A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
This invention relates generally to the field of encryption. More particularly, this invention relates to a dual encryption method and apparatus particularly useful for scrambling packetized video content such as that provided by cable and satellite television systems.
The above-referenced commonly owned patent applications describe inventions relating to various aspects of methods generally referred to herein as partial encryption or selective encryption. More particularly, systems are described therein wherein selected portions of a particular selection of digital content are encrypted using two (or more) encryption techniques while other portions of the content are left unencrypted. By properly selecting the portions to be encrypted, the content can effectively be encrypted for use under multiple decryption systems without the necessity of encryption of the entire selection of content. In some embodiments, only a few percent of data overhead is needed to effectively encrypt the content using multiple encryption systems. This results in a cable or satellite system being able to utilize Set-top boxes or other implementations of conditional access (CA) receivers from multiple manufacturers in a single system—thus freeing the cable or satellite company to competitively shop for providers of Set-top boxes.
The features of the invention believed to be novel are set forth with particularity in the appended claims. The invention itself however, both as to organization and method of operation, together with objects and advantages thereof, may be best understood by reference to the following detailed description of the invention, which describes certain exemplary embodiments of the invention taken in conjunction with the accompanying drawings in which:
While this invention is susceptible of embodiment in many different forms, there is shown in the drawings and will herein be described in detail specific embodiments, with the understanding that the present disclosure is to be considered as an example of the principles of the invention and not intended to limit the invention to the specific embodiments shown and described. In the description below, like reference numerals are used to describe the same, similar or corresponding parts in the several views of the drawings.
The terms “scramble” and “encrypt” and variations thereof are used synonymously herein. Also, the term “television program” and similar terms can be interpreted in the normal conversational sense, as well as a meaning wherein the term means any segment of AN content that can be displayed on a television set or similar monitor device. The term “video” is often used herein to embrace not only true visual information, but also in the conversational sense (e.g., “video tape recorder”) to embrace not only video signals but associated audio and data. The term “legacy” as used herein refers to existing technology used for existing cable and satellite systems. The exemplary embodiments disclosed herein are decoded by a television Set-Top Box (STB), but it is contemplated that such technology will soon be incorporated within television receivers of all types whether housed in a separate enclosure alone or in conjunction with recording and/or playback equipment or Conditional Access (CA) decryption module or within a television set itself. The present document generally uses the example of a “dual partial encryption” embodiment, but those skilled in the art will recognize that the present invention can be utilized to realize multiple partial encryption without departing from the invention. Partial encryption and selective encryption are used synonymously herein.
Turning now to
Head end 100 receives scrambled content from one or more suppliers, for example, using a satellite dish antenna 108 that feeds a satellite receiver 110. Satellite receiver 110 operates to demodulate and descramble the incoming content and supplies the content as a stream of clear (unencrypted) data to a selective encryption encoder 114. The selective encryption encoder 114, according to certain embodiments, uses two passes or two stages of operation, to encode the stream of data. Encoder 114 utilizes a secondary conditional access system (and thus a second encryption method) in conjunction with the primary encryption encoder 104 which operates using a primary conditional access system (and thus a primary encryption method). A user selection provided via a user interface on a control computer 118 configures the selective encryption encoder 114 to operate in conjunction with either a Motorola or Scientific Atlanta cable network (or other cable or satellite network).
It is assumed, for purposes of the present embodiment of the invention, that the data from satellite receiver 110 is supplied as MPEG (Moving Pictures Expert Group) compliant packetized data. In the first stage of operation the data is passed through a Special Packet Identifier 122. Special Packet Identifier 122 identifies specific programming that is to be dual partially encrypted according to the present invention. The Special Packet Identifier 122 signals the Special Packet Duplicator 126 to duplicate special packets. The Packet Identifier (PID) Remapper 130, under control of the computer 118, remaps the PIDs of the elementary streams (ES) (i.e., audio, video, etc.) of the programming that shall remain clear and the duplicated packets to new PID values. The payload of the elementary stream packets are not altered in any way by Special Packet Identifier 122, Special Packet Duplicator 126, or PID remapper 1306. This is done so that the primary encryption encoder 104 will not recognize the clear unencrypted content as content that is to be encrypted.
The packets may be selected by the special packet identifier 122 according to one of the selection criteria described in the above-referenced applications or may use another selection criteria such as those which will be described later herein. Once these packets are identified in the packet identifier 122, packet duplicator 126 creates two copies of the packet. The first copy is identified with the original PID so that the primary encryption encoder 104 will recognize that it is to be encrypted. The second copy is identified with a new and unused PID, called a “secondary PID” (or shadow PID) by the PID Remapper 122. This secondary PID will be used later by the selective encryption encoder 114 to determine which packets are to be encrypted according to the secondary encryption method.
As previously noted, the two primary commercial providers of cable head end encryption and modulation equipment are (at this writing) Motorola, Inc. and Scientific-Atlanta, Inc. While similar in operation, there are significant differences that should be discussed before proceeding since the present selective encryption encoder 114 is desirably compatible with either system. In the case of Motorola equipment, the Integrated Receiver Transcoder (IRT), an unmodulated output is available and therefore there is no need to demodulate the output before returning a signal to the selective encryption encoder 114, whereas no such unmodulated output is available in a Scientific-Atlanta device. Also, in the case of current Scientific-Atlanta equipment, the QAM, the primary encryption encoder carries out a PID remapping function on received packets. Thus, provisions are made in the selective encryption encoder 114 to address this remapping.
