The present invention relates to a stapling apparatus, and more particularly, to a spring actuated stapler with a simple leaf spring actuation mechanism.
In a spring-actuated stapler, when an external force is applied to the stapler (usually by pressing a cover of the stapler), a spring element is loaded, and at the same time a striking plate is moved from an initial position to a release position. When the striking plate arrives at the release position, the spring element is unloaded to powerfully drive the striking plate from the release position back to the initial position to individually dispense a staple from a staple magazine.
There are numerous spring actuation mechanisms to carry out the above operations, however, efforts have never stopped in designing better ones with improvement in simplicity, preciseness and reliability.
The present invention provides a stapler with a novel leaf spring actuation mechanism. According to the teaching of the present invention, the stapler comprises a striking plate for dispensing a staple from a staple magazine, a leaf spring engaged with the striking plate for driving said striking plate, and an actuation bar for lifting the leaf spring from a first position to a second position whereby lifting the striking plate from an initial position to a release position in which the leaf spring is released from the actuation bar to powerfully drive the striking plate towards the initial position.
In a preferred embodiment, the actuation bar comprises a laterally protruding lug which is adapted to push upward a tab provided on the leaf spring so as to lift the leaf spring when an external force is applied to the actuation bar.
Preferably, the tab disengages itself from the lug when the leaf spring reaches the second position where the striking plate is lifted to the release position.
Preferably, the actuation bar has a front end movable along a guiding ramp when the external force is applied to the actuation bar, thus improving reliability and accuracy of the engagement between the lug of the actuation bar and the tab of the leaf spring.
Preferably, the engagement between the tab and the lug is such that the tab slides on an upper surface of the lug towards an edge of the lug when the front end of the actuation bar moves along the guiding ramp, and drops from the edge of the lug when the leaf spring reaches the second position, whereby releasing the leaf spring from the actuation bar.
The above and other features and advantages of the present invention can be understood better after reading the following detailed description of the preferred embodiment of the present invention with reference to the accompanying drawings, in which:
a schematically and partially illustrates a preferred embodiment of the stapler according to the present invention;
b schematically illustrates the paths of the returning movement of the lugs and tabs in
a-2d are partial perspective views showing the actuation mechanism of the stapler of
Similar to a conventional stapler, the stapler according to the present invention mainly comprises a magazine 40 for accommodating a staple stick 41, a base 50 for placing a work piece 70 (such as a stack of paper) thereon, and a cover 60 for accepting a pressing force from a user for a stapling operation, as illustrated in
The improvement of the present invention is generally in the mechanism for actuating the striking plate 10 during the stapling operation, as will be described in detail below.
As schematically illustrated in
A front end 22 of the leaf spring 20 engages with the striking plate 10 (e.g., by a hole in the striking plate 10) so that the front end 22 of the leaf spring 20 moves together with the striking plate 10, whereby driving the striking plate 10 to move vertically between the initial position and the release position. A back end 23 of the leaf spring 20 is fixed to the magazine 40, for example, on an upper surface 43 of the housing body of the magazine 40.
When there is no external force applied to actuation bar 30, the actuation bar 30 is in an idle position, the leaf spring 20 remains in the lower position and the striking plate 10 rests in the initial position, as shown by the solid lines. During the stapling operation, the leaf spring 20 is lifted from the lower position to the upper position and brings the striking plate 10 from the initial position to the release position. At the same time, the leaf spring 20 is loaded when it is lifted upwards.
In the stapling operation, an external force (“F” in
In the preferred embodiment illustrated in
A pair of lugs 31 are provided on the actuation bar 30 (as best shown in
Preferably, when the front end 32 moves upward along the ramp 33, the tabs 21 are able to slide backward along an upper surface of the lugs 31. Thus, the upper surface of the lugs 31 function as a ramp for the tabs 21. In a preferred design, the lugs 31 may assume an angle (e.g., 30 degree) from a main flat body of the actuation bar 30.
When the leaf spring 20 reaches the upper position and therefore the striking plate 10 reaches the release position, the tabs 21 reach back edges 31a of lugs 31 and drop from the lugs 31 to disengage themselves from the lugs 31. Under the biasing force loaded in the leaf spring 20, the tabs 21 return to their initial positions (i.e., the lower position shown in solid lines), and the load in the leaf spring 20 is released, which powerfully drives the striking plate 10 from the release position to the initial position where the striking plate 10 strikes a stapler into the work piece 70.
Preferably, a biasing mechanism is provided to the actuation bar 30 so that after the external force applied to the actuation bar 30 is released, the actuation bar 30 can automatically return to its initial position (as shown in solid lines) under a biasing force. In the embodiment shown in
It is important that the lugs 31 of the actuation bar 30 are not obstructed by the tabs 21 (which have returned to their initial positions) on their way of returning to their initial positions after the external force is removed. As illustrated in
The engagement between the lugs 31 and the tabs 21 are illustrated more clearly in perspective views 2a-2d, which show the actuation mechanism according to the present invention in various operational stages.
a shows the actuation mechanism in a position before or after a stapling operation, in which the actuation bar 30 rests in its initial idle position because there is no external force applied on it. The lugs 31 on the actuation bar 30 are not engaged with the tabs 21 of the leaf spring 20. The striking plate 10 rests in the initial position, and the leaf spring 20 is in the lower position.
During the loading stage of the stapling operation, when the front end 32 of the actuation bar 30 is pushed forward by an external force, the lugs 31 come into engagement with the tabs 31 and push the tabs 21 upward when the front end 32 moves upward along the ramp 33, until the leaf spring 20 reaches the upper position where the striking plate 10 is lifted to the release position, as shown in
After the leaf spring 20 reaches the upper position and the striking plate 10 reaches the release position as shown in
After the stapling operation is finished, the external force is removed from the actuation bar 30. Under the biasing force from the resilient lever 34 (see
Although the above has described several preferred embodiments, it is appreciated that numerous adaptations, changes, variations and modifications are possible to a person skilled in the art without departing the spirit of the present invention. For example, the flat shaped tabs 21 may be implemented as a pair of laterally protruding rods mounted on the leaf spring 20. The resilient lever 34 can be replaced by any proper biasing mechanism for returning the actuation bar 30 toward its initial position. For example, the actuation bar 30 can also be a leaf spring with the back end 35 connected to the cover 60. Therefore, the scope of the present invention is solely intended to be defined by the accompanying claims.
Number | Date | Country | |
---|---|---|---|
Parent | 11483886 | Jul 2006 | US |
Child | 13271772 | US | |
Parent | 11009369 | Dec 2004 | US |
Child | 11483886 | US |