1. Technical Field
The present invention relates to a flat type stapler in which pointed end portions of a staple are bent flat after it has penetrated, for example, sheets of paper to be fastened together.
2. Background Art
A stapler is stationery for fastening together sheets of paper and is one of inevitable office materials. There have been proposed many staplers. In staplers, there are two types of staplers: one is a type in which pointed end portions of a stapler are bent in a curved fashion after it has penetrated sheets of paper to be fastened together, and the other type is a flat type in which pointed end portions of a stapler are bent flat after it has penetrated sheets of paper to be fastened together.
A general flat type stapler includes a base portion having a clincher, a magazine for accommodating strips of staples, a handle that is pivotally attached to rotate to a position on the base portion which lies in the vicinity of one end thereof, a driving blade which is disposed at a distal end portion of the handle for driving a staple in the magazine towards the clincher in association with the rotation of the handle, a table which has a clincher surrounding portion and performs a clinching operation by raising and lowering the clincher surrounding portion relative to the clincher, a slider made slidable in such a manner as to permit a lowering operation of the clincher surrounding portion at a predetermined timing in relation to the clinching operation by the table and a slider pushing member which is fixed to the handle in such a manner as to cause the slider to slide when the handle rotates.
The stapler configured as described above is such that when a distance between the handle and the base portion is reduced by gripping the handle and the base portion altogether, since the slider push member causes the slider to slide, a locked state of the table and the slider is released, whereby the table lowers, and a staple is pressed between the driving blade and the clincher in such a manner that pointed ends thereof are bent so as to fasten together sheets of paper.
In addition, Japanese Examined Utility Model Publication No. 63-43027 and Japanese Examined Utility Model Publication No. 2-48229 propose staplers in which a clincher is made up of two rotatable members. In these staplers, when a distance between a handle and a base portion is narrowed, the clincher rotates in such a manner that an upper portion of the clincher is made into a flat plane so as to bend flat pointed ends of a staple.
In staplers, there are two types of staplers: one is a hand-held stapler and the other is a desktop stapler. A desktop stapler has substantially the same basic construction as that of a hand-held stapler but is larger in size than the hand-held stapler. In addition, since the weight of the user is exerted on to a handle member to lower the handle member in such a state that the stapler is placed on a desk or the like at its base portion, a large number of sheets of paper can be fastened together at one time.
In the desktop stapler that has been described above, although a large magnitude of force becomes necessary to fasten together a large number of sheets of paper, since the handle is pivotally attached to rotate to a position on the base portion which lies in the vicinity of a rear end thereof, when such a large magnitude of force is applied to the vicinity of a distal end of the handle, there has been caused a problem that the rear end of the stapler is raised. In addition, in order to solve this problem, there is a method in which the base portion is formed long at the front thereof, but this has triggered another problem that the base portion is enlarged.
The present invention has been made in view of the problems described as being inherent in the related art, and an object thereof is to provide a flat type stapler in which a large number of sheets of paper can be fastened together with a small magnitude of force and the balance of the stapler is stabilized in stapling a batch of papers.
According to the invention, there is provided a stapler having a base portion which comprises a rotatable clinching portion, a magazine portion which is pivotally attached to rotate to a position on the base portion which lies in the vicinity of a rear end thereof by a spindle, a push-down portion which is pivotally attached to rotate to a position on the base portion which lies in the vicinity of the rear end thereof in such a manner as to be disposed above the magazine portion and which has a driving blade in the vicinity of a front end thereof, and a handle member which is pivotally attached to rotate to a handle support member which is fixed to the base portion in a position on the handle member which lies in the vicinity of a front end thereof and which is adapted to be brought into contact with the vicinity of a front end of an upper portion of the push-down member so as to lower the push-down member, wherein the clinching portion comprises a slider which permits a lowering operation of the clinching portion, wherein a plurality of sliding support shafts are penetrated through the slider, the slider sliding vertically relative to the sliding support shafts, and wherein the handle member comprises a roller in a position which is in contact with the push-down portion and lowers the push-down portion based on the principle of leverage in which the portion which is pivotally attached to rotate to the handle support member acts as a fulcrum, a rear end portion acts as a point of effort and the contact point with the push-down member acts as a point of application.
In addition, the magazine portion is of a front-loading type which comprises a slidable magazine main body, a magazine accommodating portion for accommodating the magazine main body and a magazine main body locking mechanism. Additionally, the magazine main body locking mechanism has a rotatable rear end locking member for locking and releasing a rear end of the magazine main body and a rotation arm for controlling the rotation of the rear end locking member.