In addition to the above processing, the Program Specific Information (PSI) is also modified to reflect this processing. The original, incoming Program Association Table (PAT) is appended with additional Program Map Table (PMT) entries at a PMT inserter 134. Each added PMT entry contains the new, additional streams (remapped & shadow PIDs) created as part of the selective encryption (SE) encoding process for a corresponding stream in a PMT of the incoming transport. These new PMT entries will mirror their corresponding original PMTs. The program numbers will be automatically assigned by the selective encryption encoder 114 based upon open, available program numbers as observed from the program number usage in the incoming stream. The selective encryption System 114 displays the inserted program information (program numbers, etc) on the configuration user interface of control computer 118 so that the Multiple System Operator (MSO, e.g., the cable system operator) can add these extra programs into the System Information (SI) control system and instruct the system to carry these programs in the clear.
The modified transport PSI is illustrated as 144 in
In order to assure that the Scientific-Atlanta PID remapping issue is addressed, if the selective encryption encoder 114 is configured to operate with a Scientific-Atlanta system, the encoder adds a user private data descriptor to each elementary stream found in the original PMTs in the incoming data transport stream (TS) per the format below (of course, other formats may also be suitable):
The selective encryption encoder 114 of the current embodiment also adds a user private data descriptor to each elementary stream placed in the temporary PMTs created as described above per the format below:
The “????” in the tables above is the value of the “orig_pid” which is a variable while the “??” is a “stream_type” value. The data field for “orig_pid” is a variable that contains the original incoming PID or in the case of remap or shadow PIDs, the original PIDs, the that this stream was associated with. The data field “stream_type” is a variable that describes the purpose of the stream based upon the chart below:
These descriptors will be used later to re-associate the legacy elementary streams, which are encrypted by the Scientific-Atlanta, Inc. primary encryption encoder 104, with the corresponding shadow and remapped clear streams after PID remapping in the Scientific-Atlanta, Inc. modulator prior to the second phase of processing of the Selective Encryption Encoder. Those skilled in the art will appreciate that the above specific values should be considered exemplary and other specific values could be used without departing from the present invention.
In the case of a Motorola cable system being selected in the selective encryption encoder configuration GUI, the original PAT and PMTs can remain unmodified, providing the system does not remap PIDs within the primary encryption encoder. The asterisks in
The data stream from selective encryption encoder 114 is passed along to the input of the primary encryption encoder 104 which first carries out a PID filtering process at 150 to identify packets that are to be encrypted. At 152, in the case of a Scientific-Atlanta device, a PID remapping may be carried out. The data are then passed along to an encrypter 154 that, based upon the PID of the packets encrypts certain packets (in accord with the present invention, these packets are the special packets which are mapped by the PID Remapper 130 to the original PID of the incoming data stream for the current program). The remaining packets are unencrypted. The data then passes through a PSI modifier 156 that modifies the PSI data to reflect changes made at the PID remapper. The data stream is then modulated by a quadrature amplitude modulation (QAM) modulator 158 (in the case of the Scientific-Atlanta device) and passed to the output thereof. This modulated signal is then demodulated by a QAM demodulator 160. The output of the demodulator 160 is directed back to the selective encryption encoder 114 to a PSI parser 164.
The second phase of processing of the transport stream for selective encryption is to recover the stream after the legacy encryption process is carried out in the primary encryption encoder 104. The incoming Program Specific Information (PSI) is parsed at 164 to determine the PIDs of the individual elementary streams and their function for each program, based upon the descriptors attached in the first phase of processing. This allows for the possibility of PID remapping, as seen in Scientific-Atlanta primary encryption encoders. The elementary streams described in the original program PMTs are located at PSI parser 164 where these streams have been reduced to just the selected packets of interest and encrypted in the legacy CA system format in accord with the primary encryption method at encoder 104. The elementary streams in the temporary programs appended to the original PSI are also recovered at elementary stream concatenator 168. The packets in the legacy streams are appended to the remapped content, which is again remapped back to the PID of the legacy streams, completing the partial, selective encryption of the original elementary streams.
The temporary PMTs and the associated PAT entries are discarded and removed from the PSI. The user private data descriptors added in the first phase of processing are also removed from the remaining original program PMTs in the PSI. For a Motorola system, no PMT or PAT reprocessing is required and only the final secondary encryption of the transport stream occurs.
During the second phase of processing, the SE encoder 114 creates a shadow PSI structure that parallels the original MPEG PSI, for example, having at PAT origin at PID 0x000. The shadow PAT will be located at a PID specified in the SE encoder configuration as indicated by the MSO from the user interface. The shadow PMT PIDs will be automatically assigned by the SE encoder 114 dynamically, based upon open, available PID locations as observed from PID usage of the incoming stream. The PMTs are duplicates of the original PMTs, but also have CA descriptors added to the entire PMT or to the elementary streams referenced within to indicate the standard CA parameters and optionally, shadow PID and the intended operation upon the associated elementary stream. The CA descriptor can appear in the descriptor1( ) or descriptor2( ) loops of the shadow PMT. If found in descriptor1( ), the CA_PID called out in the CA descriptor contains the non-legacy ECM PID which would apply to an entire program. Alternatively, the ECM PID may be sent in descriptor2( ). The CA descriptor should not reference the selective encryption elementary PID in the descriptor1( ) area.
