A surgical buttress for use in a surgical stapling apparatus, the surgical buttress comprising: an elongate rectangular body portion defining a width, the body portion including a distal portion having a width linearly tapering in a distal direction between opposed linear distal edges to a distal end of the body portion;a neck portion integrally formed with and extending from the distal end of the body portion, the neck portion defining a width;a head portion integrally formed with and connected to a distal end of the neck portion, the head portion defining a width; anda tail portion integrally formed with and extending from a proximal end of the body portion, the tail portion defining a width,wherein the width of the tail portion is less than the width of the body portion, and the surgical buttress is formed from a material having filaments.
  • 2. The surgical buttress according to claim 1, wherein the width of the neck portion is less than the width of the body portion.
  • 3. The surgical buttress according to claim 2, wherein the width of the neck portion is less than the width of the tail portion.
  • 4. The surgical buttress according to claim 3, wherein the width of the neck portion is more than one-half the width of the body portion.
  • 5. The surgical buttress according to claim 1, wherein a length of the head portion is greater than a length of the tail portion.
  • 6. The surgical buttress according to claim 1, wherein a length of the head portion is greater than a length of the neck portion.
  • 7. The surgical buttress according to claim 1, wherein the tail portion defines at least one pair of opposing proximal recesses, each proximal recess of the at least one pair of opposing recesses is formed on an opposing lateral side of the tail portion.
  • 8. The surgical buttress according to claim 1, wherein the body portion further defines a pair of opposing distal recesses, each distal recess of the pair of opposing distal recesses is formed on an opposing lateral side of the body portion near the distal portion of the body portion.
  • 9. The surgical buttress according to claim 7, wherein the tail portion of the surgical buttress defines a proximal edge recess formed in a proximal edge thereof, wherein the proximal edge recess longitudinally bisects the proximal edge.
  • 10. The surgical buttress according to claim 1, wherein the surgical buttress is fabricated from a biocompatible and bioabsorbable material.
  • 11. The surgical buttress according to claim 1, wherein the surgical buttress is fabricated from a material selected from the group consisting of polyglycolic acid and glycolide trimethylene carbonate.
  • 12. The surgical buttress according to claim 1, wherein the surgical buttress is formed as a non-woven material.
  • 13. A surgical buttress for use with a surgical stapling apparatus having a cartridge assembly of any number of lengths and an anvil assembly of any number of lengths corresponding to the lengths of the cartridge assembly, wherein each of the cartridge assembly and anvil assembly defines respective juxtaposed tissue contacting surfaces, and wherein the cartridge assembly includes a plurality of staples stored in staple slots thereof for formation against staple formation pockets of the anvil assembly, the surgical buttress comprising: an elongate rectangular body portion defining a length and a width, the body portion including a distal portion having a width tapering in a distal direction between opposed linear distal edges;a neck portion integrally formed with and extending from a distal end of the body portion, the neck portion defining a length and a width;a head portion integrally formed with and connected to a distal end of the neck portion, the head portion defining a length and a width; anda tail portion integrally formed with and extending from a proximal end of the body portion, the tail portion defining a length and a width, and two pairs of opposing proximal recesses, each proximal recess of each pair of the two pairs of opposing proximal recesses formed in an opposing lateral side of the tail portion,wherein the width of the tail portion is less than the width of the body portion,wherein the body portion and the tail portion are configured and dimensioned to at least one of: overlie all of the staple slots of the cartridge assembly for any length cartridge assembly, andoverlie all of the staple formation pockets of the anvil assembly for any length anvil assembly.
  • 14. The surgical buttress according to claim 13, wherein the width of the neck portion is less than the width of the body portion.
  • 15. The surgical buttress according to claim 14, wherein the width of the neck portion is less than the width of the tail portion.
  • 16. The surgical buttress according to claim 15, wherein the width of the neck portion is more than one-half the width of the body portion.
  • 17. The surgical buttress according to claim 13, wherein the length of the head portion is greater than the length of the neck portion.
  • 18. The surgical buttress according to claim 13, further comprising at least one pair of opposing recesses formed on opposing lateral sides of the body portion of the surgical buttress.
  • 19. The surgical buttress according to claim 13, wherein the surgical buttress is formed from a non-woven material.
  • 20. The surgical buttress according to claim 1, wherein the tail portion defines two pairs of opposing proximal recesses, each proximal recess of each pair of the two pairs of opposing proximal recesses formed in an opposing lateral side of the tail portion.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of and priority to U.S. Provisional Patent Application No. 61/696,906, filed Sep. 5, 2012, the entire disclosure of which is incorporated by reference herein.