Furthermore, the handle support member comprises a paper holding mechanism which is made up of a paper stopper member and a control member. The paper stopper member is made up of two side plates which are disposed in such a manner as to oppositely face each other and a connecting plate for connecting together the side plates in the vicinity of upper ends thereof and is disposed inside the handle support member in such a manner that a front wall of the handle support member and the connecting plate of the paper stopper member oppositely face each other. The control member is connected with the connecting plate of the paper stopper member via a sliding hole formed in the front wall of the handle support member. The paper stopper member is caused to move vertically by causing the control member to slide along the sliding hole.
Additionally, the driving blade is formed integrally with a leaf spring which comprises a slider pushing portion for locking the slider. The slider comprises a sliding support portion which is locked by the slider pushing portion, and a surface of the sliding support portion which is locked by the slider pushing portion is formed into a curved surface which matches the thickness of a bundle of papers to be fastened together.
According to the stapler of the invention, since the roller is disposed between the handle member and the push-down portion so as to fasten together sheets of paper by making use of the principle of leverage, a thick bundle of papers can be fastened together with a small magnitude of force. In addition, since the push-down portion is rotatably attached to the position on the base portion which lies in the vicinity of the rear end thereof and the handle member is rotatably attached to the position on the handle support member which lies in the vicinity of the front end thereof, the center of gravity of force applied at the time of clinching is situated in the vicinity of the center of the base portion, and since the front of the base portion does not have to be formed large, the stapler can be provided which is small in size and which can fasten together a large number of sheets of paper.
In addition, since the magazine portion is made to be of the front loading type, the handle member or the like does not have to be rotated largely when accommodating staples therein, whereby the accommodation of staples can be implemented through simple accommodating work.
Furthermore, since the paper holding mechanism is attached to the handle support member, the position where sheets of paper are clinched to be fastened together can be held constant. In addition, in the stapler in which the front end face of the sliding support portion of the slider which is locked with the slider pushing portion is formed into the curved shape which matches the thickness of the bundle of papers to be fastened together, the clinching timing is not changed even though the number of sheets of paper to be fastened together is changed, whereby the stable fastening or stapling is enabled.
A stapler 1 according to a best mode for carrying out the invention is such as to have a base portion 2 which includes a rotatable clinching portion 10, a magazine portion 3 which is pivotally attached to rotate to a position on the base portion 2 which lies in the vicinity of a rear end thereof by a spindle 25 and is disposed above the base portion 2, a push-down portion 5 which is pivotally attached to rotate to a position on the base portion 2 which lies in the vicinity of the rear end thereof, which has a driving blade 46 in the vicinity of a front end thereof and which is disposed above a magazine portion 3, and a handle member 6 which is pivotally attached to rotate to a handle support member 7 which is fixed to the base portion 2 at a portion which lies in the vicinity of a front end thereof and which is adapted to lower the push-down portion 5 by being brought into contact with the vicinity of a front end of an upper portion of the push-down portion 5.
In addition, the clinching portion 10 has a slider 13 which slides along sliding support shafts 17 to permit a lowering operation of the clinching portion 10 and the handle member 6 includes a roller 61 in a position which is in contact with the push-down portion 5. This handle member 6 is such as to lower the push-down portion 5 based on the principle of leverage in which the portion where the handle member 6 is pivotally attached to the handle support member 7 acts as a fulcrum, a rear end portion of the handle member 6 acts as a point of effort, and a contact point of the handle member 6 with the push-down portion 5 acts as a point of application.
In addition, the magazine portion 3 is of a front loading type which includes a slidable magazine main body 31, a magazine accommodating portion 32 for accommodating the magazine main body 31, and a magazine main body locking mechanism, and the magazine main body locking mechanism has a rotatable rear end locking member 55 for locking or releasing a rear end of the magazine main body 31 and a rotating arm 56 for controlling the rotation of the rear end locking member 55.
Furthermore, the handle support member 7 includes a paper holding mechanism 8 which is made up of a paper stopper member 81 and a control member 82. The paper stopper member 81 of the paper holding mechanism 8 is made up of a two side plates which are disposed in such a manner as to oppositely face each other and a connecting plate which connects together the side plates near to upper ends thereof, and each of the two oppositely disposed plates has an inclined portion and a vertical portion. The paper stopper member 81 is disposed inside the handle support member 7 in such a manner that a front wall 7b of the handle support member 7 and the connecting plate of the paper stopper member 81 oppositely face each other. The control member 82 of the paper holding mechanism 8 penetrates through a siding hole 7c formed in the front wall 7b of the handle support member 7 from an outside to be connected to the connecting plate of the paper stopper member 81, so as to move the paper stopper member 81 vertically by control member 82 being caused to slide along the sliding hole 7c.