This shadow PSI insertion occurs regardless of whether the selective encryption operation is for a Motorola or Scientific Atlanta cable network. The elementary streams containing the duplicated packets of interest that were also assigned to the temporary PMTs are encrypted during this second phase of operation at secondary packet encrypter in the secondary CA format based upon the configuration data of the CA system attached using the DVB (Digital Video Broadcasting) Simulcrypt™ standard.
The data stream including the clear data, primary encrypted data, secondary encrypted data and other information are then passed to a PSI modifier 176 that modifies the transport PSI information by deletion of the temporary PMT tables and incorporation of remapping as described above. The output of the PSI modifier 176 is modulated at a QAM modulator 180 and delivered to the cable plant 184 for distribution to the cable system's customers.
The control computer 118 may be a personal computer based device that is used to control the selective encryption encoder as described herein. An exemplary personal computer based controller 100 is depicted in
The partial encryption process described above utilizes any suitable conditional access encryption method at encrypters 154 and 172. However, these encryption techniques are selectively applied to the data stream using a technique such as those described below or in the above-referenced patent applications. In general, but without the intent to be limiting, the selective encryption process utilizes intelligent selection of information to encrypt so the entire program does not have to undergo dual encryption. By appropriate selection of appropriate data to encrypt, the program material can be effetively scrambled and hidden from those who desire to hack into the system and illegally recover commercial content without paying. The MPEG (or similar format) data that are used to represent the audio and video data does so using a high degree of reliance on the redundancy of information from frame to frame. Certain data can be transmitted as “anchor” data representing chrominance and luminance data. That data is then often simply moved about the screen to generate subsequent frames by sending motion vectors that describe the movement of the block. Changes in the chrominance and luminance data are also encoded as changes rather than a recoding of absolute anchor data.
The MPEG specification defines a slice as “ . . . a series of an arbitrary number of consecutive macroblocks. The first and last macroblocks of a slice shall not be skipped macroblocks. Every slice shall contain at least one macroblock. Slices shall not overlap. The position of slices may change from picture to picture. The first and last macroblock of a slice shall be in the same horizontal row of macroblocks. Slices shall occur in the bitstream in the order in which they are encountered, starting at the upper-left of the picture and proceeding by raster-scan order from left to right and top to bottom . . . .”
By way of example, to represent an entire frame of NTSC information, the frame (picture) is divided into 30 slices (but in general j slices may make up a full frame). Each slice contains 33 variable length macroblocks (but in general can include k variable length macroblocks) of information representing a 16×16 pixel region of the image. This is illustrated as frame 250 of
It is noted that the portion of the picture that generally carries information of most interest to the viewer is approximately the center of the image. A suitable tradeoff between bandwidth and encryption security consistent with embodiments of the present invention involves encryption of selected portions of the image which can be deemed the “active region” of the image. This region is somewhat difficult to define and is somewhat content dependent. But, generally speaking it is approximately an upper central area of the frame. According to one embodiment consistent with the present invention, macroblocks in this active region are encrypted while macroblocks extending somewhat radially from this central region are encrypted with less frequency.
For an interlaced high definition video image, the video frame is made up of 68 slices each carrying 120 macroblocks. For such an image, the table below is one embodiment of how a star pattern can be realized:
For a progressive high definition video image, the video frame is made up of 45 slices each carrying 80 macroblocks. For such an image, the table below is one embodiment of how a star pattern can be realized:
Similar star patterns can be devised for any other video frame definition without departing from the invention. Moreover, variations of star patterns in which varying numbers of rays extend in various directions from a central or upper central area of the frame at various angles can be devised without departing from the invention.
As defined above, star pattern 274 is slightly asymmetrical with a weighting of the central area of the star being situated approximately one slice above center. Star pattern 274 has rays or points of the star extending vertically and horizontally across the entire frame. The star pattern 274 further has rays defined by the corners of the central region that extend diagonally outward from the center.
Those skilled in the art will understand that the above definition of the star pattern 274 is but one such definition within the scope of the invention. The number of intracoded macroblocks per slice or number of slices in a particular section of the star can be varied without departing from the present invention. Moreover, other star-like patterns can be used in place of the squared off pattern 274 depicted in
Thus, in accordance with one embodiment consistent with the present invention, an packet containing an intra-coded macroblock in a star pattern such as that defined in the above table will be encrypted while the remaining packets will either be selectively encrypted according to another criterion, or transmitted in the clear. Depending upon the actual definition of the active region, the overhead required for dual encryption of a star pattern will vary. In other embodiments, all macroblocks within this star pattern can be encrypted.
In preferred embodiments, intra-coded macroblocks (or packets containing such macroblocks) are encrypted rather than all macroblocks within the star pattern, but this is not to be considered limiting. Intra-coded macroblocks contain anchor data such as absolute chrominance and/or luminance data used by inter-coded macroblocks to derive an image. By encryption of these intra-coded macroblocks, the inter-coded macroblocks are robbed of their point of reference and the image is substantially disrupted.