US Referenced Citations (478)
Number Name Date Kind
3054406 Usher Sep 1962 A
3079606 Bobrov et al. Mar 1963 A
3124136 Usher Mar 1964 A
3490675 Green et al. Jan 1970 A
3499591 Green Mar 1970 A
4347847 Usher Sep 1982 A
4354628 Green Oct 1982 A
4429695 Green Feb 1984 A
4452245 Usher Jun 1984 A
4605730 Shalaby et al. Aug 1986 A
4655221 Devereux Apr 1987 A
4834090 Moore May 1989 A
4838884 Dumican et al. Jun 1989 A
4927640 Dahlinder et al. May 1990 A
4930674 Barak Jun 1990 A
5002551 Linsky et al. Mar 1991 A
5014899 Presty et al. May 1991 A
5040715 Green et al. Aug 1991 A
5065929 Schulze et al. Nov 1991 A
5112496 Dhawan et al. May 1992 A
5205459 Brinkerhoff et al. Apr 1993 A
5263629 Trumbull et al. Nov 1993 A
5281197 Arias et al. Jan 1994 A
5307976 Olson et al. May 1994 A
5312023 Green et al. May 1994 A
5314471 Brauker et al. May 1994 A
5318221 Green et al. Jun 1994 A
5326013 Green et al. Jul 1994 A
5332142 Robinson et al. Jul 1994 A
5344454 Clarke et al. Sep 1994 A
5392979 Green et al. Feb 1995 A
5397324 Carroll et al. Mar 1995 A
5405072 Zlock et al. Apr 1995 A
5425745 Green et al. Jun 1995 A
5441193 Gravener Aug 1995 A
5441507 Wilk et al. Aug 1995 A
5443198 Viola et al. Aug 1995 A
5468253 Bezwada et al. Nov 1995 A
5503638 Cooper et al. Apr 1996 A
5542594 McKean et al. Aug 1996 A
5549628 Cooper et al. Aug 1996 A
5575803 Cooper et al. Nov 1996 A
5653756 Clarke et al. Aug 1997 A
5683809 Freeman et al. Nov 1997 A
5690675 Sawyer et al. Nov 1997 A
5702409 Rayburn et al. Dec 1997 A
5752965 Francis et al. May 1998 A
5762256 Mastri et al. Jun 1998 A
5766188 Igaki Jun 1998 A
5769892 Kingwell Jun 1998 A
5782396 Mastri et al. Jul 1998 A
5799857 Robertson et al. Sep 1998 A
5810855 Rayburn et al. Sep 1998 A
5814057 Oi et al. Sep 1998 A
5833695 Yoon Nov 1998 A
5843096 Igaki et al. Dec 1998 A
5871135 Williamson, IV et al. Feb 1999 A
5895412 Tucker Apr 1999 A
5895415 Chow et al. Apr 1999 A
5902312 Frater May 1999 A
5908427 McKean et al. Jun 1999 A
5915616 Viola et al. Jun 1999 A
5931847 Bittner et al. Aug 1999 A
5964774 McKean et al. Oct 1999 A
5997895 Narotam et al. Dec 1999 A
6019791 Wood Feb 2000 A
6030392 Dakov et al. Feb 2000 A
6032849 Mastri et al. Mar 2000 A
6045560 McKean et al. Apr 2000 A
6063097 Oi et al. May 2000 A
6080169 Turtel Jun 2000 A
6099551 Gabbay Aug 2000 A
6149667 Hovland et al. Nov 2000 A
6155265 Hammerslag Dec 2000 A
6210439 Firmin et al. Apr 2001 B1
6214020 Mulhauser et al. Apr 2001 B1
6241139 Milliman et al. Jun 2001 B1
6258107 Balazs et al. Jul 2001 B1
6267772 Mulhauser et al. Jul 2001 B1
6273897 Dalessandro et al. Aug 2001 B1
6280453 Kugel et al. Aug 2001 B1
6299631 Shalaby Oct 2001 B1
6312457 DiMatteo et al. Nov 2001 B1
6312474 Francis et al. Nov 2001 B1
6325810 Hamilton et al. Dec 2001 B1
6436030 Rehil Aug 2002 B2
6454780 Wallace Sep 2002 B1
6461368 Fogarty et al. Oct 2002 B2
6503257 Grant et al. Jan 2003 B2
6514283 DiMatteo et al. Feb 2003 B2
6517566 Hovland et al. Feb 2003 B1
6551356 Rousseau Apr 2003 B2
6568398 Cohen May 2003 B2
6592597 Grant et al. Jul 2003 B2
6638285 Gabbay Oct 2003 B2
6652594 Francis et al. Nov 2003 B2
6656193 Grant Dec 2003 B2
6669735 Pelissier Dec 2003 B1
6677258 Carroll et al. Jan 2004 B2
6685714 Rousseau Feb 2004 B2
6702828 Whayne Mar 2004 B2
6704210 Myers Mar 2004 B1
6723114 Shalaby Apr 2004 B2
6726706 Dominguez Apr 2004 B2
6736823 Darois et al. May 2004 B2
6736854 Vadurro et al. May 2004 B2
6746458 Cloud Jun 2004 B1
6773458 Brauker et al. Aug 2004 B1
6896684 Monassevitch et al. May 2005 B2
6927315 Heinecke et al. Aug 2005 B1
6939358 Palacios et al. Sep 2005 B2
6946196 Foss Sep 2005 B2
6959851 Heinrich Nov 2005 B2
7087065 Ulmsten Aug 2006 B2
7108701 Evens et al. Sep 2006 B2
7128253 Mastri Oct 2006 B2
7128748 Mooradian et al. Oct 2006 B2
7134438 Makower et al. Nov 2006 B2
7147138 Shelton, IV Dec 2006 B2
7160299 Baily Jan 2007 B2
7179268 Roy et al. Feb 2007 B2
7210810 Iversen et al. May 2007 B1
7232449 Sharkawy et al. Jun 2007 B2
7241300 Sharkawy et al. Jul 2007 B2
7307031 Carroll et al. Dec 2007 B2
7311720 Mueller et al. Dec 2007 B2
7377928 Zubik et al. May 2008 B2
7434717 Shelton, IV et al. Oct 2008 B2
7438209 Hess et al. Oct 2008 B1
7547312 Bauman et al. Jun 2009 B2
7559937 de la Torre et al. Jul 2009 B2