In addition, the driving blade 46 is formed integrally with a leaf spring 45 which includes slider pushing portions 47 which lock on the slider 13. The slider 13 includes sliding support portions 13a which are locked by the slider pushing portions 47, and a surface of each of the sliding support portions 13a which are locked by the slider pushing portions 47 is formed into a curved surface which matches the thickness of sheets of paper to be fastened together.
An embodiment of the invention will be described based on the drawings. As is shown in
In addition, the magazine portion 3 and the push-down portion 5 of the stapler 1 are pivotally attached to rotate to a position on the base member 2 which lies in the vicinity of a rear end of the base portion 2. The handle member 6 lowers the push-down portion 5 based on the principle of leverage in which a portion of the handle member 6 which is pivotally attached to the handle support member 7 acts as a fulcrum, a rear end portion of the handle member 6 acts as a point of effort and a contact point of the handle member 6 with the push-down member 5 acts as a point of application. In addition, the handle member 6 includes a roller 61 at the point of application.
Furthermore, as is shown in
The base portion 2 is made up of a pedestal member 11 which constitutes a pedestal of the stapler 1 and the clinching portion 10 which is pivotally attached to rotate about a position on the pedestal member 11 which lies in the vicinity of a rear end thereof as an axis.
This pedestal member 11 is a member which constitute a base of the stapler 1 of the embodiment, and the magazine portion 3 and the push-down portion 5 are pivotally attached to rotate to a position on the pedestal member 11 which lies in the vicinity of the rear end thereof. In addition, as is shown in
The side walls of the pedestal member 11 are formed in such a manner that they are tall at their rear ends and become lower in height as they extend towards distal ends thereof and each have a screw locking hole 11a in the vicinity of a front end and a shaft hole 11b and an attaching portion 11c in the vicinity of a rear end thereof. As is shown in
In addition, as is shown in
As is shown in
As is shown in
In addition, the slider holding member 12 has penetrating insertion holes in the vicinity of a distal end of the flat plate and a spring attaching projection 12d in the vicinity of the rear end of the flat plate. As is shown in
The slider 13 permits the lowering operation of the clinching portion 10, and as is shown in
In addition, a front end face of the sliding support member 13a with which the slider pushing portion 47, which will be described later, is brought into locking engagement is formed into a curved surface which matches the thickness of sheets of paper to be fastened together. The reason the front end face of the sliding support member 13a is formed into the curved surface is that the stapler 1 of this embodiment is made to fasten or staple a batch of sheets of paper ranging from 2 to 60 sheets and that since the thickness of a batch of sheets of paper to be placed on the table 14 changes largely, in order to have substantially the same clinching timing irrespective of the thickness of sheets of paper to be placed on the table 14, the timing at which the slider pushing portions 47 push the slider 13 to cause it to slide rearwards needs to remain the same irrespective of the thickness of sheets of paper to be placed on the table 14. Consequently, the front end face of the sliding support portion 13a is formed into the curved surface which is associated with a difference in timing at which the slider pushing portions 47 move rearwards which is caused by a change in thickness of a batch of sheets of paper to be placed on the table 14.
In addition, the slider 13 has a penetrating insertion hole 13c in the vicinity of a rear end of the flat plate and includes a plurality of longitudinally long shaft moving holes 13b in the side walls from the vicinities of front ends to centers of the side walls. The spring attaching projection 12d of the slider holding member 12 is inserted and passed through the penetrating insertion hole 13c, and the sliding support shafts 17 are inserted and passed through the shaft moving holes 13b, and a longitudinal length of the shaft moving hole 13b substantially coincides with a distance over which the slider 13 is allowed to slide.
The reason the sliding support shafts 17 are made to inserted and passed through the shaft moving holes 13b is that since the stapler 1 of the embodiment is of the desktop type, the stapler 1 is large in size, compared with the hand-held stapler, and that in the case of a large stapler like that, since the sliding distance of the slider 13 is increased, the slider 13 is prevented from being inclined while it is sliding and the sliding operation is prevented from becoming too heavy to be performed due to friction produced between the flat plate of the slider 13 and the table 14. Namely, by the sliding support shafts 17 being inserted and passed through the slider 13 so that the slider 13 slides on the sliding support shafts 17, the slider 13 is prevented from being inclined when it is sliding, and the production of friction between the flat plate of the slider 13 and the table 14 can be suppressed due to a gap being produced therebetween.
