The invention relates to a star wheel. In its preferred embodiment, the star wheel forms part of a conveyor system for conveying articles, for example, between stations of an in-line filling machine. The star wheel is particularly useful in a system where an upstream function has a start/stop characteristic and a downstream function requires articles to be delivered at a constant speed.
In-line filling machines for dispensing products, such as liquids and/or powders, into containers or vials typically include a conveyor system for conveying articles between stations. A filling station receives empty vials from the conveyor system, sequentially fills the vials with an accurate amount of one or more products and closes the thus-filled vials with closure members, for example, stoppers. Commercially available filling stations can operate at a speed of between 50 and 600 vials per minute. The conveyor system then conveys the closed vials to an inspection station which checks that the vials have been correctly filled. The inspection station may be a contact weighing machine, incorporating scales or the like to measure the weight of each of the vials, or a “non-contact check weighing” machine (NCCW), which employs magnetic resonance techniques to accurately establish the weight and quality of the contents of the vials at a speed of up to 600 vials per minute. A sealing station may also be provided downstream from the inspection station for sealing the vials.
In order to accurately establish that the vials have been correctly filled, an NCCW requires the vials to be monitored whilst being conveyed at a constant speed. However, conveyor systems often require to be stopped, for example, because the infeed of vials from upstream systems has been interrupted, because the stopper supply system has to be replenished, an error situation occurs or an operator has stopped the system. Stopping of the conveyor system is not instantaneous; it may take a number of seconds (or vials) for the conveyor system to halt when running at maximum speed. Similarly, it may take a number of seconds (or vials) for the conveyor to reach the desired running speed again when it is re-started. As a result, in the combined time that it takes for the conveyor system to decelerate from running speed to rest, and subsequently the time that it takes for the conveyor system to accelerate from rest back to the running speed, a number of filled vials may have passed through the NCCW, and so the weight and quality of the contents of those vials will not have been accurately determined. As a consequence, those vials are usually discarded.
It is an aim of at least the preferred embodiments of the present invention to seek to solve this problem and thus provide a conveyor system which can enable the performance of one station to be unaffected by the stopping and starting of another station.
In a first aspect, the present invention provides a star wheel for a conveyor system, the star wheel having a perimeter adapted to receive articles to be conveyed, first and second segments rotatable about a common axis at different speeds and means for controlling rotation of the segments so as to avoid clashing between one segment and the other segment or any articles conveyed thereby.
A star wheel typically receives containers or vials from a first conveyor and dispatches the vials to a second conveyor. In one embodiment, a first shaft rotates the first segment about the common axis, and a second shaft rotates the second segment about the common axis. A resilient means, for example, a torsion spring, resiliently connects the first shaft to the second shaft. Means are provided for connecting the first shaft to a first drive for rotating the first and second shafts about the common axis. This first drive is preferably also arranged to drive the first conveyor, or may be synchronous with a drive for that conveyor.
A clutch arrangement is connected to the second shaft for selectively connecting the second segment to a second drive. This second drive is preferably also arranged to drive the second conveyor, or may be synchronous with a drive for that conveyor. The clutch arrangement normally disconnects the second segment from the second drive to enable the segments to rotate at the same speed during normal operation of the conveyor system about the axis to transfer vials between the conveyors. In the event that the first drive is switched off for any reason, for example, for the replenishment upstream from the star wheel of empty vials, product(s) dispensed from a filling station, and/or stoppers, the clutch arrangement temporarily connects the second segment to the second drive. This enables the second segment to continue to rotate synchronously with the second conveyor so as to transfer vials to the second conveyor, and thus enables the second conveyor to continue to feed vials at a constant speed, during deceleration of the first segment. In order to prevent clashing between the segments when rotating at different speeds, the clutch arrangement disconnects the second segment from the second drive before it comes into contact with the first segment or any vials carried thereby, and the torsion spring returns the second segment to a predetermined position relative to the first segment.
Furthermore, given that the section of the conveyor system between the first segment and any station which receives vials from the second segment has been “cleared” of vials before the first drive is switched back on again, this can provide sufficient time when the first drive is switched on again for the conveyor system to reach its normal, constant running speed before any vials reach, for example, a weighing machine. Consequently, neither the deceleration nor the acceleration of the first drive influences the measurements made by the weighing machine.
In a second aspect, therefore, the present invention provides a star wheel for a conveyor system, the star wheel comprising first and second segments each having a perimeter adapted to receive articles to be conveyed, a first shaft for rotating the first segment about an axis, a second shaft for rotating the second segment about the axis, means for resiliently connecting the first shaft to the second shaft, means for connecting the first shaft to a first drive for rotating the first and second shafts together about the axis, and means for selectively connecting the second shaft to a second drive for rotating the second shaft about the axis at a different speed from the first shaft.