In this encryption technique, the active portion of the screen is deemed to be the area of most interest to the viewer. Although some intelligible video information may be present outside the star pattern, the encrypted star pattern is likely to produce a major annoyance to an unauthorized viewer. Moreover, the packetizing of the star pattern will likely result in additional data being encrypted. By encrypting the intra-coded blocks, inter-coded data will be deprived of a reference and thus produce the desired scrambling effect. This technique can be used alone or with other selective encryption techniques to produce low overhead encryption. Additionally, the present invention is suitable not only for multiple encryption scenarios, but also for single encryption of a video signal. In accordance with certain embodiments of the present invention, any technique that detects macroblocks containing intra-coded data within the star pattern can be used as a selection criterion for selecting data or data packets for encryption.
Multiple combinations of the encryption techniques are possible to produce encryption that has varying bandwidth requirements, varying levels of security and varying complexity. For example, the above star pattern could be encrypted along with packets containing slice headers, or the above star pattern could be encrypted along with packets containing slice headers and the first macroblock following each slice header.
Numerous other combinations of the above encryption techniques as well as those described in the above-referenced patent applications and other partial encryption techniques can be combined to produce a rich pallette of encryption techniques from which to select. In accordance with certain embodiments of the present invention, a selection of packets to encrypt can be made by the control computer 118 in order to balance encryption security with bandwidth and in order to shift the encryption technique from time to time to thwart hackers.
An authorized set-top box such as 300 illustrated in
While the above embodiments describe encryption of packets containing the selected data type, it is also possible to encrypt the raw data prior to packetizing without departing from this invention and such encryption is considered equivalent thereto.
Those skilled in the art will recognize that the present invention has been described in terms of exemplary embodiments based upon use of a programmed processor (e.g., processor 118, processors implementing any or all of the elements of 114 or implementing any or all of the elements of 300). However, the invention should not be so limited, since the present invention could be implemented using hardware component equivalents such as special purpose hardware and/or dedicated processors which are equivalents to the invention as described and claimed. Similarly, general purpose computers, microprocessor based computers, micro-controllers, optical computers, analog computers, dedicated processors and/or dedicated hard wired logic may be used to construct alternative equivalent embodiments of the present invention.
Those skilled in the art will appreciate that the program steps and associated data used to implement the embodiments described above can be implemented using disc storage as well as other forms of storage such as for example Read Only Memory (ROM) devices, Random Access Memory (RAM) devices; optical storage elements, magnetic storage elements, magneto-optical storage elements, flash memory, core memory and/or other equivalent storage technologies without departing from the present invention. Such alternative storage devices should be considered equivalents.
The present invention, as described in certain embodiments herein, is implemented using a programmed processor executing programming instructions that are broadly described above that can be stored on any suitable electronic storage medium or transmitted over any suitable electronic communication medium or otherwise be present in any computer readable or propagation medium. However, those skilled in the art will appreciate that the processes described above can be implemented in any number of variations and in many suitable programming languages without departing from the present invention. For example, the order of certain operations carried out can often be varied, additional operations can be added or operations can be deleted without departing from the invention. Error trapping can be added and/or enhanced and variations can be made in user interface and information presentation without departing from the present invention. Such variations are contemplated and considered equivalent.
Software code and/or data embodying certain aspects of the present invention may be present in any computer readable medium, transmission medium, storage medium or propagation medium including, but not limited to, electronic storage devices such as those described above, as well as carrier waves, electronic signals, data structures (e.g., trees, linked lists, tables, packets, frames, etc.) optical signals, propagated signals, broadcast signals, transmission media (e.g., circuit connection, cable, twisted pair, fiber optic cables, waveguides, antennas, etc.) and other media that stores, carries or passes the code and/or data. Such media may either store the software code and/or data or serve to transport the code and/or data from one location to another. In the present exemplary embodiments, MPEG compliant packets, slices, tables and other data structures are used, but this should not be considered limiting since other data structures can similarly be used without departing from the present invention.
While the invention has been described in conjunction with specific embodiments, it is evident that many alternatives, modifications, permutations and variations will become apparent to those skilled in the art in light of the foregoing description. Accordingly, it is intended that the present invention embrace all such alternatives, modifications and variations as fall within the scope of the appended claims.