Furthermore, as is shown in
In addition, the slider locking portions 23b of the locking member 23 are brought into contact with a lower surface of the flat plate of the slider 13, and a lowering operation of the clinching portion 10 is prevented due to the contact of the slider 13 with the slider locking portions 23b . Additionally, when the slider 13 slides rearwards and a front end of the flat plate moves further rearwards than the slider locking portions 23b of the slider locking member 23, the holding of the lowering operation of the slider 13 is released, whereby the clinching portion 10 is allowed to lower.
Sheets of paper are placed on the table 14 for fastening, and as is shown in
In addition, the table 14 has a clincher surrounding portion 14a in the vicinity of a distal end of the flat plate, stopping projections 14b in the vicinity of the rear of the clincher surrounding portion 14a, cutouts 14c in the vicinity of a rear end thereof and a spring attaching projection, not shown, on a rear surface in the vicinity of a distal end portion thereof. The clincher surrounding portion 14a is an opening which has substantially the same shape as an external shape of the clincher holding member 16 which holds movable clincher 15, so that a portion of the clincher holding member 16 which lies in the vicinity of an upper end thereof is fitted therein. Additionally, the stopping projections 14b are brought into locking engagement with upper ends of the side walls of the pedestal member 11 when the clinching portion 10 performs a lowering operation so as to stop the lowering operation. Furthermore, the slider pushing portions 47 of the leaf spring 45, which will be described later, are fitted in the cutouts 14c, and an end portion of the first biasing spring 20 shown in
Furthermore, the stopping claws 14d are screwed to positions on the side walls of the table 14 which lie in the vicinity of front ends thereof, and as is shown in
As is shown in
In addition, the rail 15b of the clinching member is formed to bend distal ends of a staple along the rail 15b when the distal ends of the staple are pressed against the rail 15b . The shaft hole 15c is used when the movable clincher 15 is pivotally attached to the clincher holding member 16. Additionally, since the slider 13 is locked by the slider locking portions 23b of the locking member 23, when the clinching portion 10 is in such a state that the clinching portion 10 is prevented from rotating, the movable clincher 15 is accommodated in an interior of the clincher holding member 16 as is shown in
The clincher holding member 16 is made up of two plates which each have a laterally-wide wide portion 16a and a laterally-narrow narrow portion 16b and a hook-like cross section. The two plates are disposed in such a manner that the wide portion 16a of one of the plates oppositely faces the narrow portion 16b of the other plate, and the movable clincher 15 is pivotally attached in place between the two plates. A width of the wide portion 16a is made to coincide substantially with a longitudinal length of the pressing surface 15a of the movable clincher 15, and the movable clincher 15 is pivotally attached to the clincher holding member 16 in such a manner that portions lying near distal end portions of surfaces which intersect the pressing surfaces 15a are overlapped each other with distal end portions of the two clinching members being prevented from hitting each other even when the two clinching members rotate abut their associated shafts.
As is shown in
As is shown in
The second biasing spring 22 is a leaf spring which is fixed to a position on the flat plate of the pedestal member 11 which lies in the vicinity of the rear end of the flat plate at one end of the same spring and is pivotally attached to a rear surface of a magazine main body 31, which will be described later, at the other end of the spring. This second biasing spring 22 biases the magazine portion 3 upwards.
In addition, as is shown in
The magazine main body 31 includes a narrow rectangular flat plate which is formed slightly wider than the width of staples to be loaded, side walls which rise vertically from side ridge portions of the flat plate, a front wall which is formed by bending distal end portions of the side walls inwards substantially at right angles, and a rear wall which is formed by erecting vertically a U-shaped cut portion formed in a position on the flat plate which lies in the vicinity of a rear end thereof. In addition, openings are formed in the side walls of the magazine main body 31 in positions which lie near centers of the respective side walls in such a manner that stoppers 36d on a magazine lid 36, which will be described later, are brought into locking engagement with the openings, respectively.
Additionally, as is shown in
Furthermore, the magazine main body 31 includes a fixing claw 31d and spring locking projections 31c on the flat plate. The fixing claw 31d is inserted and passed through a penetrating insertion hole 33a which is formed in a flat plate of a sliding assist member 33, which will be described later, and a tension spring is attached between the spring locking projection 31c and a spring locking projection 33b of the sliding assist member 33. In addition, the magazine main body 31 includes shaft holes formed in the side walls in positions near the rear ends thereof, so as to be pivotally attached to rotate to the pedestal member 11 by the spindle 25.