The second segment is preferably connected to the second drive when the second segment is at a predetermined angular position, and is preferably disconnected from the second drive following rotation of the second segment to a second predetermined angular position. This can enable the second segment to be disconnected from the second drive following dispatch of all of the vials carried thereby to the second conveyor but before the second segment has come into contact with the first segment or with any vials carried thereby.
In this embodiment, at least part of the first segment is axially spaced along the common axis from the second segment, and the first and second segments may be of different size. In the preferred embodiment, the first segment is larger than the second segment, but with the segments preferably defining, in plan view, an annular wheel so that the star wheel closely replicates the more conventional annular star wheels.
As is usual with star wheels, each segment has a plurality of article-engaging elements spaced about the periphery thereof. In the preferred embodiment, each element comprises a recess for receiving an article to be conveyed, although an alternative arrangement, for example an array of suction or magnetic holders, may be provided.
In the embodiment discussed above, the clutch arrangement selectively connects the second segment to the second drive so that vials can be conveyed to a weighing machine at a constant speed. In order to maintain synchronicity between the first segment and the first conveyor, the first segment is permanently connected to the first drive. This prevents any clashing between the recesses of the first segment and vials held by the first conveyor.
In an alternative embodiment, the control means comprises a first servo arrangement for selectively connecting the first segment to one of a first drive and a second drive to rotate the segment at a first speed, and a second servo arrangement for selectively connecting the second segment to the other of the first drive and the second drive to rotate the second segment at a second speed different from the first speed. In this second embodiment, the first and second servo arrangements are preferably arranged to synchronously change the drive to which each segment is connected, for example, such that the segment which is currently receiving vials from the first conveyor at any given moment is connected to the first drive, so as to prevent clashing between the recesses of that segment and vials held by the first conveyor, and the other segment is connected to the second drive, to prevent clashing between the second conveyor and the vials held by that segment.
The advantages of the first embodiment are also associated with this second embodiment, and so in a third aspect the present invention provides a star wheel for a conveyor system, the star wheel comprising first and second segments rotatable about a common shaft, each segment having a perimeter adapted to receive articles to be conveyed; a first servo arrangement for coupling the first segment to one of a first and a second drive, and a second servo arrangement for coupling the second segment to the other of the first and second drive, wherein the first and second servo arrangements are arranged to synchronously change the drive to which each segment is connected.
In a fourth aspect, the present invention provides apparatus for conveying articles from a first station to a second station, the apparatus comprising a star wheel as aforementioned, a first conveyor for conveying articles from the first station to the star wheel, a first drive for driving the first conveyor, a second conveyor for conveying articles from the star wheel to the second station, and a second drive for driving the second conveyor.
For use in the first embodiment, the first and second drives are arranged to drive the conveyors at the same speed. For use in the second embodiment, the first and second drives are arranged to drive the conveyors at different speeds.
The apparatus preferably comprises a second star wheel for transferring articles from the first conveyor to the first star wheel, and a third star wheel for transferring articles from the first star wheel to the second conveyor. The first drive is preferably arranged to rotate the second star wheel and the second drive is preferably arranged to rotate the third star wheel. In the first embodiment, the first star wheel is smaller than the second and third star wheels. In the second embodiment, the first star wheel is larger than the second and third star wheels.
Preferred features of the present invention will now be described, by way of example only, with reference to the accompanying drawings, in which:
With reference first to
The first star wheel 30 is rotated about a first shaft 38 by a timing belt 40 which couples a first timing pulley 42 of the first shaft 38 to a timing pulley (not shown) rotated by a first drive (not shown). In this embodiment, this first drive is provided by the motor which drives the gear wheels 22 of the conveyor 12, or alternatively the drive may be another motor synchronously driven with that motor.
The magic star wheel 32 comprises a first segment 44 and a second segment 46. The first segment 44 comprises upper and lower axially spaced parts 45a, 45b of similar size and shape. The second segment 46 is co-planar with the spacing between the parts 45a, 45b of the first segment 44. The parts 45a, 45b may be separate parts joined by any suitable means, for example, rods, which does not interfere with the entry of the second segment 46 between the parts 45a, 45b of the first segment 44, as described below, or may be formed from a single piece of material machined to form the spacing between the two parts 45a, 45b. Forming the first segment 44 from two axially spaced parts assists in providing stability to transported vials.
Each segment 44, 46 has a plurality of recesses 48, 50 spaced about the periphery thereof, the size and pitch of the recesses 48 of the first segment 44 being the same as those of the recesses 50 of the second segment 46. In this embodiment, the recesses of the annular star wheels 30, 34, 36 have the same pitch as the recesses 48, 50 of the magic star wheel 32. In the rest position shown in
The first segment 44 is rotated about the common axis by a second shaft 52 co-axial with the common axis. The second shaft 52 is connected to the first shaft 38 by a timing belt 54 coupling a second timing pulley 56 of the first shaft 38 to a timing pulley 58 of the second shaft 52, so that the first and second shafts 38, 52 rotate synchronously during use of the star wheel arrangement 18.