This application is a continuation in part of patent applications entitled “Critical Packet Partial Encryption” to Unger et al., Ser. No. 10/038,217; patent applications entitled “Time Division Partial Encryption” to Candelore et al., Ser. No. 10/038,032; entitled “Elementary Stream Partial Encryption” to Candelore, Ser. No. 10/037,914; entitled “Partial Encryption and PID Mapping” to Unger et al., Ser. No. 10/037,499; and entitled “Decoding and Decrypting of Partially Encrypted Information” to Unger et al., Ser. No. 10/037,498 all of which were filed on Jan. 2, 2002 and are hereby incorporated by reference herein. This application is also related to and claims priority benefit of U.S. Provisional patent application Ser. No. 60/372,901 filed Apr. 16, 2002, entitled “Method for Partially Scrambling Content by Encryption of Intracoded Macroblock in the Center of the TV Image” to Candelore, et al.; and U.S. Provisional patent application Ser. No. 60/355,326 filed Feb. 8, 2002, entitled “Analysis of Content Selection Methods”, to Candelore. These applications are also hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3852519 | Court | Dec 1974 | A |
4381519 | Wilkinson et al. | Apr 1983 | A |
4419693 | Wilkinson | Dec 1983 | A |
4521853 | Guttag | Jun 1985 | A |
4634808 | Moerder | Jan 1987 | A |
4700387 | Hirata | Oct 1987 | A |
4703351 | Kondo | Oct 1987 | A |
4703352 | Kondo | Oct 1987 | A |
4710811 | Kondo | Dec 1987 | A |
4712238 | Gilhousen et al. | Dec 1987 | A |
4722003 | Kondo | Jan 1988 | A |
4739510 | Jeffers et al. | Apr 1988 | A |
4772947 | Kono | Sep 1988 | A |
4785361 | Brotby | Nov 1988 | A |
4788589 | Kondo | Nov 1988 | A |
4815078 | Shimura | Mar 1989 | A |
4845560 | Kondo et al. | Jul 1989 | A |
4887296 | Horne | Dec 1989 | A |
4890161 | Kondo | Dec 1989 | A |
4914515 | Van Luyt | Apr 1990 | A |
4924310 | von Brandt | May 1990 | A |
4944006 | Citta et al. | Jul 1990 | A |
4953023 | Kondo | Aug 1990 | A |
4989245 | Bennett | Jan 1991 | A |
4995080 | Bestler et al. | Feb 1991 | A |
5018197 | Jones et al. | May 1991 | A |
5023710 | Kondo et al. | Jun 1991 | A |
5091936 | Katznelson et al. | Feb 1992 | A |
5122873 | Golin | Jun 1992 | A |
5138659 | Kelkar et al. | Aug 1992 | A |
5142537 | Kutner et al. | Aug 1992 | A |
5144662 | Welmer | Sep 1992 | A |
5144664 | Esserman et al. | Sep 1992 | A |
5159452 | Kinoshita et al. | Oct 1992 | A |
5196931 | Kondo | Mar 1993 | A |
5208816 | Seshardi et al. | May 1993 | A |
5237424 | Nishino et al. | Aug 1993 | A |
5237610 | Gammie et al. | Aug 1993 | A |
5241381 | Kondo | Aug 1993 | A |
5247575 | Sprague et al. | Sep 1993 | A |
5258835 | Kato | Nov 1993 | A |
5319707 | Wasilewski et al. | Jun 1994 | A |
5319712 | Finkelstein et al. | Jun 1994 | A |
5325432 | Gardeck et al. | Jun 1994 | A |
5327502 | Katata | Jul 1994 | A |
5341425 | Wasilewski et al. | Aug 1994 | A |
5359694 | Concordel | Oct 1994 | A |
5379072 | Kondo | Jan 1995 | A |
5381481 | Gammie et al. | Jan 1995 | A |
5398078 | Masuda et al. | Mar 1995 | A |
5400401 | Wasilewski et al. | Mar 1995 | A |
5416651 | Uetake et al. | May 1995 | A |
5416847 | Boze | May 1995 | A |
5420866 | Wasilewski | May 1995 | A |
5428403 | Andrew et al. | Jun 1995 | A |
5434716 | Sugiyama et al. | Jul 1995 | A |
5438369 | Citta et al. | Aug 1995 | A |
5444491 | Lim | Aug 1995 | A |
5444782 | Adams, Jr. et al. | Aug 1995 | A |
5455862 | Hoskinson | Oct 1995 | A |
5469216 | Takahashi et al. | Nov 1995 | A |
5471501 | Parr et al. | Nov 1995 | A |
5473692 | Davis | Dec 1995 | A |
5481554 | Kondo | Jan 1996 | A |
5481627 | Kim | Jan 1996 | A |
5485577 | Eyer et al. | Jan 1996 | A |
5491748 | Auld, Jr. et al. | Feb 1996 | A |
5528608 | Shimizume | Jun 1996 | A |
5535276 | Ganesan | Jul 1996 | A |
5539823 | Martin et al. | Jul 1996 | A |
5539828 | Davis | Jul 1996 | A |