The sliding assist member 33 assists staples accommodated within the magazine main body 31 and a staple pushing member 41 possessed by a staple pushing mechanism to slide. In addition, the sliding assist member 33 is made up of the narrow rectangular flat plate having a width which is slightly smaller than the width of the staples, side walls which rise vertically from ridge portions of the flat plate and front locking wall 33c which rises vertically from a front end of the flat plate.
Additionally, the sliding assist member 33 has penetrating insertion holes 33a and a spring locking projection 33b on the flat plate. The fixing claw 31d formed on the flat plate of the magazine main body 31 is inserted and passed through the penetrating insertion hole 33a, and one end of the tension spring is attached to the spring locking projection 33b. Furthermore, a sliding knob 37 that is mounted on a front locking wall 33c is fixed to the vicinity of a distal end portion of the sliding assist member 33.
In addition, the sliding assist member 33 is disposed in such a manner that the flat plate of the sliding assist member 33 is overlapped on the flat plate of the magazine main body 31, whereby the fixing claws 31d of the magazine main body 31 are inserted and passed through the penetrating insertion holes 33a, and a tension spring is attached to the spring locking projections 31c, 33b of the magazine main body 31 and the sliding assist member 33, respectively. Additionally, gaps are formed between the side walls of the magazine main body 31 and the side walls of the sliding assist member 33, respectively, and by legs of staples and side walls of the staple pushing member 41 being fitted in the gaps, the staples and the staple pushing member 41 are allowed to slide along the sliding assist member 33. The staple pushing member 41 will be described in detail later.
The sliding assist member 33 is allowed to slightly slide because a play exists between the fixing claws 31d and the penetrating insertion holes 33a, and by moving the sliding knob 37 back and forth a staple jammed in the driving port 31a can be removed, while the sliding assist member 33 is made stationary at normal times due to the tension spring being provided in such a manner as to extend between the spring locking projections 31c, 33b.
As is shown in
The magazine receiving member 35 has a narrow rectangular flat plate and side walls which rise vertically from side ridge portion of the flat plate, and a front end of the flat plate is formed in such a manner as to project further forwards than front ends of the side walls. In addition, the side walls have shaft holes near rear ends thereof and are pivotally attached to rotate to the pedestal member 11. Furthermore, openings are provided in the side walls in positions near centers thereof in such a manner that the stoppers 36d of the magazine lid 36 are inserted and passed therethrough.
The magazine lid 36 has a narrow rectangular flat plate and side walls which are suspended vertically from side ridge portions of the flat plate. Rear ends of the side walls are formed in such a manner as to project further than a rear end of the flat plate, and a cutout 36a is formed from a lateral center lying in the vicinity of a front end to a lateral center lying in the vicinity of the rear end of the flat plate. A sliding support piece 41a of the staple pushing member 41, which will be described later, is made to slide along the cutout 36a. In addition, the stoppers 36d are formed on the side walls of the magazine lid 36 in positions near the longitudinal centers thereof, and the stoppers 36d are brought into locking engagement with the openings formed in the side walls of the magazine main body 31, respectively, so as to prevent the magazine main body 31 from being caused to jump out to the front with force.
In addition, the magazine lid 36 has a driving blade locking projection 36c which is formed at the front end of the flat plate in such a manner that a surface of the magazine lid 36 continues to extend from the front end thereof. A sprig support member 44, which will be described later, is fixed to the vicinity of the front end of the magazine lid 36 as is shown in
The staple pushing mechanism includes the staple pushing member 41 for pushing a staple accommodated in the magazine main body 31 against the front end thereof and the coil spring 43 for biasing the staple pushing member 41. In addition, the staple pushing member 41 is made up of a rectangular flat plate, side walls which extend downwards vertically from ridge portions of the flat plate, bent back portions which are bent laterally inwards at right angles from lower ends of the side walls and a sliding support piece 41a which is formed in the vicinity of a rear end of the flat plate and is attached slidably to the magazine main body 31 in such a manner as to straddle the sliding assist member 33.
The coil spring 43 is a tension spring and is attached to the spring attaching portion 36b which is formed in the vicinity of the rear end of the magazine lid 36 at one end thereof. The coil spring 43 is bent or turned back at the spring support member 44 provided in the vicinity of the distal end of the magazine lid 36 so as to be attached to the staple pushing member 41 at the other end thereof.
In addition, the staple pushing mechanism biases the staple pushing member 41 forwards by virtue of the elastic force of the coil spring 43, and when staples are loaded in the magazine main body 31, the staple pushing member 41 pushes a staple against the front end of the magazine main body 31, whereby there is always a staple which is positioned at the front end of the magazine main body 31.