7571845 Viola Aug 2009 B2
7594921 Browning Sep 2009 B2
7604151 Hess et al. Oct 2009 B2
7665646 Prommersberger Feb 2010 B2
7666198 Suyker et al. Feb 2010 B2
7669747 Weisenburgh, II et al. Mar 2010 B2
7717313 Criscuolo et al. May 2010 B2
7722642 Williamson, IV May 2010 B2
7744627 Orban, III et al. Jun 2010 B2
7776060 Mooradian Aug 2010 B2
7793813 Bettuchi Sep 2010 B2
7799026 Schechter et al. Sep 2010 B2
7823592 Bettuchi et al. Nov 2010 B2
7824420 Eldridge et al. Nov 2010 B2
7845533 Marczyk et al. Dec 2010 B2
7845536 Viola et al. Dec 2010 B2
7846149 Jankowski Dec 2010 B2
7892247 Conston et al. Feb 2011 B2
7909224 Prommersberger Mar 2011 B2
7909837 Crows et al. Mar 2011 B2
7938307 Bettuchi May 2011 B2
7942300 Rethy May 2011 B2
7942890 D'Agostino et al. May 2011 B2
7950561 Aranyi May 2011 B2
7951166 Orban May 2011 B2
7967179 Olson Jun 2011 B2
7988027 Olson Aug 2011 B2
8011550 Aranyi Sep 2011 B2
8011555 Tarinelli et al. Sep 2011 B2
8016177 Bettuchi Sep 2011 B2
8016178 Olson Sep 2011 B2
8028883 Stopek Oct 2011 B2
8062330 Prommersberger Nov 2011 B2
8083119 Prommersberger Dec 2011 B2
8123766 Bauman Feb 2012 B2
8123767 Bauman Feb 2012 B2
8127975 Olson et al. Mar 2012 B2
8146791 Bettuchi Apr 2012 B2
8157149 Olson Apr 2012 B2
8157151 Ingmanson Apr 2012 B2
8167895 D'Agostino May 2012 B2
8178746 Hildeberg et al. May 2012 B2
8192460 Orban Jun 2012 B2
8210414 Bettuchi Jul 2012 B2
8225799 Bettuchi Jul 2012 B2
8225981 Criscuolo et al. Jul 2012 B2
8231043 Tarinelli Jul 2012 B2
8235273 Olson Aug 2012 B2
8245901 Stopek Aug 2012 B2
8256654 Bettuchi Sep 2012 B2
8257391 Orban Sep 2012 B2
8276800 Bettuchi Oct 2012 B2
8286849 Bettuchi Oct 2012 B2
8308042 Aranyi Nov 2012 B2
8308045 Bettuchi Nov 2012 B2
8308046 Prommersberger Nov 2012 B2
8312885 Bettuchi Nov 2012 B2
8313014 Bettuchi Nov 2012 B2
8348126 Olson Jan 2013 B2
8348130 Shah Jan 2013 B2
8365972 Aranyi et al. Feb 2013 B2
8371491 Huitema Feb 2013 B2
8371492 Aranyi Feb 2013 B2
8371493 Aranyi Feb 2013 B2
8393514 Shelton, IV Mar 2013 B2
8408440 Olson Apr 2013 B2
8413869 Heinrich Apr 2013 B2
8413871 Racenet Apr 2013 B2
8424742 Bettuchi Apr 2013 B2
8453652 Stopek Jun 2013 B2
8453904 Eskaros Jun 2013 B2
8453909 Olson Jun 2013 B2
8453910 Bettuchi Jun 2013 B2
8464925 Hull et al. Jun 2013 B2
8474677 Woodard, Jr. Jul 2013 B2
8479968 Hodgkinson Jul 2013 B2
8485414 Criscuolo et al. Jul 2013 B2
8496683 Prommersberger Jul 2013 B2
8511533 Viola Aug 2013 B2
8512402 Marczyk Aug 2013 B2
8529600 Woodard, Jr. Sep 2013 B2
8540131 Swayze Sep 2013 B2
8551138 Orban Oct 2013 B2
8556918 Bauman Oct 2013 B2
8561873 Ingmanson Oct 2013 B2
8584920 Hodgkinson Nov 2013 B2
8590762 Hess Nov 2013 B2
8616430 (Prommersberger) Stopek Dec 2013 B2
8631989 Aranyi Jan 2014 B2
8646674 Schulte et al. Feb 2014 B2
8668129 Olson Mar 2014 B2
8672206 Aranyi Mar 2014 B2
8684250 Bettuchi Apr 2014 B2
8721703 Fowler May 2014 B2
8757466 Olson Jun 2014 B2
8789737 Hodgkinson Jul 2014 B2
8820606 Hodgkinson Sep 2014 B2
8870050 Hodgkinson Oct 2014 B2
8920444 Hiles et al. Dec 2014 B2
8939344 Olson et al. Jan 2015 B2
8967448 Carter et al. Mar 2015 B2
9005243 Stopek et al. Apr 2015 B2
9010606 Aranyi et al. Apr 2015 B2
9010608 Casasanta, Jr. et al. Apr 2015 B2
9010609 Carter et al. Apr 2015 B2
9010610 Hodgkinson Apr 2015 B2
9010612 Stevenson et al. Apr 2015 B2
9016543 (Prommersberger) Stopek et al. Apr 2015 B2
9016544 Hodgkinson et al. Apr 2015 B2
9027817 Milliman et al. May 2015 B2
9044227 Shelton, IV et al. Jun 2015 B2
9055944 Hodgkinson et al. Jun 2015 B2
9084602 Gleiman Jul 2015 B2
9107665 Hodgkinson et al. Aug 2015 B2
9107667 Hodgkinson Aug 2015 B2
9113873 Marczyk et al. Aug 2015 B2
9113881 Scirica Aug 2015 B2
9113885 Hodgkinson et al. Aug 2015 B2
9113893 Sorrentino et al. Aug 2015 B2
9161753 Prior Oct 2015 B2
9161757 Bettuchi Oct 2015 B2
9186144 Stevenson et al. Nov 2015 B2
9192378 Aranyi et al. Nov 2015 B2
9192379 Aranyi et al. Nov 2015 B2
9192380 (Tarinelli) Racenet et al. Nov 2015 B2
9192383 Milliman Nov 2015 B2
9192384 Bettuchi Nov 2015 B2
9198660 Hodgkinson Dec 2015 B2
9198663 Marczyk et al. Dec 2015 B1
9204881 Penna Dec 2015 B2
9220504 Viola et al. Dec 2015 B2
9226754 D'Agostino et al. Jan 2016 B2
9237892 Hodgkinson Jan 2016 B2