5553141 | Lowry et al. | Sep 1996 | A |
5555305 | Robinson et al. | Sep 1996 | A |
5561713 | Suh | Oct 1996 | A |
5568552 | Davis | Oct 1996 | A |
5574787 | Ryan | Nov 1996 | A |
5582470 | Yu | Dec 1996 | A |
5583576 | Perlman et al. | Dec 1996 | A |
5583863 | Darr, Jr. et al. | Dec 1996 | A |
5590202 | Bestler et al. | Dec 1996 | A |
5598214 | Kondo et al. | Jan 1997 | A |
5600721 | Kitazato | Feb 1997 | A |
5606359 | Youden et al. | Feb 1997 | A |
5608448 | Smoral et al. | Mar 1997 | A |
5615265 | Coutrot | Mar 1997 | A |
5617333 | Oyamada et al. | Apr 1997 | A |
5625715 | Trew et al. | Apr 1997 | A |
5629981 | Nerlikar | May 1997 | A |
5652795 | Eillon et al. | Jul 1997 | A |
5663764 | Kondo et al. | Sep 1997 | A |
5666293 | Metz et al. | Sep 1997 | A |
5699429 | Tamer et al. | Dec 1997 | A |
5703889 | Shimoda et al. | Dec 1997 | A |
5717814 | Abecassis | Feb 1998 | A |
5726711 | Boyce | Mar 1998 | A |
5732346 | Lazaridis et al. | Mar 1998 | A |
5742680 | Wilson | Apr 1998 | A |
5742681 | Giachettie et al. | Apr 1998 | A |
5751280 | Abbott et al. | May 1998 | A |
5751743 | Takizawa | May 1998 | A |
5751813 | Dorenbos | May 1998 | A |
5754650 | Katznelson | May 1998 | A |
5754658 | Aucsmith | May 1998 | A |
5757417 | Aras et al. | May 1998 | A |
5757909 | Park | May 1998 | A |
5768539 | Metz et al. | Jun 1998 | A |
5796786 | Lee | Aug 1998 | A |
5796829 | Newby et al. | Aug 1998 | A |
5796840 | Davis | Aug 1998 | A |
5802176 | Audebert | Sep 1998 | A |
5805700 | Nardone et al. | Sep 1998 | A |
5805712 | Davis | Sep 1998 | A |
5805762 | Boyce et al. | Sep 1998 | A |
5809147 | De Lange et al. | Sep 1998 | A |
5815146 | Youden et al. | Sep 1998 | A |
5818934 | Cuccia | Oct 1998 | A |
5825879 | Davis | Oct 1998 | A |
5850218 | LaJoie et al. | Dec 1998 | A |
5852290 | Chaney | Dec 1998 | A |
5852470 | Kondo et al. | Dec 1998 | A |
5870474 | Wasilewski et al. | Feb 1999 | A |
5894320 | Vancelette | Apr 1999 | A |
5894516 | Brandenburg | Apr 1999 | A |
5915018 | Aucsmith | Jun 1999 | A |
5922048 | Emura | Jul 1999 | A |
5923755 | Birch et al. | Jul 1999 | A |
5930361 | Hayashi et al. | Jul 1999 | A |
5933500 | Blatter et al. | Aug 1999 | A |
5940738 | Rao | Aug 1999 | A |
5949877 | Traw et al. | Sep 1999 | A |
5949881 | Davis | Sep 1999 | A |
5963909 | Warren et al. | Oct 1999 | A |
5973679 | Abbott et al. | Oct 1999 | A |
5973722 | Wakai et al. | Oct 1999 | A |
5999622 | Yasukawa et al. | Dec 1999 | A |
5999698 | Nakai et al. | Dec 1999 | A |
6005561 | Hawkins et al. | Dec 1999 | A |
6011849 | Orrin | Jan 2000 | A |
6012144 | Pickett | Jan 2000 | A |
6016348 | Blatter et al. | Jan 2000 | A |
6021199 | Ishibashi | Feb 2000 | A |
6021201 | Bakhle et al. | Feb 2000 | A |
6026164 | Sakamoto et al. | Feb 2000 | A |
6028932 | Park | Feb 2000 | A |
6049613 | Jakobsson | Apr 2000 | A |
6055314 | Spies et al. | Apr 2000 | A |
6055315 | Doyle et al. | Apr 2000 | A |
6057872 | Candelore | May 2000 | A |
6058186 | Enari | May 2000 | A |
6058192 | Guralnick et al. | May 2000 | A |
6061451 | Muratani et al. | May 2000 | A |
6064748 | Hogan | May 2000 | A |
6065050 | DeMoney | May 2000 | A |
6069647 | Sullivan et al. | May 2000 | A |
6070245 | Murphy, Jr. et al. | May 2000 | A |
6072872 | Chang et al. | Jun 2000 | A |
6072873 | Bewick | Jun 2000 | A |
6073122 | Wool | Jun 2000 | A |
6088450 | Davis et al. | Jul 2000 | A |
6105134 | Pinder et al. | Aug 2000 | A |
6108422 | Newby et al. | Aug 2000 | A |
6115821 | Newby et al. | Sep 2000 | A |
6118873 | Lotspiech et al. | Sep 2000 | A |
6134551 | Aucsmith | Oct 2000 | A |
6148082 | Slattery et al. | Nov 2000 | A |
6154206 | Ludtke | Nov 2000 | A |
6157719 | Wasilewski et al. | Dec 2000 | A |
6181334 | Freeman et al. | Jan 2001 | B1 |
6185369 | Ko et al. | Feb 2001 | B1 |
6185546 | Davis | Feb 2001 | B1 |