As is shown in
In addition, in the rear end locking member 55, as is shown in
In addition, the rotation control portion 55c of the rear end locking member 55 is, as is shown in
As is shown in
Thus, in the magazine main body locking mechanism, by the grip portion 56c of the rotating arm 56 being pushed downwards, the rear end locking member 55 is rotated upwards on the spindle 25, so as to release the locked state between the torsion spring 57 and the rear end locking projection 31b, whereby the magazine main body 31 is allowed to slide. In addition, when the locked state at the rear is released, the magazine main body 31 projects forwards as a result of being biased forwards by the staple pushing mechanism and is stopped in a predetermined position by the stoppers 36d on the magazine lid 36. Because of this, there is caused no situation in which the magazine main body 31 jumps out forwards with force, and by the magazine main body 31 being pulled out by gripping the grip member 38 after it has been stopped by the stoppers 36d, stapled can be made to be accommodated in the magazine main body 31.
In addition, when the grip portion 56c of the rotating arm 56 is moved upwards, the locking engagement between the rear end of the rotating arm 56 and the rear end locking member 55 is released, the rear end locking member 55 is allowed to restore its original position by virtue of the elastic force of the torsion spring 57.
As is shown in
As is shown in
The leaf spring 45 is such that the driving blade 46 at the front end and the slider pushing members 47 in the vicinity of the rear end are integrally formed, and the driving blade 46 includes an opening which locks on the driving blade locking projection 36c on the magazine lid 36, whereby when the stapler 1 is used, a staple situated at the distal end portion of the magazine main body 31 is driven out from the driving port 31a towards the movable clincher 15 lying therebelow.
In addition, the slider pushing portions 47 are formed in such a manner as to project obliquely rearwards from the side ridge portions of the leaf spring 45 and have outwardly bent thick portions 47a formed at rear ends thereof which are brought into locking engagement with the slider 13. The slider pushing portions 47 are situated, respectively, laterally outside of the side walls of the slider 13. Then, as is shown in
Then, since a vertical position where the leaf spring 45 starts to be deflected changes depending upon the thickness of a batch of papers placed on the table 14, the position where the rear ends of the slider pushing portions 47 move to the rear differ depending upon the thickness of a batch of papers placed on the table 14. However, as has been described above, the front end surfaces of the sliding support portions 13a of the slider 13 are formed into the curved surfaces, the timing at which the slider pushing portions 47 start to pushing the slider 13 remains the same, and hence, there is caused no situation in which the clinching timing goes wrong.
As is shown in
In addition, the second push-down member 52 has attaching holes in the vicinity of rear ends of the side walls and shaft holes in the vicinity of the rear end of the connecting plate 52a . These attaching holes are rotatably attached to the shaft holes 11c of the pedestal member 11, and the crank member 53 is pivotally attached in the shaft holes provided in the vicinity of the rear ends of the side walls. Then, the second push-down member 52 is rotatably attached to the pedestal member 11 and is connected with the first push-down member 51 by the crank member 53.
As is shown in
Then, in the push-down member 5, when a force is applied to the second push-down member 52 from thereabove, the second push-down member 52 is lowered, and the first push-down member 51, which is connected to the second push-down member 52 via the crank member 53, is also lowered in a linked fashion with the lowering of the second push-down member 52, whereby the magazine portion 3 which is disposed below the first push-down member 51 is lowered. In addition, when the first push-down member 51 rotates upwards, the second push-down member 52, which is connected to the first push-down member 51 via the crank member 53, also rotates upwards.
As is shown in
In addition, a shaft hole is provided in the handle member fixing portion in a position lying above a front upper end thereof, and the handle member 6 is fixed to the shaft holes formed in the handle member fixing portions via a handle shaft 62. Furthermore, the front wall 7b is formed in such a manner as to extend obliquely from a front upper to a rear lower position, and a sliding hole 7c is provided in a center of the front wall 7b in such a manner that a control member 82 of a paper holding mechanism 8, which will be described later, slides therealong.
Additionally, the handle support member 7 includes the paper holding mechanism 8 which is used to make a paper fastening position constant when fastening together sheets of paper, and this paper holding mechanism 8 is made up of a paper stopper member 81 with which sheets of paper placed on the table 14 for fastening are brought into abutment and the control member 82 for controlling the operation of the paper stopper member 81. In addition, the paper stopper portion 81 is made up of two side plates which are disposed in such a manner as to oppositely face each other and a connecting plate which connects together the two side plates in the vicinity of upper ends of the side plates. The control member 82 is made into a screw which includes a grip portion at a screw head.