The second segment 46 is rotated about the common axis by a third shaft 60 co-axial with the second shaft 52 and located relative thereto by bearings 62. The second and third shafts 52, 60 are connected together by a torsion spring 64 to enable the shafts 52, 60 to rotate synchronously about the common axis.
The second annular star wheel 34 is rotated about a fourth shaft 66 by a timing belt 68 which couples a first timing pulley 70 of the fourth shaft 66 to a timing pulley (not shown) rotated by a second drive (not shown). In this embodiment, this second drive is provided by the motor which drives the second conveyor, or alternatively the drive may be another motor synchronously driven with that motor.
A clutch arrangement 72 is provided at the end of the third shaft 60 for selectively connecting the third shaft 60 to fourth shaft 66 and thus to the second drive. The clutch arrangement 72 comprises a solenoid clutch 74 actuable by a control device (not shown) to engage a timing pulley 76 rotated by a timing belt 78 coupled to a second timing pulley 80 of the fourth shaft 66.
In this embodiment, the first and fourth shafts 38, 66 are rotated at the same speed.
The operation of a first embodiment of the star wheel arrangement 18 will now be described with reference to
In the rest position shown in
With the conveyor system 10 in operation, vials conveyed by the first conveyor 12 are transferred to the first star wheel 30, which, as shown in
In the event that the drive for the first conveyor 12 is stopped, the conveyor 12 is not decelerated from the normal running speed until the star wheel arrangement 18 is in the position shown in
As shown in
In view of the uninterrupted, constant rotation of the second segment 46 during the deceleration of the first conveyor 12, and the uninterrupted, constant rotation of the second and third star wheels 34, 36, the second conveyor continues to feed vials to, for example, a weighing machine, at a constant speed.
Furthermore, given that the section of the conveyor system 10 between the first segment and any station which receives vials from the second conveyor has been “cleared” of vials before the drive for the first conveyor 12 has been switched back on again, this can provide sufficient time for the conveyor system 10 to accelerate from rest back up to its normal, constant running speed before any vials reach the weighing machine. Consequently, neither the deceleration nor the acceleration of any part of the conveyor system 10 influences the measurements made by the weighing machine.
In the star wheel arrangement shown in
The star wheel arrangement can be used with pitches other than ±40 mm. For example,
In each of the arrangements described above with reference to
With reference first to
The magic star wheel 104 comprises a first segment 110 and a second segment 112 spaced from the first segment 110 along a common axis about which the segments rotate during use of the star wheel arrangement 100. Each segment 110, 112 is of the same size and has the same number of recesses 114, 116 spaced about the periphery thereof, the size and pitch of the recesses 114 of the first segment 110 being the same as those of the recesses 116 of the second segment 112. In this embodiment, the recesses of the annular star wheels 102, 106, 108 have the same size as the recesses 114, 116 of the magic star wheel 104.
The first segment 110 is selectively connected by a first servo arrangement to one of the drive shaft for the first star wheel 102 and the drive shaft for the second star wheel 106, and the second segment 112 is selectively connected by a second servo arrangement to the other one of the drive shaft for the first star wheel 102 and the drive shaft for the second star wheel 106. Consequently, at any given moment during normal running of the star wheel arrangement 100, one of the segments 110, 112 is rotating at the first speed and the other segment is rotating at the second speed.
In this embodiment, the drive shaft for the first star wheel 102 is driven by the motor which drives the first conveyor, or alternatively the drive may be another motor synchronously driven with that motor. Similarly, the drive shaft for the second star wheel 106 is driven by the motor which drives the second conveyor, or alternatively the drive may be another motor synchronously driven with that motor.
The servo arrangements for the first and second segments 110, 112 are arranged such that the segment which is receiving vials from the first, slower star wheel 102 is connected to the drive shaft for that star wheel 102, and the segment which is dispatching vials to the second, faster star wheel 106 is connected to the drive shaft for that star wheel 106. The segments 110, 112 are shaped so that a segment does not receive vials from the first star wheel 102 whilst dispatching vials to the second star wheel 106. For example, in
This second embodiment also shares the advantages of the first embodiment described above. When the drive for the first star wheel 102 is switched off, rotation of the first star wheel 102 and the magic star wheel 104 is continued as normal until the magic star wheel 104 is in the position shown in
In the star wheel arrangement shown in
Number | Date | Country | Kind |
---|---|---|---|
0406230.3 | Mar 2004 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB2005/000781 | 3/1/2005 | WO | 00 | 9/19/2006 |