6189096 | Haverty | Feb 2001 | B1 |
6192131 | Geer et al. | Feb 2001 | B1 |
6199053 | Herbert et al. | Mar 2001 | B1 |
6204843 | Freeman et al. | Mar 2001 | B1 |
6209098 | Davis | Mar 2001 | B1 |
6215484 | Freeman et al. | Apr 2001 | B1 |
6226618 | Downs | May 2001 | B1 |
6229895 | Son et al. | May 2001 | B1 |
6230194 | Frailong et al. | May 2001 | B1 |
6230266 | Perlman et al. | May 2001 | B1 |
6236727 | Ciacelli et al. | May 2001 | B1 |
6240553 | Son et al. | May 2001 | B1 |
6246720 | Kutner et al. | Jun 2001 | B1 |
6256747 | Inohara et al. | Jul 2001 | B1 |
6263506 | Ezaki et al. | Jul 2001 | B1 |
6266416 | Sigbjornsen et al. | Jul 2001 | B1 |
6266480 | Ezaki et al. | Jul 2001 | B1 |
6272538 | Holden et al. | Aug 2001 | B1 |
6278783 | Kocher et al. | Aug 2001 | B1 |
6289455 | Kocher et al. | Sep 2001 | B1 |
6292568 | Akins, III et al. | Sep 2001 | B1 |
6292892 | Davis | Sep 2001 | B1 |
6307939 | Vigarie | Oct 2001 | B1 |
6311012 | Cho et al. | Oct 2001 | B1 |
6324288 | Hoffman | Nov 2001 | B1 |
6351538 | Uz | Feb 2002 | B1 |
6378130 | Adams | Apr 2002 | B1 |
6389533 | Davis et al. | May 2002 | B1 |
6389537 | Davis et al. | May 2002 | B1 |
6415031 | Colligan et al. | Jul 2002 | B1 |
6415101 | deCarmo et al. | Jul 2002 | B1 |
6430361 | Lee | Aug 2002 | B2 |
6445738 | Zdepski et al. | Sep 2002 | B1 |
6449718 | Rucklidge et al. | Sep 2002 | B1 |
6453115 | Boyle | Sep 2002 | B1 |
6456985 | Ohtsuka | Sep 2002 | B1 |
6459427 | Mao et al. | Oct 2002 | B1 |
6463152 | Takahashi | Oct 2002 | B1 |
6466671 | Maillard et al. | Oct 2002 | B1 |
6505032 | McCorkle et al. | Jan 2003 | B1 |
6505299 | Zeng et al. | Jan 2003 | B1 |
6510554 | Gorden et al. | Jan 2003 | B1 |
6519693 | Debey | Feb 2003 | B1 |
6529526 | Schneidewend | Mar 2003 | B1 |
6543053 | Li et al. | Apr 2003 | B1 |
6549229 | Kirby et al. | Apr 2003 | B1 |
6557031 | Mimura et al. | Apr 2003 | B1 |
6587561 | Sered et al. | Jul 2003 | B1 |
6640145 | Hoffberg et al. | Oct 2003 | B2 |
6650754 | Akiyama et al. | Nov 2003 | B2 |
6654389 | Brunheroto et al. | Nov 2003 | B1 |
6678740 | Rakib et al. | Jan 2004 | B1 |
6681326 | Son et al. | Jan 2004 | B2 |
6684250 | Anderson et al. | Jan 2004 | B2 |
6697944 | Jones et al. | Feb 2004 | B1 |
6714650 | Maillard et al. | Mar 2004 | B1 |
6754276 | Harumoto et al. | Jun 2004 | B1 |
6772340 | Peinado et al. | Aug 2004 | B1 |
6788690 | Harri | Sep 2004 | B2 |
6826185 | Montanaro et al. | Nov 2004 | B1 |
6891565 | Dieterich | May 2005 | B1 |
6895128 | Bohnenkamp | May 2005 | B2 |
6904520 | Rosset et al. | Jun 2005 | B1 |
6917684 | Tatebayashi et al. | Jul 2005 | B1 |
6938162 | Nagai et al. | Aug 2005 | B1 |
6976166 | Herley et al. | Dec 2005 | B2 |
7039938 | Candelore | May 2006 | B2 |
7065213 | Pinder | Jun 2006 | B2 |
7127619 | Unger et al. | Oct 2006 | B2 |
20010030959 | Ozawa et al. | Oct 2001 | A1 |
20010036271 | Javed | Nov 2001 | A1 |
20010051007 | Teshima | Dec 2001 | A1 |
20020003881 | Reitmeier et al. | Jan 2002 | A1 |
20020026587 | Talstra et al. | Feb 2002 | A1 |
20020046406 | Chelehmal et al. | Apr 2002 | A1 |
20020047915 | Misu | Apr 2002 | A1 |
20020059425 | Belfiore et al. | May 2002 | A1 |
20020083317 | Ohta et al. | Jun 2002 | A1 |
20020083438 | So et al. | Jun 2002 | A1 |
20020097322 | Monroe et al. | Jul 2002 | A1 |
20020108035 | Herley et al. | Aug 2002 | A1 |
20020116705 | Perlman et al. | Aug 2002 | A1 |
20020126890 | Katayama et al. | Sep 2002 | A1 |
20020129243 | Nanjundiah | Sep 2002 | A1 |
20020150239 | Carny et al. | Oct 2002 | A1 |
20020164022 | Strasser et al. | Nov 2002 | A1 |
20020170053 | Peterka et al. | Nov 2002 | A1 |
20020184506 | Perlman | Dec 2002 | A1 |
20020194613 | Unger | Dec 2002 | A1 |
20020196939 | Unger et al. | Dec 2002 | A1 |
20030002854 | Belknap et al. | Jan 2003 | A1 |
20030009669 | White et al. | Jan 2003 | A1 |