In addition, the side plate of the paper stopper member 81 has an inclined portion which is formed to have the same inclination as that of the front wall 7b of the handle support member 7 which is positioned thereabove and a vertically suspended portion which is normal to a resting plane situated therebelow on which the stapler 1 rests when it is placed thereon, and the inclined portions of the side plates are connected together by a connecting plate. In addition, the paper stopper member 81 is disposed inside the handle support member 7 in such a manner that the front wall 7b of the handle support member 7 oppositely faces the connecting plate of the paper stopper member 81, and the control member 82 penetrates the sliding hole 7c formed in the front wall 7b of the handle support member 7 from the outside so as to be screwed to the connecting plate of the paper stopper member 81. Furthermore, a tension spring is attached to the vicinity of an upper end of the paper stopper member 81 and the handle member 6, so as to bias the paper stopper member 81 upwards.
In this paper holding mechanism 8, when the control member 82 is screwed loosely, the control member 82 is caused to slide to an upper end of the sliding hole 7c by virtue of the elastic force of the tension spring attached to the paper stopper member 81, and similarly, the paper stopper member 81 is also caused to move upwards. Therefore, a lower end of the vertically suspended portion which is a lower end of the paper stopper member 81 moves upwards to a position where it lies sideways of the magazine portion 3 from a position shown in
In addition, when the control member 82 is caused to slide along the sliding hole 7c to a lower end of the same hole, the paper stopper member 81 is also caused to move to the lower end while being supported by the control member 82, the lower ends of the side plates of the paper stopper member 81 move to the vicinity of the upper ends of the side walls of the pedestal member 11. Then, by screwing the control member 82 to the paper stopper member 81 strongly so that the handle support member 7 is held between the control member 82 and the paper stopper member 81, the control member 82 is made stationary, and when sheets of paper to be fastened are placed on the table 14 and are then pushed rearwards, the sheets of paper are brought into locking engagement with the front ends of the vertically suspended portions of the paper stopper member 81 to be stopped thereat. By implementing clinching in this state, papers can be clinched in the constant position at all times. Note that a distance between the movable clincher 15 and the vertically suspended portions of the paper stopper member 81 is made to be 10 mm, and therefore, clinching can be carried out in a position situated 10 mm apart from the end of the papers.
In this way, with the paper holding mechanism 8, by sliding the control member 82 along the sliding hole 7c, clinching can be implemented in the constant position which is 10 mm or 20 mm apart from the end of papers to be fastened together.
In addition, in this embodiment, while the control member 82 takes the form of the screw, the invention is not limited thereto, and hence, members of other forms or other constructions can be adopted, provided that the paper stopper member 81 can be stopped thereby. For example, a construction can be adopted in which a control member 82 is made up of a pin which has a head at one end and a locking portion at the other end and a spring wound round a circumference of the pin, the pin is inserted and passed through the sliding hole 7c from the outside and is further inserted and passed through the connecting plate of the paper stopper member 81, and the locking portion is made to be locked on a rear surface of the connecting plate, a pusher spring being positioned between the head of the pin and the handle support member 7. By adopting the construction described above, although at normal times, the locking portion of the pin and the paper stopper member 81 are strongly locked on each other by virtue of the elastic force of the pusher spring so as to make the paper stopper member 81 stationary, when the head of the pin is pushed in, the locking engagement between the locking portion of the pin and the paper stopper member 81 is weakened, whereby the pin is allowed to slide along the sliding hole 7c.
The handle member 6 is made up of a rectangular flat plate and side walls which extend downwards vertically from the flat plate, and as is shown in
Then, the handle member 6 pushes down the portion of the second push-down member 52 which lies in the vicinity of the front end thereof so as to lower the same by making use of the principle of leverage in which the handle shaft 62, which is the shaft positioned in the vicinity of the front end of the stapler 1, acts as a fulcrum, the rear end of the handle member 6 acts as a point of effort and a point where the roller 61 is in contact with the upper surface of the second push-down member 52 acts as a point of application.
Since the stapler 1 of the embodiment makes use of the principle of leverage in the way described above, the handle member 6 can be made to rotate downwards with a weak force, and since the roller 61 is used at the point of application, friction produced with the second push-down member 52 can also be reduced. In addition, since the construction is adopted in which the portion of the second push-down member 52 is pushed down which lies in the vicinity of the front end thereof, load to be exerted on to the second push-down member 52 may only have to be small, whereby sheets of paper can be fastened together with weaker force.
In addition, although not shown, in the staple 1 of the embodiment, covers are attached, respectively, to the base portion 2, the magazine portion 3, the push-down portion 5, the handle member 6, and the handle support member 7 so as to cover them individually.