9237893 Carter et al. Jan 2016 B2
9277922 Carter et al. Mar 2016 B2
9295466 Hodgkinson et al. Mar 2016 B2
9326773 Casasanta, Jr. et al. May 2016 B2
9345479 (Tarinelli) Racenet et al. May 2016 B2
9351729 Orban, III et al. May 2016 B2
9351731 Carter et al. May 2016 B2
9351732 Hodgkinson May 2016 B2
9364229 D'Agostino et al. Jun 2016 B2
9364234 (Prommersberger) Stopek et al. Jun 2016 B2
9433412 Bettuchi et al. Sep 2016 B2
9433413 Stopek Sep 2016 B2
20020028243 Masters Mar 2002 A1
20020091397 Chen Jul 2002 A1
20020151911 Gabbay Oct 2002 A1
20020165559 Grant et al. Nov 2002 A1
20020165563 Grant et al. Nov 2002 A1
20030065345 Weadock Apr 2003 A1
20030083676 Wallace May 2003 A1
20030120284 Palacios Jun 2003 A1
20030181927 Wallace Sep 2003 A1
20030183671 Mooradian et al. Oct 2003 A1
20030196668 Harrison et al. Oct 2003 A1
20030208231 Williamson, IV et al. Nov 2003 A1
20040007608 Ehrenfels Jan 2004 A1
20040107006 Francis et al. Jun 2004 A1
20040254590 Hoffman et al. Dec 2004 A1
20040260315 Dell et al. Dec 2004 A1
20050002981 Lahtinen et al. Jan 2005 A1
20050021085 Abrams et al. Jan 2005 A1
20050059996 Bauman et al. Mar 2005 A1
20050059997 Bauman et al. Mar 2005 A1
20050070929 Dalessandro et al. Mar 2005 A1
20050118435 DeLucia et al. Jun 2005 A1
20050143756 Jankowski Jun 2005 A1
20050149073 Arani et al. Jul 2005 A1
20050228446 Mooradian et al. Oct 2005 A1
20060004407 Hiles Jan 2006 A1
20060025816 Shelton Feb 2006 A1
20060085030 Bettuchi et al. Apr 2006 A1
20060135992 Bettuchi et al. Jun 2006 A1
20060173470 Oray et al. Aug 2006 A1
20060178683 Shimoji et al. Aug 2006 A1
20060271104 Viola et al. Nov 2006 A1
20070026031 Bauman et al. Feb 2007 A1
20070034669 de la Torre et al. Feb 2007 A1
20070049953 Shimoji et al. Mar 2007 A2
20070123839 Rousseau et al. May 2007 A1
20070179528 Soltz Aug 2007 A1
20070203509 Bettuchi Aug 2007 A1
20070203510 Bettuchi Aug 2007 A1
20070243227 Gertner Oct 2007 A1
20070246505 Pace-Floridia et al. Oct 2007 A1
20080009811 Cantor Jan 2008 A1
20080029570 Shelton et al. Feb 2008 A1
20080082126 Murray et al. Apr 2008 A1
20080110959 Orban et al. May 2008 A1
20080125812 Zubik et al. May 2008 A1
20080140115 Stopek Jun 2008 A1
20080161831 Bauman et al. Jul 2008 A1
20080161832 Bauman et al. Jul 2008 A1
20080169327 Shelton et al. Jul 2008 A1
20080169328 Shelton Jul 2008 A1
20080169329 Shelton et al. Jul 2008 A1
20080169330 Shelton et al. Jul 2008 A1
20080169331 Shelton et al. Jul 2008 A1
20080169332 Shelton et al. Jul 2008 A1
20080169333 Shelton et al. Jul 2008 A1
20080200949 Hiles Aug 2008 A1
20080216855 Nasca Sep 2008 A1
20080220047 Sawhney et al. Sep 2008 A1
20080230583 Heinrich Sep 2008 A1
20080290134 Bettuchi et al. Nov 2008 A1
20080308608 Prommersberger Dec 2008 A1
20080314960 Marczyk et al. Dec 2008 A1
20090001121 Hess et al. Jan 2009 A1
20090001122 Prommersberger et al. Jan 2009 A1
20090001123 Morgan et al. Jan 2009 A1
20090001124 Hess et al. Jan 2009 A1
20090001125 Hess et al. Jan 2009 A1
20090001126 Hess et al. Jan 2009 A1
20090001128 Weisenburgh, II et al. Jan 2009 A1
20090001130 Hess et al. Jan 2009 A1
20090005808 Hess et al. Jan 2009 A1
20090030452 Bauman et al. Jan 2009 A1
20090043334 Bauman et al. Feb 2009 A1
20090076510 Bell et al. Mar 2009 A1
20090076528 Sgro Mar 2009 A1
20090078739 Viola Mar 2009 A1
20090095791 Eskaros et al. Apr 2009 A1
20090095792 Bettuchi Apr 2009 A1
20090120994 Murray et al. May 2009 A1
20090134200 Tarinelli May 2009 A1
20090206125 Huitema et al. Aug 2009 A1
20090206126 Huitema Aug 2009 A1
20090206139 Hall Aug 2009 A1
20090206141 Huitema et al. Aug 2009 A1
20090206142 Huitema et al. Aug 2009 A1
20090206143 Huitema et al. Aug 2009 A1
20090218384 Aranyi Sep 2009 A1
20090277944 Dalessandro et al. Nov 2009 A9
20090277947 Viola Nov 2009 A1
20090287230 D'Agostino et al. Nov 2009 A1
20100012704 Tarinelli Racenet et al. Jan 2010 A1
20100065606 Stopek Mar 2010 A1
20100065607 Orban, III et al. Mar 2010 A1
20100072254 Aranyi et al. Mar 2010 A1
20100147921 Olson Jun 2010 A1
20100147922 Olson Jun 2010 A1
20100147923 D'Agostino et al. Jun 2010 A1
20100243707 Olson Sep 2010 A1
20100243708 Aranyi Sep 2010 A1
20100243711 Olson Sep 2010 A1
20100249805 Olson et al. Sep 2010 A1
20100264195 Bettuchi Oct 2010 A1