20030012286 | Ishtiaq et al | Jan 2003 | A1 |
20030021412 | Candelore et al. | Jan 2003 | A1 |
20030026423 | Unger et al. | Feb 2003 | A1 |
20030046686 | Candelore et al. | Mar 2003 | A1 |
20030059047 | Iwamura | Mar 2003 | A1 |
20030063615 | Luoma et al. | Apr 2003 | A1 |
20030072555 | Yap et al. | Apr 2003 | A1 |
20030077071 | Lin et al. | Apr 2003 | A1 |
20030081630 | Mowery et al. | May 2003 | A1 |
20030081776 | Candelone | May 2003 | A1 |
20030084284 | Ando et al. | May 2003 | A1 |
20030097662 | Russ et al. | May 2003 | A1 |
20030112333 | Chen et al. | Jun 2003 | A1 |
20030118243 | Sezer et al. | Jun 2003 | A1 |
20030123664 | Pedlow, Jr. et al. | Jul 2003 | A1 |
20030123849 | Nallur et al. | Jul 2003 | A1 |
20030126086 | Safadi | Jul 2003 | A1 |
20030133570 | Candelore et al. | Jul 2003 | A1 |
20030140257 | Peterka et al. | Jul 2003 | A1 |
20030145329 | Candelore | Jul 2003 | A1 |
20030152224 | Candelore et al. | Aug 2003 | A1 |
20030152226 | Candelore et al. | Aug 2003 | A1 |
20030156718 | Candelore et al. | Aug 2003 | A1 |
20030159139 | Candelore et al. | Aug 2003 | A1 |
20030159140 | Candelore | Aug 2003 | A1 |
20030159152 | Lin et al. | Aug 2003 | A1 |
20030174837 | Candelore et al. | Sep 2003 | A1 |
20030188154 | Dallard | Oct 2003 | A1 |
20030193973 | Takashimizu et al. | Oct 2003 | A1 |
20030198223 | Mack et al. | Oct 2003 | A1 |
20030204717 | Kuehnel | Oct 2003 | A1 |
20030226149 | Chun et al. | Dec 2003 | A1 |
20030228018 | Vince | Dec 2003 | A1 |
20040003008 | Wasilewski et al. | Jan 2004 | A1 |
20040010717 | Simec et al. | Jan 2004 | A1 |
20040021764 | Driscoll, Jr. et al. | Feb 2004 | A1 |
20040028227 | Yu | Feb 2004 | A1 |
20040047470 | Candelore | Mar 2004 | A1 |
20040049688 | Candelore et al. | Mar 2004 | A1 |
20040049690 | Candelore et al. | Mar 2004 | A1 |
20040049691 | Candelore et al. | Mar 2004 | A1 |
20040049694 | Candelore | Mar 2004 | A1 |
20040068659 | Diehl | Apr 2004 | A1 |
20040078575 | Morten et al. | Apr 2004 | A1 |
20040081333 | Grab et al. | Apr 2004 | A1 |
20040091109 | Son et al. | May 2004 | A1 |
20040100510 | Milic-Frayling et al. | May 2004 | A1 |
20040123094 | Sprunk | Jun 2004 | A1 |
20040136532 | Pinder et al. | Jul 2004 | A1 |
20040139337 | Pinder et al. | Jul 2004 | A1 |
20040165586 | Read et al. | Aug 2004 | A1 |
20040187161 | Cao | Sep 2004 | A1 |
20040193550 | Siegal | Sep 2004 | A1 |
20040240668 | Bonan et al. | Dec 2004 | A1 |
20040267602 | Gaydos et al. | Dec 2004 | A1 |
20050004875 | Kontio et al. | Jan 2005 | A1 |
20050066357 | Ryal | Mar 2005 | A1 |
20050071669 | Medvinsky et al. | Mar 2005 | A1 |
20050169473 | Candelore | Aug 2005 | A1 |
20050192904 | Candelore | Sep 2005 | A1 |
20050259813 | Wasilewski et al. | Nov 2005 | A1 |
20050026547 | Strasser et al. | Dec 2005 | A1 |
20060136976 | Coupe et al. | Jun 2006 | A1 |
Number | Date | Country |
---|---|---|
0471373 | Feb 1992 | EP |
0527611 | Jul 1992 | EP |
0558016 | Feb 1993 | EP |
0596826 | Apr 1993 | EP |
0610587 | Dec 1993 | EP |
0680209 | Apr 1995 | EP |
0833517 | Apr 1998 | EP |
0866615 | Sep 1998 | EP |
1 187 483 | Mar 2002 | EP |
1187483 | Mar 2002 | EP |
7067025 | Mar 1995 | JP |
WO 8607224 | Dec 1986 | WO |
WO 9738530 | Oct 1997 | WO |
WO 0031964 | Jun 2000 | WO |
WO 0178386 | Oct 2001 | WO |
WO 0178386 | Oct 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20030133570 A1 | Jul 2003 | US |
Number | Date | Country | |
---|---|---|---|
60372901 | Apr 2002 | US | |
60355326 | Feb 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10038217 | Jan 2002 | US |
Child | 10273903 | US | |
Parent | 10038032 | Jan 2002 | US |
Child | 10038217 | US | |
Parent | 10037914 | Jan 2002 | US |
Child | 10038032 | US | |
Parent | 10037499 | Jan 2002 | US |
Child | 10037914 | US | |
Parent | 10037498 | Jan 2002 | US |
Child | 10037499 | US |