Next, the operation of the stapler 1 of the embodiment will be described. With sheets of paper to be fastened together being placed on the table 14 in such a state that the handle member 6 is opened or released as is shown in
When the force is applied further to the handle member 6 from thereabove, as is shown in
Then, when the force is applied further to the handle member 6 from thereabove, as is shown in
Thereafter, when the handle member 6 is released, the clinching portion 10 is caused to rotate upwards by being biased by the first biasing spring 20, the magazine portion 3 is caused to rotate upwards by being biased by the second biasing spring 22, the push-down portion 5 is caused to rotate upwards by being biased by the leaf spring 45 and the third biasing spring 49, and the handle member 6 is also caused to rotate upwards by being biased by the torsion spring 63, whereby the handle member 6 is allowed to restore its original position shown in
According to the stapler 1 of the embodiment, by the slider 13 being caused to slide along the sliding support shafts 17 by causing the sliding shafts 17 to be inserted and passed through the slider 13, even in the slider 13 is large in size, there is caused no such situation that the slider 13 is inclined during sliding. In addition, since the gap can be produced between the flat plate of the slider 13 and the table 14, the generation of friction between the flat plate of the slider 13 and the table 14 can be suppressed. Since this enables the smooth sliding of the slider 13, the clinching portion 10 is allowed to lower in a smooth fashion, whereby the force required for fastening together sheets of paper can be made small and fastening errors can be prevented.
In addition, by the handle member 6 adapted to make use of the principle of leverage being attached to the position above the second push-rod member 52, the force required for clinching is made small, and hence, a thick batch of papers can be fastened together with a small magnitude of force. Furthermore, by attaching the roller 61 to the position of the handle member 6 which acts as the point of application, the friction between the handle member 6 and the second push-rod member 52 is reduced, thereby making it possible to fasten together sheets of paper with a smaller magnitude of force.
Additionally, by the push-down portion 5 being attached rotatably to the vicinity of the rear end of the base portion 2 and the handle member 6 being attached rotatably to the vicinity of the front end of the handle support member 7, the center of gravity of the stapler 1 at the time of clinching moves to the vicinity of the center of the base portion 2, and hence, since the front of the base portion 2 does not have to be formed large, the stapler 1 can be provided which is small in size and which can fasten together a large number of sheets of paper.
In addition, by the magazine portion 3 being formed into the front loading type, staples can be loaded in the magazine main body 31 from the front without opening the push-down portion 5 and the handle member 6, whereby the design of the push-down portion 5 and the handle member 6 is facilitated.
Furthermore, by the paper holding mechanism being attached to the handle support member 7, the clinching position can be maintained constant, whereby the stapler 1 can be provided which can fasten together sheets of paper in a stable fashion.
In addition, by the front end face of the sliding support portions 13a of the slider 13 with which the slider pushing portions 47 are brought into locking engagement being formed into the curved surface which can match the thickness of a batch of papers to be fastened together, there is caused no such situation that clinching timing changes depending upon the thickness of sheets of paper to be fastened together, whereby the stapler 1 can be provided which can fasten together sheets of paper in a stable fashion.
Note that the invention is not limited to the embodiment that has been described heretofore and the techniques described in the embodiment can be applied to various products.
Number | Date | Country | Kind |
---|---|---|---|
2007-242404 | Sep 2007 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
1962874 | Polzer | Jun 1934 | A |
3739973 | Abrams | Jun 1973 | A |
4619392 | Won | Oct 1986 | A |
5421502 | Huang | Jun 1995 | A |
5516025 | Eriksson | May 1996 | A |
5758813 | Kikuchi et al. | Jun 1998 | A |
5765742 | Marks | Jun 1998 | A |
5791543 | Udagawa et al. | Aug 1998 | A |
5816470 | Plato et al. | Oct 1998 | A |
6981627 | Tsai | Jan 2006 | B2 |
7140526 | Matsukawa | Nov 2006 | B2 |
7216791 | Marks | May 2007 | B1 |
7431186 | Hsu | Oct 2008 | B2 |
7621432 | Chiang et al. | Nov 2009 | B2 |
7665643 | Huang | Feb 2010 | B2 |
20070023474 | Smith et al. | Feb 2007 | A1 |
20070199971 | Chen | Aug 2007 | A1 |
20070221699 | Hsu | Sep 2007 | A1 |
20080029568 | Hsu | Feb 2008 | A1 |
20090159637 | Maemori | Jun 2009 | A1 |
20090289095 | Huang | Nov 2009 | A1 |
20100012701 | Huang et al. | Jan 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20090072003 A1 | Mar 2009 | US |