20100282815 Bettuchi et al. Nov 2010 A1
20100331880 Stopek Dec 2010 A1
20110024476 Bettuchi et al. Feb 2011 A1
20110024481 Bettuchi et al. Feb 2011 A1
20110036894 Bettuchi Feb 2011 A1
20110042442 Viola et al. Feb 2011 A1
20110046650 Bettuchi Feb 2011 A1
20110057016 Bettuchi Mar 2011 A1
20110087279 Shah et al. Apr 2011 A1
20110089220 Ingmanson Apr 2011 A1
20110215132 Aranyi Sep 2011 A1
20120074199 Olson Mar 2012 A1
20120080336 Shelton Apr 2012 A1
20120083723 Vitaris et al. Apr 2012 A1
20120095464 Zeiler Apr 2012 A9
20120145767 Shah et al. Jun 2012 A1
20120187179 Gleiman Jul 2012 A1
20120197272 Oray et al. Aug 2012 A1
20120241499 Baxter Sep 2012 A1
20120273547 Hodgkinson et al. Nov 2012 A1
20130037596 Bear et al. Feb 2013 A1
20130105548 Hodgkinson May 2013 A1
20130105553 (Tarinelli) Racenet et al. May 2013 A1
20130112732 Aranyi May 2013 A1
20130112733 Aranyi May 2013 A1
20130123816 Hodgkinson et al. May 2013 A1
20130146641 Shelton Jun 2013 A1
20130153633 Casasanta Jun 2013 A1
20130153634 Carter Jun 2013 A1
20130153635 Hodgkinson Jun 2013 A1
20130153636 Shelton Jun 2013 A1
20130153638 Carter Jun 2013 A1
20130153639 Hodgkinson Jun 2013 A1
20130153640 Hodgkinson Jun 2013 A1
20130153641 Shelton, IV et al. Jun 2013 A1
20130161374 Swayze Jun 2013 A1
20130181031 Olson Jul 2013 A1
20130193186 (Tarinelli) Racenet et al. Aug 2013 A1
20130193190 Carter Aug 2013 A1
20130193191 Stevenson Aug 2013 A1
20130193192 Casasanta Aug 2013 A1
20130209659 Racenet Aug 2013 A1
20130221062 Hodgkinson Aug 2013 A1
20130240600 Bettuchi Sep 2013 A1
20130240601 Bettuchi Sep 2013 A1
20130240602 Stopek Sep 2013 A1
20130256380 Schmid et al. Oct 2013 A1
20130277411 Hodgkinson Oct 2013 A1
20130306707 Viola Nov 2013 A1
20130310873 Stopek (nee Prommersberger) et al. Nov 2013 A1
20130327807 Olson Dec 2013 A1
20140012317 Orban Jan 2014 A1
20140021242 Hodgkinson Jan 2014 A1
20140027490 Marczyk Jan 2014 A1
20140034704 Shen Jan 2014 A1
20140048580 Merchant Feb 2014 A1
20140061281 Hodgkinson Mar 2014 A1
20140084042 (Prommersberger) Stopek Mar 2014 A1
20140097224 Prior Apr 2014 A1
20140117066 Aranyi May 2014 A1
20140130330 Olson May 2014 A1
20140131418 Kostrzewski May 2014 A1
20140131419 Bettuchi May 2014 A1
20140138423 Whitfield May 2014 A1
20140151431 Hodgkinson Jun 2014 A1
20140155916 Hodgkinson Jun 2014 A1
20140158742 Stopek (nee Prommersberger) et al. Jun 2014 A1
20140166721 Stevenson Jun 2014 A1
20140197224 Penna Jul 2014 A1
20140203061 Hodgkinson Jul 2014 A1
20140217147 Milliman Aug 2014 A1
20140217148 Penna Aug 2014 A1
20140239046 Milliman Aug 2014 A1
20140239047 Hodgkinson Aug 2014 A1
20140252062 Mozdzierz Sep 2014 A1
20150001276 Hodgkinson et al. Jan 2015 A1
20150041347 Hodgkinson Feb 2015 A1
20150097018 Hodgkinson Apr 2015 A1
20150115015 Prescott et al. Apr 2015 A1
20150122872 Olson et al. May 2015 A1
20150164503 Stevenson et al. Jun 2015 A1
20150164506 Carter et al. Jun 2015 A1
20150164507 Carter et al. Jun 2015 A1
20150196297 (Prommersberger) Stopek et al. Jul 2015 A1
20150209033 Hodgkinson Jul 2015 A1
20150209045 Hodgkinson et al. Jul 2015 A1
20150209048 Carter et al. Jul 2015 A1
20150231409 Racenet Aug 2015 A1
20150245835 Racenet Sep 2015 A1
20150305743 Casasanta et al. Oct 2015 A1
20150327864 Hodgkinson et al. Nov 2015 A1
20160022268 Prior Jan 2016 A1
20160045200 Milliman Feb 2016 A1
20160058451 (Tarinelli) Racenet et al. Mar 2016 A1
20160100834 Viola et al. Apr 2016 A1
20160106430 Carter et al. Apr 2016 A1
20160113647 Hodgkinson Apr 2016 A1
20160157857 Hodgkinson et al. Jun 2016 A1
20160174988 D'Agostino et al. Jun 2016 A1
Foreign Referenced Citations (82)
Number Date Country
2282761 Sep 1998 CA
2 667 434 May 2008 CA
101310680 Nov 2008 CN
101332110 Dec 2008 CN
101455577 Jun 2009 CN
105748124 Jul 2016 CN
1 99 24 311 Nov 2000 DE
0 594 148 Apr 1994 EP
0 327 022 Apr 1995 EP
0 667 119 Aug 1995 EP
0669104 Aug 1995 EP
1 064 883 Jan 2001 EP
1 256 317 Nov 2002 EP
1 256 318 Nov 2002 EP
1 520 525 Apr 2005 EP
1 621 141 Feb 2006 EP
1 702 570 Sep 2006 EP
1 759 640 Mar 2007 EP
1 815 804 Aug 2007 EP
1 825 820 Aug 2007 EP
1 929 958 Jun 2008 EP
1 994 890 Nov 2008 EP
2 005 894 Dec 2008 EP
2 005 895 Dec 2008 EP
2 008 595 Dec 2008 EP
2 039 308 Mar 2009 EP
2 090 231 Aug 2009 EP
2 090 244 Aug 2009 EP
2 090 252 Aug 2009 EP
2 163 211 Mar 2010 EP
2 189 121 May 2010 EP
2 198 787 Jun 2010 EP
2 236 098 Oct 2010 EP
2 236 099 Oct 2010 EP
2 258 282 Dec 2010 EP
2 292 276 Mar 2011 EP
2 311 386 Apr 2011 EP
2 311 386 Apr 2011 EP
2 436 348 Apr 2012 EP
2 462 880 Jun 2012 EP
2 497 431 Sep 2012 EP
2 517 637 Oct 2012 EP
2 586 380 May 2013 EP
2 604 195 Jun 2013 EP
2 604 197 Jun 2013 EP
2 620 105 Jul 2013 EP
2 620 106 Jul 2013 EP
2 630 922 Aug 2013 EP
2 644 125 Oct 2013 EP
2 705 800 Mar 2014 EP
2 762 091 Aug 2014 EP
2000-166933 Jun 2000 JP
2002-202213 Jul 2002 JP
2006043451 Feb 2006 JP
2007-124166 May 2007 JP
2008289883 Dec 2008 JP
2008307393 Dec 2008 JP
2009000531 Jan 2009 JP
2010148879 Jul 2010 JP
2010240429 Oct 2010 JP
WO 9005489 May 1990 WO
WO 9516221 Jun 1995 WO
WO 9622055 Jul 1996 WO
WO 9701989 Jan 1997 WO
WO 9713463 Apr 1997 WO
WO 9817180 Apr 1998 WO
9838923 Sep 1998 WO
WO 9945849 Sep 1999 WO
WO 03082126 Oct 2003 WO
WO 03088845 Oct 2003 WO
WO 03094743 Nov 2003 WO
WO 03105698 Dec 2003 WO
WO 2005079675 Sep 2005 WO
WO 2006023578 Mar 2006 WO
WO 2006044490 Apr 2006 WO
WO 2006083748 Aug 2006 WO
WO 2007121579 Nov 2007 WO
WO 2008057281 May 2008 WO
WO 2008109125 Sep 2008 WO
WO 2010075298 Jul 2010 WO
WO 2011143183 Nov 2011 WO
WO 2012044848 Apr 2012 WO
Non-Patent Literature Citations (130)
Entry
Extended European Search Report corresponding to EP 14 16 9739.1, completed Aug. 19, 2014 and Aug. 29, 2014; (7 pp).
Extended European Search Report corresponding to EP 14 15 7997.9, completed Sep. 9, 2014 and mailed Sep. 17, 2014; (8 pp).
Extended European Search Report corresponding to EP 14 16 8904.2, completed Sep. 10, 2014 and mailed Sep. 18, 2014; (8 pp).
Extended European Search Report corresponding to EP 13 19 4995.0, completed Jun. 5, 2014 and mailed Oct. 13, 2014; (10 pp).
Extended European Search Report corresponding to EP 13 15 4571.7, completed Oct. 10, 2014 and mailed Oct. 20, 2014; (8 pp).
Extended European Search Report corresponding to EP 14 18 1125.7, completed Oct. 16, 2014 and mailed Oct. 24, 2014; (7 pp).
Extended European Search Report corresponding to EP 14 18 1127.3, completed Oct. 16, 2014 and mailed Nov. 10, 2014; (8 pp).
Extended European Search Report corresponding to EP 14 19 0419.3, completed Mar. 24, 2015 and mailed Mar. 30, 2015; (6 pp).
Chinese Office Action corresponding to CN 201010517292.8 dated Jun. 2, 2015; 13 pp.
Extended European Search Report corresponding to EP 14 17 4814.5, completed Jun. 1, 2015 and mailed Jun. 9, 2015; 8 pp.
Australian Examination Report corresponding to AU 2014200584 dated Jun. 15, 2015; 2 pp.
AU Examination Report corresponding to AU 2010224378 dated Jun. 15, 2015; 2 pp.
Extended European Search Report corresponding to EP 08 72 6500.5, completed Feb. 20, 2014 and mailed Mar. 3, 2014; (7 pp).
Extended European Search Report corresponding to EP 13 19 5919.9, completed Feb. 10, 2014 and mailed Mar. 3, 2014; (7 pp).
Extended European Search Report corresponding to EP 13 19 2123.1, completed Jan. 30, 2014 and mailed Feb. 10, 2014; (8 pp).
Extended European Search Report corresponding to EP 13 19 6816.6, completed Mar. 28, 2014 and mailed Apr. 9, 2014; (9 pp).
Extended European Search Report corresponding to EP 13 19 4995.0, completed Jun. 5, 2014 and mailed Jun. 16, 2014; (5 pp).
Extended European Search Report corresponding to EP 13 19 5019.8, completed Mar. 14, 2014 and mailed Mar. 24, 2014; (7 pp).
Extended European Search Report corresponding to EP 13 19 2111.6, completed Feb. 13, 2014 and mailed Feb. 27, 2014; (10 pp).
Extended European Search Report corresponding to EP 13 19 7958.5, completed Apr. 4, 2014 and mailed Apr. 15, 2014; (8 pp).
Extended European Search Report corresponding to EP 14 15 6342.9, completed Jul. 22, 2014 and mailed Jul. 29, 2014; (8 pp).
Extended European Search Report corresponding to EP 14 15 7195.0, completed Jun. 5, 2014 and mailed Jun. 18, 2014; (9 pp).
Japanese Office Action corresponding to counterpart application JP 2014-216989 mailed Sep. 11, 2015.
European Office Action corresponding to counterpart Int'l Appln No. EP 12 198 776.2 dated Apr. 7, 2015.
European Office Action corresponding to counterpart Int'l Appln No. EP 13 156 297.7 dated Apr. 10, 2015.
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln No. AU 2011250822 dated May 18, 2015.
European Office Action corresponding to counterpart Int'l Appln No. EP 12 186 175.1 dated Jun. 1, 2015.
European Office Action corresponding to counterpart Int'l Appln No. EP 13 180 881.8 dated Jun. 19, 2015.
European Office Action corresponding to counterpart Int'l Appln No. EP 14 157 195.0 dated Jul. 2, 2015.
Extended European Search Report corresponding to counterpart Int'l Appln No. EP 12 19 6902.6 dated Aug. 6, 2015.
Extended European Search Report corresponding to counterpart Int'l Appln No. EP 14 15 2060.1 dated Aug. 14, 2015.
Chinese Office Action corresponding to counterpart Int'l Appln No. CN 201210129787.2 dated Aug. 24, 2015.
Extended European Search Report corresponding to EP 13 18 2911.1, completed Dec. 2, 2013 and mailed Dec. 16, 2013; (8 pp).
Extended European Search Report corresponding to EP 10 25 1795.0, completed Dec. 11, 2013 and mailed Dec. 20, 2013; (6 pp).
European Office Action corresponding to counterpart Int'l Appln. No. EP 15 15 2392.5 dated Aug. 8, 2016.
Canadian Office Action corresponding to counterpart Int'l Appln. No. CA 2,717,683 dated Jun. 17, 2016.
Chinese Notification of Reexamination corresponding to counterpart Int'l Appln. No. CN 201010517292.8 dated Jun. 2, 2015.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 14 15 2060.1 dated Aug. 14, 2015.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2014-216989 mailed Sep. 11, 2015.
Canadian First Office Action corresponding to counterpart Int'l Appln. No. CA 2,686,105 dated Sep. 17, 2015.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2012-040188 mailed Oct. 21, 2015.
European Communication corresponding to counterpart Int'l Appln. No. EP 13 17 6895.4 dated Nov. 5, 2015.
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 201210544552 dated Nov. 23, 2015.
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 201210545228 dated Nov. 30, 2015.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 15 18 0491.1 dated Dec. 9, 2015.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 15 18 3819.0 dated Dec. 11, 2015.
Canadian Office Action corresponding to counterpart Int'l Appln. No. CA 2,697,819 dated Jan. 6, 2016.
Canadian Office Action corresponding to counterpart Int'l Appln. No. CA 2,696,419 dated Jan. 14, 2016.
European Office Action corresponding to counterpart Int'l Appln. No. EP 12 19 8776.2 dated Jan. 19, 2016.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 15 17 4146.9 dated Jan. 20, 2016.
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 201310353628.5 dated Jan. 25, 2016.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 12 19 6912.5 dated Feb. 1, 2016.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2012-098903 mailed Feb. 22, 2016.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 12 19 8753.1 dated Feb. 24, 2016.
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 201410449019.4 dated Mar. 30, 2016.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 16 15 0232.3 dated Apr. 12, 2016.
European Office Action corresponding to counterpart Int'l Appln. No. EP 11 18 3256.4 dated Apr. 20, 2016.
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2012244169 dated May 10, 2016.
European Office Action corresponding to counterpart Int'l Appln. No. EP 10 25 0715.9 dated May 12, 2016.
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 201410778512.0 dated May 13, 2016.
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2012227358 dated May 16, 2016.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2012-040188 mailed May 17, 2016.
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2012244380 dated May 20, 2016.
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2014227480 dated May 21, 2016.
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2012254977 dated May 30, 2016.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 16 15 3647.9 dated Jun. 3, 2016.
Chinese Office Action corresponding to counterpart Int'l Appln. No. CN 201410778512.0, dated May 13, 2016.
Chinese First Office Action corresponding to counterpart Int'l Appln. No. JP 201510409025.1 dated Dec. 28, 2016.
European Office Action corresponding to counterpart Int'l Appln. No. EP 14 17 2681.0 dated May 13, 2016.
Chinese Office Action corresponding to counterpart Int'l Appln. No. CN 201210545228 dated Jun. 29, 2016.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2012-250058 mailed Jun. 29, 2016.
European Office Action corresponding to counterpart Int'l Appln. No. EP 14 15 7997.9 dated Jun. 29, 2016.
Canadian Office Action corresponding to counterpart Int'l Appln. No. CA 2,712,617 dated Jun. 30, 2016.
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 2013103036903 dated Jun. 30, 2016.
Australian Patent Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2012250278 dated Jul. 10, 2016.
Australian Patent Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2012244382 dated Jul. 10, 2016.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2012-255242 mailed Jul. 26, 2016.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2012-268668 mailed Jul. 27, 2016.
European Office Action corresponding to counterpart Int'l Appln. No. EP 14 15 2060.1 dated Aug. 4, 2016.
European Office Action corresponding to counterpart Int'l Appln. No. EP 12 16 5609.4 dated Aug. 5, 2016.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2013-003624 mailed Aug. 25, 2016.
Australian Patent Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2012261752 dated Sep. 6, 2016.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2014-252703 mailed Sep. 26, 2016.
European Office Action corresponding to counterpart Int'l Appln. No. EP 12 19 8776.2 dated Sep. 12, 2016.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2013-000321 mailed Sep. 13, 2016.
Chinese Second Office Action corresponding to counterpart Int'l Appln. No. CN 201310353628.5 dated Sep. 26, 2016.
European Office Action corresponding to counterpart Int'l Appln. No. EP 12 15 2541.4 dated Sep. 27, 2016.
Australian Patent Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2012268923 dated Sep. 28, 2016.
Extended European Search Report corresponding to EP 13 17 7437.4, completed Sep. 11, 2013 and mailed Sep. 19, 2013; (6 pp).
Extended European Search Report corresponding to EP 13 17 7441.6, completed Sep. 11, 2013 and mailed Sep. 19, 2013; (6 pp).
Extended European Search Report corresponding to EP 07 86 1534.1, completed Sep. 20, 2013 and mailed Sep. 30, 2013; (5 pp).
Extended European Search Report corresponding to EP 13 18 3876.5, completed Oct. 14, 2013 and mailed Oct. 24, 2013; (5 pp).
Extended European Search Report corresponding to EP 13 17 1856.1, completed Oct. 29, 2013 and mailed Nov. 7, 2013; (8 pp).
Extended European Search Report corresponding to EP 13 18 0373.6, completed Oct. 31, 2013 and mailed Nov. 13, 2013; (7 pp).
Extended European Search Report corresponding to EP 13 18 0881.8, completed Nov. 5, 2013 and mailed Nov. 14, 2013; (6 pp).
Extended European Search Report corresponding to EP 13 17 6895.4, completed Nov. 29, 2013 and mailed Dec. 12, 2013; (5 pp).
Extended European Search Report corresponding to EP 13 18 7911.6, completed Jan. 22, 2014 and mailed Jan. 31, 2014; (8 pp).
European Search Report corresponding to EP 05 02 2585.3, completed Jan. 25, 2006 and mailed Feb. 3, 2006; 4 pages.
European Search Report corresponding to EP 06 00 4598, completed Jun. 22, 2006; 2 pages.
European Search Report corresponding to EP 06 01 6962.0, completed Jan. 3, 2007 and mailed Jan. 11, 2007; 10 pages.
International Search Report corresponding to International Application No. PCT/US2005/036740, completed Feb. 20, 2007 and mailed Mar. 23, 2007; 8 pages.
International Search Report corresponding to International Application No. PCT/US2007/022713, completed Apr. 21, 2008 and mailed May 15, 2008; 1 page.
International Search Report corresponding to International Application No. PCT/US2008/002981, completed Jun. 9, 2008 and mailed Jun. 26, 2008; 2 pages.
European Search Report corresponding to EP 08 25 1779, completed Jul. 14, 2008 and mailed Jul. 23, 2008; 5 pages.
European Search Report corresponding to EP 08 25 1989.3, completed Mar. 11, 2010 and mailed Mar. 24, 2010; 6 pages.
European Search Report corresponding to EP 10 25 0639.1, completed Jun. 17, 2010 and mailed Jun. 28, 2010; 7 pages.
European Search Report corresponding to EP 10 25 0715.9, completed Jun. 30, 2010 and mailed Jul. 20, 2010; 3 pages.
European Search Report corresponding to EP 05 80 4382.9, completed Oct. 5, 2010 and mailed Oct. 12, 2010; 3 pages.
European Search Report corresponding to EP 10 25 1437.9, completed Nov. 22, 2010 and mailed Dec. 16, 2010; 3 pages.
European Search Report corresponding to EP 09 25 2897.5, completed Feb. 7, 2011 and mailed Feb. 15, 2011; 3 pages.
European Search Report corresponding to EP 10 25 0642.5, completed Mar. 25, 2011 and mailed Apr. 4, 2011; 4 pages.
European Search Report corresponding to EP 11 18 8309.6, completed Dec. 15, 2011 and mailed Jan. 12, 2012; 3 pages.
European Search Report corresponding to EP 12 15 2229.6, completed Feb. 23, 2012 and mailed Mar. 1, 2012; 4 pages.
European Search Report corresponding to EP 12 15 0511.9, completed Apr. 16, 2012 and mailed Apr. 24, 2012; 7 pages.
European Search Report corresponding to EP 12 15 2541.4, completed Apr. 23, 2012 and mailed May 3, 2012; 10 pages.
European Search Report corresponding to EP 12 16 5609.4, completed Jul. 5, 2012 and mailed Jul. 13, 2012; 8 pages.
European Search Report corresponding to EP 12 15 8861.0, completed Jul. 17, 2012 and mailed Jul. 24, 2012; 9 pages.
European Search Report corresponding to EP 12 16 5878.5, completed Jul. 24, 2012 and mailed Aug. 6, 2012; 8 pages.
Extended European Search Report corresponding to EP 12 19 1035.0, completed Jan. 11, 2013 and mailed Jan. 18, 2013; 7 pages.
Extended European Search Report corresponding to EP 12 18 6175.1, completed Jan. 15, 2013 and mailed Jan. 23, 2013; 7 pages.
Extended European Search Report corresponding to EP 12 19 1114.3, completed Jan. 23, 2013 and mailed Jan. 31, 2013; 10 pages.
Extended European Search Report corresponding to EP 12 19 2224.9, completed Mar. 14, 2013 and mailed Mar. 26, 2013; 8 pages.
Extended European Search Report corresponding to EP 12 19 6904.2, completed Mar. 28, 2013 and mailed Jul. 26, 2013; 8 pages.
Extended European Search Report corresponding to EP 12 19 6911.7, completed Apr. 18, 2013 and mailed Apr. 24, 2013; 8 pages.
Extended European Search Report corresponding to EP 07 00 5842.5, completed May 13, 2013 and mailed May 29, 2013; 7 pages.
Extended European Search Report corresponding to EP 12 19 8776.2, completed May 16, 2013 and mailed May 27, 2013; 8 pages.
Extended European Search Report corresponding to EP 12 19 8749.9, completed May 21, 2013 and mailed May 31, 2013; 8 pages.
Extended European Search Report corresponding to EP 13 15 6297.7, completed Jun. 4, 2013 and mailed Jun. 13, 20131; 7 pages.
Extended European Search Report corresponding to EP 13 17 3985.6, completed Aug. 19, 2013 and mailed Aug. 28, 2013; 6 pages.
Extended European Search Report corresponding to EP 13 17 3986.4, completed Aug. 20, 2013 and mailed Aug. 29, 2013; 7 pages.
Related Publications (2)
Number Date Country
20140061280 A1 Mar 2014 US
20170119378 A9 May 2017 US
Provisional Applications (1)
Number Date Country
61696906 Sep 2012 US
Continuations (1)
Number Date Country
Parent 12579605 Oct 2009 US
Child 13419565 US
Continuation in Parts (1)
Number Date Country
Parent 13419565 Mar 2012 US
Child 13955341 US